Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status.
Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO2).
Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO2 levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO2 - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed.
Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.
Initial animal study for quantifying myocardial physiology through contrast-enhanced dynamic x-ray CT suggested that beam hardening is one of the limiting factors for accurate regional physiology measurement. In this study, a series of simulations were performed to investigate its deterioration effects and two correction algorithms were adapted to evaluate for their efficiency in improving the measurements.
The simulation tool consists of a module simulating data acquisition of a real polyenergetic scanner system and a heart phantom consisting of simple geometric objects representing ventricles and myocardium. Each phantom component was modeled with time-varying attenuation coefficients determined by ideal iodine contrast dynamic curves obtained from experimental data or simulation. A compartment model was used to generate the ideal myocardium contrast curve using physiological parameters consistent with measured values. Projection data of the phantom were simulated and reconstructed to produce a sequence of simulated CT images. Simulated contrast dynamic curves were fitted to the compartmental model and the resultant physiological parameters were compared with ideal values to estimate the errors induced by beam hardening artifacts.
The simulations yielded similar deterioration patterns of contrast dynamic curves as observed in the initial study. Significant underestimation of left ventricle curves and corruption of regional myocardium curves result in systematic errors of regional perfusion up to approximately 24% and overestimates of fractional blood volume (fiv) up to 13%. The correction algorithms lead to significant improvement with errors of perfusion reduced to 7% and errors of fiv within 2% which shows promise for more robust myocardial physiology measurement.
Purpose: The purpose of this study is to evaluate multi-slice computed tomography technology to quantify functional and physiologic changes in rats with pulmonary emphysema. Method: Seven rats were scanned using a 16-slice CT (Philips MX8000 IDT) before and after artificial inducement of emphysema. Functional parameters i.e. lung volumes were measured by non-contrast spiral scan during forced breath-hold at inspiration and expiration followed by image segmentation based on attenuation threshold. Dynamic CT imaging was performed immediately following the contrast injection to estimate physiology changes. Pulmonary perfusion, fractional blood volume, and mean transit times (MTTs) were estimated by fitting the time-density curves of contrast material using a compartmental model. Results: The preliminary results indicated that the lung volumes of emphysema rats increased by 3.52±1.70mL (p<0.002) at expiration and 4.77±3.34mL (p<0.03) at inspiration. The mean lung densities of emphysema rats decreased by 91.76±68.11HU (p<0.01) at expiration and low attenuation areas increased by 5.21±3.88% (p<0.04) at inspiration compared with normal rats. The perfusion for normal and emphysema rats were 0.25±0.04ml/s/ml and 0.32±0.09ml/s/ml respectively. The fractional blood volumes for normal and emphysema rats were 0.21±0.04 and 0.15±0.02. There was a trend toward faster MTTs for emphysema rats (0.42±0.08s) than normal rats (0.89±0.19s) with p<0.006, suggesting that blood flow crossing the capillaries increases as the capillary volume decreases and which may cause the red blood cells to leave the capillaries incompletely saturated with oxygen if the MTTs become too short. Conclusion: Quantitative measurement using CT of structural and functional changes in pulmonary emphysema appears promising for small animals.
High-speed X-ray computed tomography (CT) has the potential to observe the transport of iodinated radio-opaque contrast agent (CA) through tissue enabling the quantification of tissue physiology in organs and tumors. The concentration of Iodine in the tissue and in the left ventricle is extracted as a function of time and is fit to a compartmental model for physiologic parameter estimation. The reproducibility of the physiologic parameters depend on the (1) The image-sampling rate. According to our simulations 5-second sampling is required for CA injection rates of 1.0ml/min (2) the compartmental model should reflect the real tissue function to give meaning results. In order to verify these limits a functional CT study was carried out in a group of 3 mice. Dynamic CT scans were performed on all the mice with 0.5ml/min, 1ml/min and 2ml/min CA injection rates. The physiologic parameters were extracted using 4 parameter and 6 parameter two compartmental models (2CM). Single factor ANOVA did not indicate a significant difference in the perfusion, in the kidneys for the different injection rates. The physiologic parameter obtained using the 6-parameter 2CM model was in line with literature values and the 6-parameter significantly improves chi-square goodness of fits for two cases.
