A new type of diffractive spatial optical modulators, named SOM, has been developed by Samsung Electro-Mechanics
for laser projection display. It exhibit inherent advantages of fast response time and high-performance light modulation,
suitable for high quality embedded laser projection displays. The calculated efficiency and contrast ratio are 75 % and
800:1 respectively in case of 0th order, 67 % and 1000:1 respectively in case of ±1st order. The response time is as fast as
0.7 &mgr;s. Also we get the displacement of 400 nm enough to display full color with single panel in VGA format, as being
10 V driven. Optical module with VGA was successfully demonstrated for its potential applications in mobile laser
projection display such as cellular phone, digital still camera and note PC product. Electrical power consumption is less
than 2 W, volume is less than 13 cc. Brightness is enough to watch TV and movie in the open air, being variable up to 6
lm. Even if it's optimal diagonal image size is 10 inch, image quality does not deteriorate in the range of 5 to 50 inch
because of the merit of focus-free. Due to 100 % fill factor, the image is seamless so as to be unpleasant to see the every
pixel's partition. High speed of response time can make full color display with 24-bit gray scale and cause no scan line
artifact, better than any other devices.
New micro-machined VOA (Variable Optical Attenuator) is proposed, which has a micro shutter coated with light dissipative material such as Ti. A couple of tapered fibers are aligned with each other through optical path on the VOA chip. The optical path is composed of air path and the shutter of a microstructure. In the conventional study, reflective materials such as Au, Al, Cu and so on are used as a coated material for the micro mirror or micro shutter to improve the optical performance of VOA. The optical performances are composed of polarization dependent loss (PDL), wavelength dependent loss (WDL), return loss (RL) and so on. The optical characteristics of VOA usually depend on the shape of micro shutter, and on the coated material of micro shutter and on optical path. This paper proposes a new shape of shutter and a dissipative material like titanium to improve the optical performances. The new VOA in this paper is fabricated using silicon micro machining process. The structure of VOA is fabricated by ICP (Inductively Coupled Plasma) deep etch process, with SOI (silicon-on-insulator) wafer, which has 80μm thick layer and 3μm thick oxide layer. The new proposed VOA shows fast response time of the MEMS actuator and the excellent optical performances such as PDL and WDL. This paper shows that new designed shape and proposed material of micro shutter are useful to get excellent optical performances, compared with conventional model.
Two new micromachined VOAs(Variable Optical Attenuator), which have a micromirror with ultra-smooth surface, are presented and are compared with each other with respect to each different actuator type with same mirror structure. A couple of tapered fibers are perpendicularly aligned using the reflection of a micromirror. By moving the micromirror parallel or vertical direction to the mirror surface, some part of transmitting light can be attenuated with the principle of leaked light or misaligned light. This paper shows the two features of performance of the new two type VOAs. The one is that a micromirror with ultra-smooth surface gives the good optical performances of the VOA and the second is that the two new type VOAs have different the optical characteristics, such as polarization dependent loss(PDL), wave dependent loss(WDL) and return loss(RL), because of the different optical path or different optical attenuated method by different actuator. In this paper, the structure of reflector type VOA is fabricated using silicon micromachining process. Using SOI(silicon-on-insulator) wafer with 80μm device layer and 3 μm oxide layer, structure is patterned by ICP (Inductively Coupled Plasma) deep etch process which is followd by thermal oxidation for improved surface roughness, HF oxide layer etching, releasing and Au sputtering to form mirror surfaces and interconnection pads. This paper pays attention to the importance of the final optical fiber alignment, which may play a key role in the optical performance of the VOA.
A micro gyroscope, which vibrates in two orthogonal axes on the substrate plane, is designed and fabricated. Fabrication processes of the micro gyroscope are composed of anisotropic silicon etching by RIE, dry release by newly developed anhydrous HF gas-phase etching (GPE) of the buried sacrificial oxide layer, stress relief by multi-step annealing, metal electrode formation. The GPE process was verified as a very effective method for the release of compliant microstructures of micro gyroscope. The developed GPE system with anhydrous HF gas and CH3OH vapor was characterized and its etching properties were discussed. We successfully fabricated micro gyroscope with no virtually process-induced stiction and no residual products after GPE of TEOS, LTO, and thermal oxide on silicon substrates.
