Recently, resting-state functional near-infrared spectroscopy (rs-fNIRS) research has experienced tremendous progress. Resting-state functional connectivity (RSFC) has been adopted as a pivotal biomarker in rs-fNIRS studies. However, it is yet to be clear if the RSFC derived from rs-fNIRS is reliable. This concern impedes extensive utilization of rs-fNIRS. We systematically address the issue of reliability. Sixteen subjects participate in two rs-fNIRS sessions held one week apart. RSFC in sensorimotor system is calculated using the seed-correlation approach. Then, test-retest reliability is evaluated at three different scales (map-, cluster-, and channelwise) for individual- and group-level RSFC derived from different types of fNIRS signals [oxygenated (HbO), deoxygenated (HbR), and total hemoglobin (HbT)]. The results show that, for HbO signals, individual-level RSFC generally has good-to-excellent map-/clusterwise reliability, while group-level RSFC has excellent reliability. For HbT signals, the results are similar. For HbR signals, the clusterwise reliability is comparable to that for HbO while the mapwise reliability is slightly lower (fair to good). Focusing on RSFC at a single channel, we report poor channelwise reliability for all three types of signals. We hereby propose that fNIRS-derived RSFC is a reliable biomarker if interpreted in map- and clusterwise manners. However, channelwise interpretation of individual RSFC should proceed with caution.
Functional connectivity has become one of the important approaches to understanding the functional organization of the human brain. Recently, functional near-infrared spectroscopy (fNIRS) was demonstrated as a feasible method to study resting-state functional connectivity (RSFC) in the sensory and motor systems. However, whether such fNIRS-based RSFC can be revealed in high-level and complex functional systems remains unknown. In the present study, the feasibility of such an approach is tested on the language system, of which the neural substrates have been well documented in the literature. After determination of a seed channel by a language localizer task, the correlation strength between the low frequency fluctuations of the fNIRS signal at the seed channel and those at all other channels is used to evaluate the language system RSFC. Our results show a significant RSFC between the left inferior frontal cortex and superior temporal cortex, components both associated with dominant language regions. Moreover, the RSFC map demonstrates left lateralization of the language system. In conclusion, the present study successfully utilized fNIRS-based RSFC to study a complex and high-level neural system, and provides further evidence for the validity of the fNIRS-based RSFC approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.