Digital imagery is important in many applications today, and the security of digital imagery is important today and is likely to gain in importance in the near future. The emerging international standard ISO/IEC JPEG-2000 Security (JPSEC) is designed to provide security for digital imagery, and in particular digital imagery coded with the JPEG-2000 image coding standard. One of the primary goals of a standard is to ensure interoperability between creators and consumers produced by different manufacturers. The JPSEC standard, similar to the popular JPEG and MPEG family of standards, specifies only the bitstream syntax and the receiver's processing, and not how the bitstream is created or the details of how it is consumed. This paper examines the interoperability for the JPSEC standard, and presents an example JPSEC consumption process which can provide insights in the design of JPSEC consumers. Initial interoperability tests between different groups with independently created implementations of JPSEC creators and consumers have been successful in providing the JPSEC security services of confidentiality (via encryption) and authentication (via message authentication codes, or MACs). Further interoperability work is on-going.
The WCAM project aims to provide an integrated system for secure delivery of video surveillance data over a wireless network, while remaining scalable and robust to transmission errors. To achieve these goals, the content is encoded in Motion-JPEG2000 and streamed with a specific RTP protocol encapsulation to prevent the loss of packets containing the most essential data. Protection of the video data is performed at content level using the standardized JPSEC syntax, along with flexible encryption of quality layers or resolution levels. This selective encryption respects the JPEG2000 structure of the stream, not only ensuring end-to-end ciphered delivery, but also enabling dynamic content adaptation within the wireless network (quality of service, adaptation to the user's terminal).
Some DRM modules from OPENSDRM platform will be added to manage all authenticated peers on the WLAN (from end-users to cameras), as well as to manage the rights to display conditionally the video data. This whole integrated architecture addresses several security problems such as data encryption, integrity and access control. Using several protection layers, the level of confidentiality can depend on both the content characteristics and the user rights, thus also addressing the critical issue of privacy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.