A dynamic model for a vibrating microgyroscope with respect to angular rate is derived. Using the dynamic model, responses of the vibrating microgyroscope with respect to angular rate input is analyzed. A microgyroscope, which vibrates on the substrate plane, is designed and fabricated by simplified fabrication processes using single polysilicon on insulator structure. The validity of the derived dynamic model is tested by comparing simulation results with and experiments. The performance of the fabricated microgyroscope is investigated in a vacuum chamber of 100 mtorr. The obtained sensitivity of the microgyroscope at a typical static angular rate is 5 mV s/degree.
A microgyroscope, which vibrates in two orthogonal axes on the substrate plane, is designed and fabricated. The shuttle mass of the vibrating gyroscope consists of two parts. The one is outer shuttle mass which vibrates in driving mode guided by four folded sprints attached to anchors. And the other is inner shuttle mass which vibrates in driving mode as the outer frame does and also can vibrate in sensing mode guided by four folded springs attached to the outer shuttle mass. Due to the directions of vibrating modes, it is possible to fabricate the gyroscope with simplified process by using polysilicon on insulator structure. Fabrication processes of the microgyroscope are composed of anisotropic silicon etching by RIE, gas-phase etching of the buried sacrificial oxide layer, metal electrode formation. An electromechanical model of the vibrating microgyroscope was modeled and bandwidth characteristics of the gyroscope were analyzed firstly. The analyzed characteristics of the gyroscope were evaluated by experiment. The gyroscope operates at DC 4V and AC 0.1V in a vacuum chamber of 100mtorr. The detection circuit consists of a discrete sense amplifier and a noise canceling circuit. Using the evaluated electromechanical mode, an operating condition for high performance of the gyroscope is obtained.
We employed a newly developed HF gas-phase etching (GPE) process for the removal of sacrificial oxides. The structural layers are P-doped multi-stacked polysilicon and silicon epi-layer of SOI substrates and sacrificial layers are TEOS, LTO, PSG, and thermal oxides on silicon nitride or polysilicon substrates. The characteristics of residual products on polysilicon or silicon nitride were scrutinized by using SEM and AES. After GPE of TEOS, LTO, and PSG on the silicon nitride substrate, the polysilicon microstructures are stuck to the underlying substrate because neither the SiOxNy layers nor the H3PO4(H2O) layer vaporize. We found that the etching of TEOS, LTO, and thermal oxide on a polysilicon substrate shows no residual product and no stiction.
One of the limiting factors in fabrication of surface micromachined structures is the residual stress formed in the film during deposition. In order to fabricate the microstructure using the polysilicon layers deposited in a conventional LPCVD furnace, we used the multi-stacked polysilicon films and reported a method of stress control in that films. In the multi-stacked polysilicon film there exist the polysilicon/polysilicon interfaces, at which oxidized layers are formed during film stacking and dopant atoms are segregated. These facts made the multi-stacked film difficult to be used as structural layers for microstructure fabrication. In order to control the stress profile, we investigated the effects of dopant distribution and oxidized layers on the stress profile in the multi-stacked film using micromachined test structures. The stress profile could be modified considerably by multi-steps doping process and the residual stress was reduced to 15 MPa for 5 micrometer thick film. The contribution of the oxidized layer to the stress profile was also studied extensively and we could reduce the effect of the oxidized layer by the symmetrical stacking of films. Using the simple model, the dopant-induced stress profile was calculated theoretically from the dopant concentration profile and it suggested an improved method for estimating the stress profile of doped polysilicon films. Using the method developed in this study, the microstructure made of the multi-stacked polysilicon film was successfully fabricated with a low stress gradient of 0.5 MPa/micrometer. The conventional LPCVD equipment without any modification can fabricate the polysilicon structural layer for the microstructure fabrication by the multi-stacking process, which offered the convenient method of stress control.
In silicon surface micromachining, the newly developed GPE (gas-phase etching) process was verified as a very effective method for the release of highly compliant microstructure. The developed GPE system with anhydrous HF (hydrogen fluoride) gas and CH3OH (methanol) vapor was characterized and its selective etching properties were discussed. P-doped polysilicon and SOI (silicon on insulator) substrate were used as a structural layer and TEOS (tetraethylorthosilicate) oxide and thermal oxide as a sacrificial layer. The etch rates of HF GPE were 400 angstrom/min for sacrificial TEOS oxide and 1000 angstrom/min for bulk TEOS oxide. For SOI structures, we adopted two step process of wet etch and HF GPE process to reduce the process time and confirmed relatively low etch rate of 55 angstrom/min for 1.8 micrometer-thick thermal oxide after 6:1 BHF etching for 15 minutes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.