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SUMMARY

Historically, the van Cittert-Zernike (vC-Z) theorem on the far-field degree of
coherence due to a finite incoherent source was developed by using complex

integral propagating mutual intensity function that is normally beyond the
"introductory" mathematical background for many students. In 1920, Michelson
demonstrated his steller interferometer to measure the separation between a

double-star (two point sources) using Young's double slit on his telescope. He
observed that the visibility of the fringes oscillate with the change in the slit
separation for a given double-star spacing. Then in 1957, Thompson & Wolf
(TW) carried out an experiment to illustrate the physical meaning of the

coherence function as the fringe visibility using Young's double-slit experiment.
We propose to use Michelson and TW experiments as the starting point to
introduce the vC-Z theorem. One can sum the cosine fringes due to each point of
the extended incoherent source produced by the double-slit placed at the
observation plane where the correlation is to be measured. The visibility of this
resultant cosine fringes is precisely the correlation function derived by the
customary vC-Z theorem. We use a double Fourier transform lens set up that
eliminates the need to develop the rigorous Fraunhofer diffraction integral. One
only need to sum the plane waves with regular tilt angles at the lens focal planes.
The mathematical formulation becomes easily accessible and the physical
meaning of limited increase in the spatial coherence due to the propagation of
Huygens-Fresnel wavelets from an incoherent source become physically

meaningful.
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1. INTRODUCTION

With increasing availability of a wide of variety coherent laser sources extending
from infra-red to ultraviolet, the necessity of investing time to understand a
conceptually complex theorem by van Cittert and Zernike (vC-Z) on the
propagation of partial coherence may be called into question. However, the
authors believe it is important for two reasons. First, many optical instruments,
particularly high resolution microscopes, use incoherent light as the source of
illuminating the target under observation.

A good design of such instruments require a proper understanding of the
evolution of partial coherence as the illuminating beam propagates through the
instruments. Second, the exercise to understand the physics behind increasing
spatial coherence due to expanding Huygens-Fresnel wavelets is very useful in

appreciating the following concepts: (i) The position of interference fringes can
be precisely identified by the order of interference given by the relative path
delay between the interfering beams in number of waves. (ii) The "incoherence"
is due to averaging effect of different order fringes produced by different parts of
an extended source (spatial or spectral).

The foundation of vC-Z theorem is based on the observations that one can
produce visible double-slit cosine fringes only if the slits are placed sufficiently
far from an extended incoherent source. The size of the original source and its
distance from the double-slit dictate the contrast or the visibility of the Young's
cosine fringes. For vC-Z theorem, normally the incoherent source is assumed to
have a very narrow spectral width. As the spectral width increases, the domain
of high contrast fringes continues to narrow toward the zero-order fringes
(where the relative path delay between the signals from the two slits is zero).
The normalized degree of coherence (or correlation) between the electromagnetic
fields at two points on the far-field plane due to a parallel incoherent source is
given by the Fourier transform of the incoherent source function. The running
variable on the far-field plane is not the running coordinate(s), but the separation
between the two points, whose correlation is being considered. Functionally, it is
equivalent to the Fraunhofer (far-field) diffraction pattern due to a coherently
illuminated aperture whose functional form is equivalent to the incoherent

intensity distribution.
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It is to be noted that the Fraunhofer diffraction pattern due to a coherent source
manifests itself as a directly observable intensity variation on the far-field plane
itself. However, an incoherent source produces a uniform intensity at the far-
field. Even though the abstract optical correlation behavior in this plane is
mathematically given by the Fourier transform of the incoherent source function,
it remains hidden behind the uniform intensity. The functional correlation
behavior is indirectly measurable by the visibility of the Young's cosine fringes
by placing a variable-separation double-slit on the plane of observation. [For
alternate expression of vC-Z theorem, see footnote]

In the next two sections (2 and 3), we will develop the basic tools of Young's

double-slit experiment using Huygens-Fresnel's wavelet propagation method
along with the quadratic lens transfer function. Section 3 shows the equivalence
of correlation and visibility. Section 4 uses these tools to develop the vC-Z
theorem for one-dimensional incoherent rectangular slit source. Section 5
illustrates Michelson's Steller Interferometer used to measure the separation of
double-stars.

