We have developed a range of fullerene containing materials for use as organic hard masks. Recent advances in material development are reported together with some results from external evaluations of the original HM100 series. Initial results for the new HM340-383-010 formulation show it to have a high thermal stability (~5.5 % mass loss at 400°C) and a very high carbon content (at 95.3%), offering high etch durability.
Numerous block copolymer (BCP) systems can be used in directed self-assembly (DSA) processes to form patterns useful in lithography, especially lines and spaces with lamellar phase systems and vias/pillars with cylindrical phase systems. However, most of these BCP systems with attractive pattern formation capabilities have limited plasma etch contrast between the polymer domains. One potential solution to greatly enhance this etch contrast is a recently developed technique called sequential infiltration synthesis (SIS). SIS is a self-limiting synthesis technique, like atomic layer deposition, where organometallic (OM) precursor vapours and oxidants are introduced into self-assembled block copolymer systems in multiple cycles. In the first half of each cycle the OM precursor selectively reacts with one polymer domain, and in the second half of the cycle the oxidant reacts with the OM groups in the polymer film to selectively form metallic compounds in one of the polymer domains. Thus, the polymer pattern is transformed into a metallic mask with much enhanced plasma etch contrast. We report the effects of such a block-selective SIS process of metallic compounds on the feature sizes, roughness and profiles of patterns formed with BCP systems.
In the presented work solvent-free film preparation from tailored molecular glass resists, their thermal analysis, the characterization of etch resistance for plasma etching transfer processes, and the evaluation of the patterning performance using scanning probe lithography (SPL) tools, in particular electric field and thermal based SPL, are demonstrated. Therefore a series of fully aromatic spiro-based and tris-substituted twisted resist materials were systematically investigated. The materials feature very high glass transition temperatures of up to 173 °C, which allows solvent-free thin film preparation by physical vapor deposition (PVD) due to their high thermal stability. The PVD prepared films offer distinct advantages compared to spin coated films such as no pinholes, defects, or residual solvent domains, which can locally affect the film properties. In addition, PVD prepared films do not need a post apply bake (PAB) and can be precisely prepared in the nanometer range layer thickness. An observed sufficient plasma etching resistance is promising for an efficient pattern transfer even by utilizing only 10 nm thin resist films. Their lithographic resolution potential is demonstrated by a positive and a negative tone patterning using electric field, current controlled scanning probe lithography (EF-CC-SPL) at the Technical University of Ilmenau or thermal scanning probe lithography (tSPL) investigations at the IBM Research - Zurich. High resolution tSPL prepared patterns of 11 nm half pitch and at 4 nm patterning depth are demonstrated.
The performance of novel molecular glass resists is demonstrated in this work for the purposes of performing nano-pattern transfer. In order to improve the etch durability, post apply bake (PAB) and mixing two resists platforms were investigated. These resists showed a promising etch durability for efficient pattern transfer with films as thin as 5 nm. Etch rate, surface roughness, evolution of the refractive index of these materials are presented to establish a good baseline and select appropriate candidate materials for patterning beyond-CMOS.
Optical lithography has given the semiconductor industry the chance to follow Moore’s law in scaling the transistor dimensions and consequently stacking them in a more dense way. However, for present sub 20 nm nanoscale patterns, which are reaching molecular dimensions; controlling the line edge and width roughness (LER/LWR) has become a key challenge. One way of reducing the roughness at photoresist level is the exposure of the organic substrate to a hydrogen plasma process in a post lithography step. Unfortunately, to this day, no clear understanding of the interaction of various plasma parameters with EUV resist substrates has been reported. In this work, two EUV resist platforms were exposed to an H2 plasma environment and H2 energetic neutrals only, by using a customized plasma reactor. The surface and bulk modifications of the photoresists have been evaluated by spectroscopic ellipsometry, Fourier transformed infrared spectroscopy and atomic force microscopy.
Smoothing effects of postlithography plasma treatments on 22-nm lines and spaces are evaluated for two types of extreme ultraviolet photoresists, using five different plasma processes (Ar, H2/Ar, HBr, H2/N2, and H2). Experimental results indicate a reduction in linewidth roughness of about 10% by using an H2 plasma smoothing process. This smoothing process is mainly triggered by the synergy of vacuum ultraviolet photons and H2 reactive species during the plasma treatment. Moreover, the smoothing process is dependent on the resist composition and the pattern dimensions. This paper shows the impact of different plasma conditions on roughness reduction for 22-nm lines.
Roughness of lithographic lines is typically expressed as the absolute 3σ value variation of the resist lines. It was found that this 3σ value gives a good general indication of roughness across the wafer. However, it is important to have a full characterization of the roughness in the frequency domain. This necessity arises from the requirement to reduce different roughness frequencies for various lithographic levels. A power spectral density analysis is used to evaluate the effect of post-lithography plasma treatment processes on roughness evolution of 22 nm lines. It is found that the wafer to wafer roughness distribution after lithographic exposure is very stable for two types of extreme ultraviolet photoresists. Furthermore, by comparing various plasma processes, hydrogen based plasma was found to reduce mid and high frequency roughness contributions. However, the lithographic scaling towards smaller dimensions also causes the constriction of lithographic requirements which induces a limited roughness improvement. Nevertheless, power spectral density (PSD) analysis is found to give additional information.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.