Large aperture telescopes require active control to maintain focus, collimation, and correct figure errors in the Primary Mirror (M1) due to gravity and thermal deformations. The Giant Magellan Telescope (GMT) M1 active optics subsystem consists of the hardware and software that controls the shape, position, and thermal state of each mirror segment. Pneumatic force actuators support the weight and control the surface figure while linear position actuators control the six solid-body degrees of freedom of each mirror segment. A forced convection system comprised of fan-heat exchanger units control the mean temperature and thermal gradient of each mirror segment. The M1 Subsystem design leverages existing technology and employs innovations driven by more demanding requirements compared to heritage systems. These differences led to the identification of three key GMT project risks: determining if the vibration environment induced by the fan-heat exchanger units and the error in the applied influence functions required to shape the mirror are within image quality budget allocations. The third risk is incorporating damping to the force actuators to meet the seismic requirements. GMT is currently mitigating these risks by integrating a fully functional off-axis M1 Test Cell at the University of Arizona’s Richard F. Caris Mirror Lab. This paper summarizes our requirements and design presented at the M1 Subsystem Preliminary Design Review in June 2019, describes our risk burn-down strategy for the M1 Subsystem, and presents our integration and test progress of the M1 Test Cell.
KEYWORDS: Mirrors, Actuators, Control systems, Telescopes, Fluctuations and noise, Interfaces, Sensors, Control systems design, Prototyping, Calibration
This paper describes the design, status, and test program for the Giant Magellan Telescope (GMT) Primary Mirror Subsystem (M1). It consists of the mirror cells, positioning system, support systems, and thermal control system. The seven 8.4m mirror segments are excluded from this paper because they are considered a separate subsystem of the M1 System.
The M1 Subsystem leverages heritage design of similar telescope systems; for example, the Magellan telescopes and the Large Binocular Telescope. The M1 Subsystem incorporates pneumatic force actuators, hardpoints, and a thermal control ventilation system.
Design developments have been introduced to address the challenging levels of performance and unique requirements needed by the GMT telescope. Imaging goals necessitate an increase in mirror support performance, figure control, and higher-levels of thermal control. Additionally, there are challenges associated with matching and tracking the relative position of the seven mirror segments for mirror phasing. The design of the static support system needs to protect the mirrors from loads transmitted through the structure during an earthquake. Finally, the telescope design with interchangeable off-axis mirror cells necessitate mirror cells and support components that function under any range of gravitational vector orientations
. A full-scale Test Cell prototype is being constructed including production versions of mirror cell components to test and validate the M1 subsystem design. A Mirror Simulator will be used with the Test Cell to validate the M1 Control System. Later, a primary mirror segment will be used with the Test Cell to perform optical tests at the University of Arizona.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.