Aiming at the problem of the traditional neural network for non-uniformity correction easy to cause ghosting artifacts and image blurring, an improved non-uniformity correction algorithm based on neural network is proposed. Firstly, a new fast trilateral filter is designed, which can be regarded as an edge-preserving smoothing operator. Secondly, in order to stabilize and accelerate the learning process, it adopts the self-adaptive learning rate and applies additional momentum factor to the neural network. Thirdly, in order to update the calibration parameters accurately, the local motion of different areas is judged carefully. The simulating experiments indicate that the proposed algorithm can suppress the ghosting artifacts and the image degradation. And it has better performance compared with other algorithms.
Because of the platform motion and system internal asymmetric structure, Satellite-borne infrared imaging system will generate image geometric distortions such as translation, rotation, distortion and scaling, which make the subsequent target detection result not accurate. Therefore, we propose an image distortion method and deeply analyze the influence of infrared image distortion on the SNR of infrared weak small targets, detection probability and false alarm probability. The simulation results show that the image distortion directly affects the subsequent performance of the infrared target detection and tracking algorithm by changing target geometric imaging and signal to noise ratio. The research result in this paper would have great application value in the satellite-borne infrared alarm/warning system.
This paper narrates infrared image watermarking based on the discrete Shearlet transform(DST). DST has nice multiresolution and multi-directional[1] analysis ability. This feature of DST can be exploited on image watermarking. the proposed method has two purposes. One is hiding watermark information into multi-direction coefficients of the host infrared image to make the watermark is imperceptibility. The other purpose is dealing with various attacks such as noise addition, enlarging, cropping, median filtering and Gaussian filtering to verify the robustness of this method. The experimental results show that the visual effect is satisfactory because the secret information can’t be distinguished by people’s eyes. In fact, through the correlation calculation also shows that the invisible effect is very good.
It is very critical that make full use of the local information for infrared dim and small target tracking. In this paper, an effective and fast algorithm based on the context learning is proposed to track infrared dim moving target. Firstly, the principle of the spatio-temporal context learning algorithm is described and the tracking deviation is analyzed. Then, a correlation filter is utilized to get a rational context prior for the dim moving target, the advantage is that the prior considers the image intensity information between a target and its surround pixels. Furthermore, a Gaussian high-pass filter is introduced to extract an accurate spatial context, which has little influence caused by the cluttered background. At last, the tracking problem is posed by computing a confidence map which takes into account sufficient information of a dim target and its surround background. Since the proposed algorithm is realized using fast Fourier transform, it is easy to be real-time. The experiments on various clutter background sequences have validated the tracking capability of the proposed method. The experimental results show that the proposed method can provide a higher accuracy and speed than several classical algorithms, including the improved Template Matching algorithm, the Temporal-Spatial Fusion Filtering algorithm and the Moving Pipeline Filtering algorithm.
The drawback of temporal high-pass non-uniformity correction algorithm, ghosting and the image blurring, severely degrades the correction quality. In this paper, an improved non-uniformity correction algorithm based on shearlet transform is proposed. First, the proposed algorithm decomposes the original infrared image into one low frequency sub-band and a group of high frequency sub-bands by the shearlet transform. As a powerful mathematical tool, the decomposition of image by shearlet can reveal the detail of the image accurately. As the high frequency sub-bands contain the most of FPN, the FPN is estimated from the high frequency sub-bands by temporal high-pass. Then, the goal of non-uniformity correction can be achieved by subtracting the estimated FPN from the original high frequency sub-bands. At last, the corrected infrared image can be obtained by the inverse shearlet transform. The performance of the proposed algorithm is thoroughly studied with real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.
The target is moving and changing in infrared image sequences captured from the airborne platform infrared imaging system. To adaptively track the infrared target which changes from small target to surface target, an algorithm based on Second-Order Differential (SOD) and improved Template Matching (TM) tracking algorithm was proposed. The SOD filter makes full use of the brightness of the infrared dim and small target, the gradient and distance information of neighborhood pixels used for spatial domain filter. The TM makes full use of infrared brightness, ambient background and dimension information to complete the tracking. The experimental results show that the proposed algorithm can convert adaptively with infrared target’s size changing information, so tracking stability of infrared target under the ground clutter background is achieved. The tracking accuracy and tracking speed are also better than traditional algorithms. The proposed algorithm can be well applied to airborne platform warning on the ground.
The existence of non-uniformity is almost universal in the imaging process of the infrared system. By analyzing the mechanism of the non-uniformity, a temporal non-uniformity correction algorithm is proposed in this paper. First, the non-uniform image is filtered by the bilateral filter. Second, the filtered image is corrected using the moment match method. Finally, the corrected infrared images are acquired by iterating the moment matching image sequence in the time domain. Experiment shows that the proposed algorithm is superior to some existing methods both in experimental data and vision quality.
An infrared dim and small tracking is proposed based on an explicit image filter - guided filter. The guided filter utilizes the structure in the guidance image and performs as an edge-preserving smoothing operator. The superior performance depending on the guidance image is critical advantage for target tracking. First, the guided filter can help to preserve the detail of the valuable templates and make the inaccurate ones blurry so that the tracker can distinguish the target from numerous bad templates easily. Besides, the filter can recover the content of the small target being influenced according to the guidance image, helping to alleviate the drifting problem effectively. Finally, the candidate samples are utilized to train an effective Bayes classifier to generate a robust tracker, which is easy to be implemented. Experimental results demonstrate that the presented method can track the target effectively, compared with several classical methods. Experimental results show that the proposed algorithm outperforms relative trackers in the accuracy and the robustness.
In this paper, a curvature filter and PDE based non-uniformity correction algorithm is proposed, the key point of this algorithm is the way to estimate FPN. We use anisotropic diffusion to smooth noise and Gaussian curvature filter to extract the details of original image. Then combine these two parts together by guided image filter and subtract the result from original image to get the crude approximation of FPN. After that, a Temporal Low Pass Filter (TLPF) is utilized to filter out random noise and get the accurate FPN. Finally, subtract the FPN from original image to achieve non-uniformity correction. The performance of this algorithm is tested with two infrared image sequences, and the experimental results show that the proposed method achieves a better non-uniformity correction performance.
In this paper, a new temporal high-pass filter nonuniformity correction algorithm based on guided filter is proposed, which address the ghosting artifacts and preserve image details of original image. In this algorithm, the original input image is separated into two parts, which are the high spatial-frequency part that contains most of the nonuniformity and the low spatial-frequency part with well preserved details. Then the fixed pattern noise is estimated from the high spatial-frequency part and subtracted from the original image, which achieves the nonuniformity correction. The performance of this presented algorithm is tested with two infrared image sequences, and the experimental results show that the proposed algorithm can significantly reduce the ghosting artifacts and achieve a better nonuniformity correction performance.
A dim and small target detection method based on surfacelet transform is proposed to improve the performance of dim and small target detection under the complex clouds background. Firstly, the original infrared image is decomposed by the surfacelet transform to extract and analyze the multi-scale and multi-directional characteristics of the image. Then, the total variation and the local mean removal method are utilized to process the high-frequency and the low-frequency sub-bands respectively, which refines the coefficient value of the decomposed sub-bands. Finally, the refined sub-bands are recostructed to make the dim and small target separate from the background clutter signal, and then the background suppression is achieved and the real target is detected effectively. Theoretical analysis and experimental results show that, compared with the wavelet transform method and the total variation method, values of ISCR and BSF of the experimental result by the proposed method is higher, and the result by the proposed method has better effect both in subjective vision and the objective numerical evaluation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.