The purpose of this study is to demonstrate that dynamic CT provides the necessary sensitivity to quantify tumor physiology and differences in chemotherapeutic response. A compartmental mouse model utilizing measured contrast-enhanced dynamic CT scans is used to simulate systematic and statistical errors associated with tumor physiology: perfusion, permeability (PS), fractional plasma volume (fp), and fractional interstitial volume. The solute utilized is a small molecular weight radio-opaque contrast agent (isovue). For such an intravascular-interstitial medium, the kinematics simplifies to a two compartmental diffusive dominated set of coupled differential equations. Each combination of physiological parameters is repeatedly simulated fifteen times from which statistical errors calculated. The fractional change relative to the true value (systematic error) and standard deviation (statistical error) are plotted as a function of PS, fp, scanner temporal resolution and noise, and contrast media injection rates. By extrapolating from experimental data found in literature, a relative change in PS and fp of approximately 40% is required. Thus, the longitudinal response of two chemotherapeutic drugs under investigation - proteasome and IMPDH inhibitors - are hypothesized to induce different physiological responses. The first set of simulations varies PS from 0.05 to 0.40 mL/min/mL and fp from 0.01 to 0.07 mL/mL while holding all other physiological parameters constant. Errors in PS remain below 3% while statistical errors for fp increase significantly as the volume decreases toward 1-2%: errors remain less than 6% for fp>0.03 while increasing to above 15% for fp<0.02. The second set of simulations are performed quantifying the relationship between scanner temporal resolution and contrast media injection rate for various tumor permeabilities. For the majority of cases, the errors remain below 5%. As PS approaches perfusion, a total error less than 6% can be maintained for a temporal resolution less than or equal to 3 seconds, and an error less than 9% up to 5-7 seconds. As the injection rate decreases from 2 mL/min down to 0.25 mL/min, inadequate sampling of the contrast dynamics necessary to decouple the physiological parameters is lost increasing both systematic and statistical errors from 10% when sampling at 5 seconds in excess of 20-25% at a 9 second sampling rate. In each case, dynamic CT provides the necessary sensitivity to distinguish between the differing therapeutic reponses of proteasome and IMPDH inhibitors.
Purpose: To evaluate whether functional multi-slice computed tomography (MSCT) can identify regional areas of normally perfused and ischemic myocardium in a porcine model.
Material and Methods: Three out bred pigs, two of which had ameroids surgically implanted to constrict flow within the LAD and LCx coronary arteries, were injected with 25 mL of iopromide (Isovue) at a rate of 5 mL/second via the femoral or jugular vein. Sixty axial scans along the short axis of the heart was acquired on a 16-slice CT scanner (Philips MX8000-IDT) triggered at end-diastole of the cardiac cycle and acquiring an image within 270 msec. A second series of scans were taken after an intravenous injection of a vasodilator, 150 μg/kg/min of adenosine. ROIs were drawn around the myocardial tissue and the resulting time-density curves were used to extract perfusion values.
Results: Determination of the myocardial perfusion and fractional blood volume implementing three different perfusion models. A 5-point averaging or 'smoothing' algorithm was employed to effectively filter the data due to its noisy nature. The (preliminary) average perfusion and fractional blood volume values over selected axial slices for the pig without an artificially induced stenosis were measured to be 84 ± 22 mL/min/100g-tissue and 0.17 ± 0.04 mL/g-tissue, the former is consistent with PET scan and EBCT results. The pig with a stenosis in the left LAD coronary artery showed a reduced global perfusion value -- 45 mL/min/100g-tissue. Correlations in regional perfusion values relative to the stenosis were weak. During the infusion of adenosine, averaged perfusion values for the three subjects increased by 46 (±45) percent, comparable to increases measured with PET.
