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ABSTRACT  

Design for manufacturability (DFM) has become a key enabler of integrated circuit (IC) production over the past decade.  
In this paper a comprehensive DFM program for IC designs at the 28nm node and beyond is described from the 
perspective of a fabless design company.  Challenges for future technology nodes are also explored. 
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1. INTRODUCTION  
As semiconductor manufacturing processes have continued to scale to smaller dimensions the conventional method of 
ensuring that an integrated circuit (IC) will be manufacturable by adhering to a set of rules set forth in the design rule 
manual has become insufficient. A broad range of tools and methodologies grouped under the name “design for 
manufacturability” (DFM) have been introduced to try to close this gap. 

The semiconductor business model has also evolved.  From the early days of the industry most IC makers fell into the 
category of integrated device manufacturers (IDMs) who handled the full product life cycle from design to 
manufacturing internally.  The continually rising costs of building a semiconductor fabrication facility (“fab”) with the 
large size and cutting edge equipment needed to take advantage of economies of scale created an opportunity for a new 
type of semiconductor company: the foundry.  As a result, many existing IDM companies have divested their 
manufacturing operations to focus on the product design, choosing to outsource the manufacturing to one or more 
foundries and becoming “fabless.”  In addition, this has lowered the barrier of entry into the semiconductor industry, 
allowing new companies to enter the market without needing to build expensive fabs. 

While it has long been the practice of IDM companies to co-optimize the design and the process technology (including 
DFM methodologies), this process looks somewhat different when the design and process development organizations 
reside in separate companies.  This paper will provide a brief tutorial on the IC design flow, then provide an overview of 
how design for manufacturability is practiced inside a fabless semiconductor company.  Finally, challenges for DFM at 
the 20nm technology node and beyond will be discussed. 

 

2. INTEGRATED CIRCUIT DESIGN FLOW 
2.1 Overview 

The IC design flow is an extremely complex process consisting of many steps in which the design is refined from a set 
of high level specifications into physical layout data that can be used to produce lithography reticles for patterning of 
silicon wafers.  Some of the key steps in this flow are illustrated in Figure 1 below. 

The design process typically starts with a description of what specifications the IC must meet.  This may include 
information such as power and performance constraints, instruction set to be implemented, memory type, off-chip 
interfaces, and other details of the architecture.  This specification is then implemented as a logical design, typically in 
the form of a register transfer level (RTL) description.  The RTL may be thought of as describing the way in which 
information will be processed by the chip and serves as an input for subsequent stages of the design flow. 

For some design types (e.g., circuits containing analog components) an additional circuit design step is needed.  The 
output of this step is typically a schematic of the circuit including component devices with all key parameters (e.g. 
transistor gate width and length) specified.  The schematic may also serve as an input for additional stages later in the 
design flow. 
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4. DFM CHALLENGES AT 20NM AND BELOW 
  
A number of new DFM challenges will be introduced at the 20nm technology node and beyond. The most significant 
change at the 20nm node is the use of double patterning lithography [8]. This technique requires that mask layers that 
rely on double patterning be decomposed into two complementary masks that combine to form the final printed pattern. 
This need for decomposition presents several challenges for designers. One key challenge is the manner in which the 
layout decomposition will be performed. One option is for the layout designers to create layouts with the patterns 
assigned to each mask from the outset (the “pre-coloring” approach). A second option is for the design to be created 
without pre-coloring and then decomposed using an automated tool to assign layout shapes to each mask. This could be 
done either by the fabless company prior to tapeout or by the foundry as part of the mask data preparation process. Each 
approach has advantages and disadvantages. 

In general, circuit designers would prefer to pre-color their designs. While this places an additional burden on the 
designers to handle the decomposition themselves, it has the benefit of having a predictable and fixed decomposition 
solution. This is important in a situation in which IP blocks are reused across multiple products. The automated 
decomposition process is not guaranteed to arrive at the same coloring solution every time. That means that the same 
design block could have different coloring solutions when used across different products or even when used multiple 
times within the same product. This could have performance variation impact as the different instances of the same block 
(each with a different decomposition solution) may respond differently to variations in lithography dose, focus, or 
alignment. On the other hand, relying on an exclusively pre-colored layout could lead to pattern density variation 
between the two masks in the double exposure process that might be more efficiently handled if the full layout was 
decomposed at the same time.  It seems likely that some compromise between the two approaches will need to be found. 

Beyond the 20nm node the most significant near-term change is in the front end of line (FEOL), where a shift from 
planar CMOS devices to FinFETs or other related device architecture is likely. This will require enhancements to the 
existing design flow to account for the discrete device widths available with FinFET devices. In addition, it seems likely 
that FinFET devices will impose new requirements for pattern uniformity to control the fin shape and height and reduce 
device variability. 

Finally, the lithography roadmap is unclear for process technology nodes at 10nm and below. Several candidate 
technologies, including extreme ultraviolet (EUV) lithography, multi-patterning (triple or quadruple exposures), directed 
self-assembly (DSA), or electron beam direct write (EBDW), have all been explored but so far none has emerged as a 
clear favorite. This creates uncertainty in the design infrastructure roadmap as well, because it is not clear what 
additional capabilities will be required.  If EUV lithography were to be successful it might require minimal changes to 
the current design flow (from a design perspective it doesn’t look much different from conventional 193nm lithography), 
while a technique like DSA might require significant modifications to enable design work due to the restrictions on 
allowed pattern configurations. These challenges will need to be met with close collaboration between the foundries, 
fabless design companies, and EDA software providers. 

 

5. CONCLUSIONS 
Design for manufacturability (DFM) spans a wide range of techniques applied throughout the physical design flow at the 
custom design, digital place and route, and system-on-chip (SOC) integration stages.  In addition, successful DFM 
requires that it be practiced throughout the product life cycle, including preventative actions before design start, 
enhancement and verification during the design cycle, and analysis of data from manufacturing. It is a critical enabling 
technology for modern IC design, and the importance of DFM will only increase for future technology nodes. 
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