Airborne laser bathymetric system has great advantages in shallow sea bathymetric mapping due to its no blind area, high accuracy and high density data. By using Monte Carlo method and radiation-transport equation, the spatial distribution of the signal spot on the sea surface is calculated respectively. The results show that the spatial distribution of the signal spot returned to the sea surface is more extensive with the increase of the depth, and the power attenuation of the center of the spot is more serious. In this paper, signal to noise ratio (SNR) is used as the performance evaluation criterion of laser bathymetry system, and the requirements of field of view for signal detection under different depth are analyzed. The analytic results will provide support for the design and optimization of the laser bathymetric system.
Based on the requirements of project assignment, the paper firstly introduces the needs for principle prototype, and its overall technical solutions, assignment analysis and requirement index. Then it elaborates key technical solutions, prototype technical plan, as well as project design and production of its components, besides, we also developed testing device for debugging and testing needs, when the components design is completed, we conducted components alignment and testing, overall testing, obtaining noise squeezing degree (dB)of quantum squeezed field by principle prototype ≥ 6.4 dB, and the resolution higher than 0.2 mm @ 0.5m. We met the index requirements of principle prototype and realized high resolution imaging, providing significant basis for the following relative projects and for the development of new remote sensing technology with high performance.
According to the development and application needs of Remote Sensing Science and
technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief
introduction of the background of quantum remote sensing, the research status and related
researches at home and abroad on the theory, information mechanism and imaging experiments of
quantum remote sensing and the production of principle prototype.Then, the quantization of pure
remote sensing radiation field, the state function and squeezing effect of quantum remote sensing
radiation field are emphasized. It also describes the squeezing optical operator of quantum light
field in active imaging information transmission experiment and imaging experiments, achieving
2-3 times higher resolution than that of coherent light detection imaging and completing the
production of quantum remote sensing imaging prototype. The application of quantum remote
sensing technology can significantly improve both the signal-to-noise ratio of information
transmission imaging and the spatial resolution of quantum remote sensing .On the above basis,
Prof.Bi proposed the technical solution of active imaging information transmission technology of
satellite borne quantum remote sensing, launched researches on its system composition and
operation principle and on quantum noiseless amplifying devices, providing solutions and
technical basis for implementing active imaging information technology of satellite borne
Quantum Remote Sensing.
Squeezed state light field can surpass the shot noise limit and improve the signal-to-noise ratio of the sensor measurement. In this paper, based on optical parametric amplification (OPA), we present employed a semi-monolithic cavity and miniaturization design of optical parametric amplifier (OPA) to improve system stability. The infrared spectrum 1064nm quadrature squeezed state field of noise squeezing degree 6.75dB is obtained by pumped the PPKTP crystal via 532nm laser. This work provides a practical light source for quantum sensing detection.
Long baseline optical interferometry, by combining the lights from widely-distributed telescopes, is shown to afford pronounced improvement in the imaging resolution in comparison with a single telescope. However, the noise and photon loss in the transmission between the telescopes would limit the length of baseline of interferometer to a few hundred meters. Here, we present a scheme for enhancement of long baseline optical interferometer by using quantum resources- noiseless linear amplifier (NLA) and displacement operation at the photon transmission channels. We exhibit this enhancement quantitatively by calculating higher fisher information compared with those of conventional optical interferometer.
According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.
Considering the Airy beams has novel features that different from Gauss laser, which has attracted researchers’ great interest in recent years, and achieved many significant research results. From the perspective of technology and application, this paper combining with the characteristics of remote sensing summarizes the research progress of Airy beams, prospects the possible application prospect in the field of space.
There has been much recent interest in quantum technology for applications to high resolution imaging and interference measurement. Due to noise and photon loss in the transmission between the telescopes, the current optical interferometers have quite limited baselines to a few hundred meters at most, which limit the resolutions. Here we propose to use noiseless linear amplifier (NLA) to reduce optical loss in the transmission. We also show that NLA can be further improved with local squeezing operator. We envisage that our analysis on this squeezing operator assisted NLA method could help to develop higher resolution interferometers, which would have many applications in stellar observation.
A quantum-enhanced receiver that uses squeezed vacuum injection (SVI) and phase sensitive amplification (PSA) is in principle capable of obtaining effective signal to noise ratio (SNR) improvement in a soft-aperture homodyne-detection LAser Detection And Ranging (LADAR) system over the classical homodyne LADAR to image a far-away target. Here we investigate the performance of quantum-enhanced receiver in Λ-type soft aperture LADAR for target imaging. We also use fast Fourier transform (FFT) Algorithm to simulate LADAR intensity image, and give a comparison of the SNR improvement of soft aperture case and hard aperture case.
Squeezed light is an important non-classical light field. In this paper, we demonstrated a designed active imaging system
which use squeezed state light instead of coherent light as light source. The squeezed state light is generated by utilizing
the degenerate optical parametric amplifier based on periodically poled KTiOPO4 crystal. In order to obtain better
imaging results, microlens arrays are used for homogenizing the squeezed light. We describe experiment setup and
present some design result.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.