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I. INTRODUCTION:  
 

Discoveries in astronomy and earth science lie on the capabilities of the space observatories to see fainter 
objects and smaller details. This need of high collecting power and high angular resolution implies instruments 
with large primary mirrors. However, a simple scaling of existing space telescopes leads to bigger optical 
elements and structure that exceed the allocated volume and launch mass capability of medium size launchers. 
Due to volume, weight and cost constraints on satellites, the next generation of large telescopes must combine 
innovative and compact optical concepts [1] using lightweight primary mirrors and structures [2]. Furthermore 
the lightweighting of primary mirrors and structures reduce their stiffness and make them more deformable 
under static and dynamic load. Also, the compactness needed implies primary mirrors with low focal ratio and a 
small distance between primary and secondary mirrors. This leads to an optical train more sensitive to 
misalignment [1].  

 
The harsh satellite environment such as thermal gradient during orbit, gravity load difference between ground 

and space, as well as vibrations during launch lead to primary mirror optical surface deformations, telescope 
structure deformations and misalignments of the secondary mirror. All these perturbations degrade the telescope 
optical performance. Moreover, it may be more and more difficult for satellite and instrument manufacturers to 
run complete tests on ground, because of the gravity deformations of the large optics that cannot be corrected 
easily. Therefore, optimal image quality recovery and in flight alignment require active optics and structures to 
compensate in situ the wave front distortions. A space active optics system mostly consists of a wave front 
measurement system, a correcting system and a control system. The control system should ensure a maximum 
information extraction about perturbations from measurements in order to correct efficiently with respect to the 
correcting system capabilities. 
 

The wave front measurement problem for space active optics as already been addressed in [3] and [4]. 
Moreover, [5] shows that the problem of perturbations reconstruction and correction can be processed separately 
without performance loss. Thus, this paper focuses on the way to optimally estimate the perturbations from the 
measurements. The estimation performance directly impacts the final optical quality of the telescope. In the 
following, we compare the performances of a Minimum Mean Square Error (MMSE) estimator [5] and a 
classical Least Square (LS) estimator. The MMSE is an optimal estimator used in Multi Conjugate Adaptive 
Optics (MCAO). 

In Sec. II, we present the telescope optical model and the perturbations statistic model that we use to simulate 
the telescope optical quality degradation. Then, we explain how we implement it in our active optics system 
model. In Sec. III, we describe the measurement and correction systems used in our model. Then, we expressed 
the MMSE and LS estimators associated with our assumptions on the perturbations and correcting system 
characteristics. Then we derive the estimation error for both estimators. In Sec. IV, we show the results in terms 
of residual wave front in the exit pupil of the telescope and we compare the performances of MMSE and LS 
estimators. 
 
II. PERTURBATIONS MODEL:  
 

We choose a three mirrors anastigmatic Korsch telescope [6] as basis optical concept for this study. This 
concept is a classical optical configuration for space telescope (JWST, Euclid, Pleiades). In our case, the 
advantage of this configuration is the real exit pupil in which we can put a correcting mirror. The primary mirror 
(optical entrance pupil) is a lightweighted parabolic concave mirror with a diameter of 1.5 m and a radius of 
curvature of 3.6 m. The secondary mirror is a convex elliptic mirror with a diameter of 0.36 m and a radius of 
curvature of 1 m. The third mirror is a concave elliptic mirror with a diameter of 0.5 m and a radius of curvature 
of 1.3 m. Fig. 1 shows a scheme of the optical model used in this paper. 
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Fig. 1.  2D sketch of the studied space telescope optical design 

 
In this paper we consider only the perturbations encountered by the instrument at the beginning of its lift in 

orbit. During launch the satellite experiences harsh vibrations which may move optical elements. Moreover, the 
gravity and thermal difference between space environment and the integration and alignment conditions lead to 
deformations of the lightweighted primary mirror and the low stiffness telescope structure.  

The structure deformations and launch vibration imply optical elements displacements. The misalignments 
coming from these displacements degrade the telescope final image quality. A quick sensitivity study of the 
optical design shows that the secondary mirror is ten times more sensitive than the other mirrors. Thus only the 
secondary mirror displacements have been considered in the following study. The primary mirror has been 
chosen as reference and has been considered fixed. 

The deformations of a primary mirror coming from gravity release and the optimization of these deformations 
has been studied in [7]. We use the result of this paper as an input for the primary mirror deformations 
considered in our study. 

