It is a challenge to non-invasively visualize in vivo the neovascularization in a three-dimensional (3D) scaffold with high
spatial resolution and deep penetration depth. Here we used photoacoustic microscopy (PAM) to chronically monitor
neovascularization in an inverse opal scaffold implanted in a mouse model for up to six weeks. The neovasculature was
observed to develop gradually in the same mouse. These blood vessels not only grew on top of the implanted scaffold
but also penetrated into the scaffold. The PAM system offered a lateral resolution of ~45 μm and a penetration depth of ~3 mm into the scaffold/tissue construct. By using the 3D PAM data, we further quantified the vessel area as a function
of time.
We performed a photoacoustic endoscopic imaging study of melanoma tumor growth in a nude rat in vivo. After
inducing the tumor at the colorectal wall of the animal, we monitored the tumor development in situ by using a
photoacoustic endoscopic system. This paper introduces our experimental method for tumor inoculation and presents
imaging results showing the morphological changes of the blood vasculature near the tumor region according to the
tumor progress. Our study could provide insights for future studies on tumor development in small animals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.