We will graphically show how the far-field correlation or the visibility due to two
point sources (stars) change as the two sets of unit-visibility cosine fringes slide
over each other with increasing separation between the double-slit. Section 6
builds on section 5 and graphically illustrates how the far-field correlation
function various with the increasing distance between the correlating points
while the outer source size remains fixed. Section 7 graphically illustrates how
the correlation function varies for a fixed pair of points while increasing the
source size.

1. Born and Wolf, "Principles of Optics" Pergamon Press: (a) van Cittert-Zernike
theorem-Ch.1O; (b) Michelson Steller Interferometer -Ch. 7.

2. Saleh and Teich, "Fundamentals of Photonics", Wiley Interscience. Ch.-1O.

3. Thompson and Roychoudhuri, Optica Acta Z€ (1), 21-34, 1979; "On the
propagation of coherent and partially coherent light."
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2. YOUNG'S DOUBLE SLIT EXPERIMENT I: COMPLETELY COHERENT
CASE; POINT SOURCE ILLUMINATION

Interference Equation:

The resultant intensity 1(a) at a is given below due to the superpositon of
complex amplitudes V(x1) and V(x2) arriving at a from x1 and x2 experience a
delay = kr and 12 =

k2r respectively:
2

2 2

1(a) = V(x1) + V(x2) = V e + V e )
1 2

2 +2V1V2cos((P2 -)
For symmetric slits and illumination the amplitude IV212 + IV1 12= 10 and

assuming 2 =
then: 1(a) = 2I(l + COS (P12)

Visibilty (Fringe Contrast):
For a point source at the -plane, the illumination at the x-plane is completely
coherent and the fringe visibility or contrast is perfect or unity.

I —Imax mm

VE1 =1
I +1.max mm

SPIE Vol. 2525 / 151

ri
a

$



3.YOUNG'S DOUBLE SLIT EXPERIMENT II: PARTIALLY COHERENT
CASE; EXTENDED SOURCE ILLUMINATION

a' \ \\ ___::?a! \\ _-____) -
I ;:— / —
H \ x2 \

\ \\ r.

\-r
I xl /

L' I
-a

//T S

S Interference Equation:
The (ensemble or time) averge intensity, 1(a), at a is due to the superposition
of complex amplitudes V(x1) and V(x2) arnving at x1 and x2.

(propagation constant K is omitted in the following derivation)

1(a) = (U(a)2 ) = (V(xi ) + V(x2 )

= (V(xi)2) + (V(x2)) + 2Re(V(xi)V(x2))

= 11(a) + 12(a) + 2G12 cos

(v1 v2)= + I + 2g2 cosp12, where g12 2J
2Ji

= (i + 3g12 cos 12' + 12), where 13 /
I'1 + '2

The cosine term represents the optical interference.

Visibility (Fringe Contrast):
A measure of the strength or the contrast of the interference pattern by
Michelson.

I —I 2..jffgmax mm = 1 2 12
=f3g12

I +1. 1+1max mm 1 2

Where when I = 1210, leading 13 = 1.
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• Source on z-axis

4. TOOLS FOR van CITTERT- ZERNIKDE THEOREM

The zero-order fringe position on the a—plane shifts with the source poistion at

the —plane. The optical setup corresponds to the double Fourier transform to
simulate the van Cittert-Zemike far-field and Young's double slit in the far
field. Where and a are conjugate image planes of each other.
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4.1 Derivation for van Cittert - Zernike Theorem

Assume the source is divided into elenments d1,dE2, ... etc. at , 2' etc. IfV(x1) and

V(x2) are elemental complex amplitudes at x1 and x2 due to the element dm, then the

total disturbances, neglecting the propagation constant, are:

V(x1) = m Vmi(xi) and V(x2) =m Vm2(x2)

V(x1) = m U(m)exp(ik mxi'i) V(x2) =mU(m)exp(ik rn2''i)

where m(1"f and mx2/f are the relative phase delays at x1 and x2 for the tilted plane

wave at the x- plane due to the Huygens-Fresnel spherical wavelet originating at m•

Then the correlation function becomes:

G(x1,x2) = <V*(xi)V(x2)>
= < m {Vml(xl)}* m V(x2)>
= m< {Vml(xl)}* V&(x2)> + <{Vmi(xi)} V(x2)>

For incoherent source points, when m n, the correlation is zero, or

G(x1,x2) = m< {Vml(xl)}* V(x2)>
= m< U*(m)exp(ik mi"i) U(m)exp(ik mX2'i)>
= <U*(m) U(m)> exp(ik m(xrc2)hi)
=m1(m)exP(1k m(xi2Yi).

