We show that the photonic crystal waveguide and cavity system could be a superior platform to observe and manipulate nonlinear Fano resonance. Using a modified Fano-Anderson model, we can study the nonlinear dynamics in this system. By adding a scattering channel as a continuum to this system, there are bound states in the continuum in such photonic system. We can therefore obtain the tunable interaction of Fano resonances in the Mach-Zehnder-Fano interferometers by exciting the bound state like mode. The nonlinear version of Mach-Zehnder-Fano interferometers can be used to enhance the nonlinear response which facilitates the reduction of optical switching power. In contrast, by adding a scattering channel as a discrete state to this system, we can shape the asymmetry nonlinear transmission of the system. Furthermore, the nonreciprocity of the photonic system can be manipulated dynamically. The unidirectional transmission can be managed by the properties of the input signal, resembling an optical diode with reconfigurable forward direction and transmission contrast. We also address the possibility to control the properties of the nonreciprocity by using a pump pulse, providing a chance to control the system in an all-optical manner.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.