In Electron Beam (EB) exposure for Extreme Ultraviolet (EUV) masks, it is well known that the backscattering behavior differs significantly from conventional photomasks due to their film structure. In particular, short-range scattering derived from the Mo/Si multilayer film increases, causing the resist film to be more strongly affected within narrower range. To compensate for the error in Critical Dimension (CD), Proximity Effect Correction (PEC) in EB writer must be aware of this short-range scattering. While PEC calibration is typically done using the expertise of skilled engineers, adjusting the parameters of the multi-gaussian model significantly increases the burden on engineers due to the complexity of the phenomenon. In this paper, we introduce a method that automates the procedure of PEC parameter optimization by applying Mask Process Correction (MPC) model calibration techniques and providing feedback on backscattering components from empirically fitted model. Through demonstration of exposure experiments, we confirmed that accurate PEC optimization can be achieved by calibrating the MPC model using well-designed gauge patterns and exposure conditions.
Extreme Ultraviolet (EUV) mask has Critical Dimension (CD) errors from various kinds of sources. Those errors are controlled for and corrected by proper correction methods such as fogging effect correction (FEC), loading effect correction (LEC), proximity effect correction (PEC), mask process correction (MPC) and so on. The corrections are mostly done independently. For example, conventionally CD nonlinearity has been the scope of mask process correction (MPC) and proximity effect has been that of proximity effect correction (PEC) because the interaction range considered is different from each other. But in order to improve the CD quality, we may need to consider the residual errors of PEC in MPC as well. For this purpose, we evaluated a new MPC method, named PEC-aware MPC, which considers writer's internal PEC for both model optimization and correction.
EUV lithography draws increasing attention and its expectation is rising. For instance, replacing a triple patterning with ArF immersion lithography to EUV single patterning may reduce 50% of cost and 25% of cycle time [1]. At the same time, the importance of MPC (Mask Process Correction) is also growing [2] [3] [4]. It has become no longer possible to handle recent small and complex features using a rule-based bias approach. It is known that EUV lithography masks have a different structural stack so that “short range effect” of EB proximity effect is observed in mask writing [5]. In this paper, we investigated the above short range effect through MPC model calibration. Mask data preparation step of EUV mask case is performed and the Turn-a-around (TAT) is compared with conventional DUV mask case.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.