Understanding how different central nervous system diseases affect different components of neurovascular coupling will allow for linking changes in neural or metabolic dysfunction to changes in hemodynamic signaling upon which blood-based imaging methods rely. We developed a dual fluorophore imaging system for simultaneous, high-speed mapping of neural, metabolic, and hemodynamic activity. Proof-of-concept measurements of spontaneous and stimulus-evoked dynamics are presented in awake and anesthetized mice. This flexible hardware platform allows for integrating optogenetic stimulation for all optical neural circuit interrogation and readout, and for examining the interaction between multiple cell populations.
Understanding how different diseases of the central nervous system affect neurovascular coupling will allow for linking changes in neural or metabolic dysfunction to changes in hemodynamic signaling upon which blood-based imaging methods rely. We developed a dual fluorophore imaging system for simultaneous, high-speed mapping of neural, metabolic, and hemodynamic activity. Proof-of-concept measurements of spontaneous and stimulus-evoked dynamics are presented in awake and anesthetized mice. This flexible hardware platform allows for integrating optogenetic stimulation for all optical neural circuit interrogation and readout, and for examining the interaction between multiple cell populations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.