Conclusion: Quantifying global perfusion values using MDCT appear encouraging. Future work will focus resolving the systematic effects from noise due to signal fluctuation from the porcine tachyardia (80-93 BPM) and provide a more robust measurement of regional myocardial perfusion throughout the heart.
Micro-computed tomography (microCT) is capable of obtaining high-resolution images of skeletal tissues. However its image contrast among soft tissues remains inadequate for tumor detection. High speed functional computed tomography will be needed to image tumors by employing x-ray contrast medium. The functional microCT development will not only facilitate the image contrast enhancement among different tissues but also provide information of tumor physiology. To demonstrate the feasibility of functional CT in mouse imaging, sequential computed tomography is performed in mice after contrast material administration using a high-speed clinical CT scanner. Although the resolution of the clinical scanner is not sufficient to dissolve the anatomic details of rodents, bulky physiological parameters in major organs such as liver, kidney, pancreas, and ovaries (testicular) can be examined. For data analysis, a two-compartmental model is employed and implemented to characterize the tissue physiological parameters (regional blood flow, capillary permeability, and relative compartment volumes.) The measured contrast dynamics in kidneys are fitted with the compartmental model to derive the kidney tissue physiology. The study result suggests that it is feasible to extract mouse tissue physiology using functional CT imaging technology.
Subsecond multi-slice spiral CT has now been recognized with its great potential in cardiac imaging, in particularly for the coronary calcification detection (CCD). Different reconstruction algorithms have been developed in order to optimize the temporal resolution and to improve the measurement accuracy. These algorithms typically incorporate retrospectively gated reconstructions based on a synchronized electrocardiography (ECG) recording. However, these algorithms consist of different approaches in choosing spatial filters, setting ECG delays, and employing the reconstruction geometry (direct fan-beam vs. parallel rebining). These differences are likely to contribute to the intrascanner and interscanner variability in the coronary calcium measurements. This paper investigates in detail about the quantitative effect on calcium detection among different approaches.
A new method to reduce the streak artifacts caused by high attenuation objects in CT images has been developed. The key part of this approach is a preprocessing procedure based on the raw projection data using an adaptive scaling-plus-filtering method. The procedure is followed by the conventional filtered-back projection to reconstruct artifact-reduced images. Phantom and clinical studies have demonstrated that the proposed method can effectively reduce the streak artifacts caused by high attenuation objects for different anatomical structures and metal materials while still faithfully reproduce the positions and dimensions of the metal objects. The visualization of tissue features adjacent to metal objects is greatly improved. The proposed method is computational efficient and can be easily adapted to the current commercial CT scanners.
This paper presents implementation of an algorithm termed as oblique surface reconstruction (OSR) on cone-beam multi-slice reconstruction. Simulations on several mathematical phantoms are performed. Theoretical consideration is reviewed and the reconstruction of simulated phantom data in comparison to the current standard 180# LI is presented. The OSR is shown to produce images with high quality when practical spiral cone-beam scanning utilizing the multi-slice configuration is considered.
Multi-slice helical beam scanning involves cone-beam geometry. The primary advantages for use of divergent cone- beams include reduced data acquisition, improved image resolution and optimized photon utilization. Due to the complexity of 3D cone-beam reconstruction, approximate algorithms have been sought to handle the cone-beam reconstruction. This paper presents a new approximate algorithm termed as oblique surface reconstruction (OSR). Theoretical considerations as well as the reconstruction of simulated phantom data in comparison to the current standard 180 degree(s) LI are presented. OSR is shown to be effective and practical to generate images with diagnostic quality.
A computerized scheme for the automated segmentation of contrast enhanced arteries is developed for computerized tomographic angiography (CTA) data. Segmentation is performed with two-dimensional (2D) images on a slice-by-slice base. Image processing techniques include gray-level thresholding, eight-point connectivity tracking, region growing, moment analysis and morphological erosion. The results enable the generation of separated three-dimensional (3D) displays of both vascular and non-vascular structures. The method has been applied to several clinical cases and has shown great promises.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.