An original design approach for inverted tapers based on effective mode area (EMA) control is proposed. It has been demonstrated that the inverted taper with constant loss as a function of position along the taper is most efficient. First, a general equation which can satisfy this constant loss condition is derived between EMA and the position within the taper. EMA can be controlled by adjusting the waveguide width. Introducing the relationship between EMA and waveguide width into this equation, an optimal profile for the inverted taper is obtained. The design approach is illustrated by applying it to an ideal SOI inverted taper. The conversion loss of the designed inverted taper can be reduced by 60% and 78% compared to parabolic and linear inverted tapers, respectively, when the taper length is 300 μm.
A polymer-based multimode interference optical splitter chip has been designed and fabricated. Fiber-waveguide coupling loss as well as the structure of the multimode waveguide are optimized in the design to achieve higher performance. A simple UV-based soft nanoimprint lithography (Soft UV-NIL) technique is adopted in the fabrication. Fluorinated acrylate resins, LFR, with different refractive indices are used in this work. Both the residual layer and waveguide deformation are improved by controlling the fabrication processes. An average of 12.98 dB insertion loss is obtained from 1×4 splitters with 1.08 dB uniformity and 0.05 dB polarization-dependent loss. The validity of the polymer optical splitters fabricated through Soft UV-NIL technique is demonstrated by software simulation as well as experimental works.
A polymer-based multimode interference (MMI) optical splitter chip has been fabricated through UV-based soft imprint lithography (Soft UV-NIL) technique. Propagation loss and bending loss are considered during the chip design in order to decrease the insertion loss. UV curable fluorinated acrylate resin is used due to its low material absorbing loss. 1×4 cascaded MMI splitter is fabricated and measured at 1550 nm optical wavelength and an average 12.38 dB insertion loss is obtained together with an 1.23 dB uniformity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.