For a continuous source we replace the summation by an integral,

G(x1,x2) = JI(m)ecp(ikm(xi2),'i) d.

This is the Fourier Transform of the intensity function and is functionally simular to the

Fraunhofer diffraction pattern. For a one-dimensional rectangular source of uniform

intensity A and of width 2a, the correlation function is integrated over the source

yielding:

G(x1,x2) = 2Aa sinc[ ka(x2-x1)/f].

154 ISPIE Vol. 2525



5. MICHELSONSTELLAR INTERFEROMETER FOR A DOUBLE STAR

- \M1

\ SI—
h M3'

M 52

Po

M2

Michelson's original setup for measuring the separation between any double star.

To regular terrestrial telescopes most of the stars, except red giants, appear to

be point sources. So a double star is equivalent to two point sources with a

finite spacing. Then the double slit in Michelson's Stellar Interferometer is

equivalent to Young's double slit experiment with two spatially separate point

sources. Each point source creates its own coherent wavefront on the double

slit and corresponding cosine fringes, except the zero order fringe position is

shifted to the corresponding image position. As the slit separation changes,

the summation of the two incoherent cosine fringe systems gives rise to an

oscillating fringe visibility as demonstrated in the next section.
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5. 1 OSCILLATIONS OF VISIBILITY DUE TO A DOUBLE STAR
A Granhical Presentation
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6. VARIATION OF CORRELATION OR VISIBILITY BETWEEN TWO POINTS
OF INCREASING SEPARATION FOR THREE EXTENDED SOURCE.

6.1 A Graphical Presentation For Three Point Sourcesff
4

. 2
0

4

. 2
0

3N=w 2E I
z,2

____________
-2 -1.5 -1 -05 0 0.5

Distance [xlO-4 m]

Orderoflnte ri°103''HH''''

FringfisibiIIy=O86$ !

4
3
2

0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Distance [xlO-4 mJ

-- F- -7k -H - : ;L (c)
,- i_ /-\-t7- -v- LV - -- - \/ L\LA'\ J A /\

-\

IIEI IEEIE
FringVisibiJiy=O.O6

I 1.5

VisibiIiy

OrderofInter(rence O31O

.D. 3
=w 2

I
zo 0

2 -2 -1.5 -I -0.5 0 0.5

Distance (xlO-4 m]

SPIE Vol. 2525 I 157

>.

U)>

0.8

0.6

0.4

0.2

0

ta4-

H
- r H - - - - - - 4 - -

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
SlitSeparation (xlO -4 m]

Individual intensities and normalized total intensities for: Three point sources
300 m apart; Focal Length = .1 m and X = .58 p.m.

1.2 1.3

.
NC

z2

4

. 2
C0

A.
NC= C)

z2

3

2

0

Order1ofInterierence 0.205
ri2-

EFI:
Fring1VIsibIIiy=O.52

-1.5 -I -0.5 0 0.5 1 1.5

Distance (xlO-4 mJ

4

. 2
C0

2

Orderiofintenrrence T 0.414

7c\ (d)

;/;/c;

! Fring Visibiliy O.28 ,

4

. 2
C0

4

I 1.5 2

.
C)
. C)

zo

U)
C
C)

C

3
2

0

-2 -I5 -I -0.5

4
3
2

0

4
3
2

0

U).i

z,2
0

Distance
0.5 1 1.5 2

[xlO-4 mJ

-2 -1.5 -I -0.5

Distance
0 0.5 1 1.5 2

[xlO-4m]



6.2 A Graphical Presentation For Three Point Sources

In the limit, the correlation function becomes a sinc function which is the Fourier transform
of a rectangular source.
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7. VARIATION OF CORRELATION OR VISIBILITY FOR A FIXED PAIR
OF POINTS AS THE SOURCE SIZE INCREASES.
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7.1 A Graphical Presentation With Increasing Number of Point Sources
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7.2 Visibility for an Increasing Number of Point Sources for Two Slit Spacings
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