We use an optical ray tracing software (Zemax) to implement the optical model of the space telescope and to 
introduce the perturbations of the secondary and primary mirrors. For the secondary mirror, we consider the 
displacement over the optical axis (Z axis), and the two orthogonal axes (X and Y). We consider also, the tilt 
around X and Y axes. For the introduction of the primary mirror deformations we use a specific surface type in 
Zemax. This surface type can define the mirror’s optical surface with a conicoid surface plus Zernike 
polynomials. We consider only the first hundred polynomials without piston and tilts i.e. from Z4 to Z103 in Noll 
numbering. 

We assume that the perturbations coming from the secondary and primary mirrors follow a Gaussian statistic 
with a zero mean value. The standard deviations for each perturbation have been showed on Fig.2. We generate 
the random perturbations from these statistic data. 
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Fig. 2. Perturbations standard deviation 

 
III. LOOP MODEL: 
 

We see in the previous section that the phase perturbations have been located in the pupil and the secondary 
mirror plans. In order to reach the best performance in the all the Field Of View (FOV), the correcting system 
should be in the same plan as the perturbations or in an optically conjugated plan. Thus we consider a correcting 
system as follow: 

• A 5 Degree of Freedom (DoF) system on M2 to correct decentres, tilts and focus of this mirror. 
• A deformable mirror in the external pupil to correct the primary mirror deformation. The deformable 

mirror is assumed to be perfectly conjugated with the primary. We have checked the validity of this 
assumption considering the amplitude of M2 decentring. 

The measurement system consists of two Wave Front Sensors (WFS). Each WFS measure the wave front in a 
different FOV direction. Only this kind of configuration allows us to reconstruct and separate the perturbations 
coming from the primary and secondary mirror. The vector describing M1 deformations and M2 displacements is 
denoted �.The wave front perturbation induced by �, as seen by the WFS is denoted φ. The wave front 
perturbation induced by ψ, as seen by the WFS is denoted �. It may be written as: � = ��. M is the interaction 
matrix of the system. It represents the link between the perturbations coming from the primary and secondary 
mirrors and the wave front sensing measurements in the different FOV directions. 

This configuration with two layers of perturbation, two correcting set ups conjugated and measurements in 
several FOV directions sounds like an ideal MCAO configuration. Therefore, we apply an MCAO optimal wave 
front reconstructor. The derivation of the MMSE estimator can be found in [5]. The final result for the 
expression of the reconstruction matrix is 

 

���� =	
�	��
�
��� +	
��
��

     (1) 
 

where 
�	and 
� are the perturbations and noise covariance matrices, and � superscript symbol denotes the 
transpose matrix. For comparison, we consider also the reconstruction matrix in the classical case of a least 
square estimator 
 

���� =	��      (2) 
 

where † superscript symbol denotes the generalized inverse matrix. In the next section, we show comparison 
results between these two estimators.  

The wave front of correction in the exit pupil of the telescope can be written as 
 

	�� = ������� + ��                                                                         (3) 
 
where � is the true phase in the exit pupil of the telescope and � the measurement noise. Then the mean 

square error of the wave front after correction can be expressed as 
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� = 	 〈��� � ���〉                                                                            (4) 
 
where 〈 〉 stands for the mathematical expectation on both perturbations and noise, ‖ ‖� denotes the norm 

in the wave front space. The mean square error characterises the performance of an estimator and we choose it 
as performance criterion. Putting Eq. (3) in Eq. (4) yields 

 
� = 	 〈‖������ �  �� + ������‖�〉                                                           (5) 

 
where   denotes the identity matrix. If we express ����� in the case of the MMSE estimator 
 

����� = �
�	��
�
��� +	
��
�� =	 ! +	
�"�
���#��$

��
. 

 
We can see that in a low noise case, (� ≪ �) ����� go to the identity matrix. Thus the mean square error 
converges to the noise variance. On the contrary, in the high noise case, ����� go to null matrix and the mean 
square error approaches the true wave front variance. Another way to understand it is when noise increase, the 
reconstructed wave front approaches zero and the MMSE mean square error is the true wave front variance.  

We implement these wave front estimators in Python. Firstly, we use the PyZDDE toolbox [8] and the 
Dynamic Data Exchange (DDE) capabilities of Zemax to process the interaction matrix. We compute the 
random perturbation values with statistics presented Sec. II. Then we calculate the exit pupil wave front error 
coming from the perturbations and we expand it over a Zernike polynomials basis. We do that for the two 
different FOV directions of the WFS. We add a Gaussian noise to these wave fronts to simulate real 
measurements. To define the noise model parameters, we assume that the measurements have been done by 
Shack-Hartmann WFSs. We use noise propagation coefficient from [9] to compute the noise spectrum with 
respect to the Zernike polynomials radial order. From these noisy measurements, we estimate the perturbations 
with the MMSE and LS estimators. Finally we compute the estimated wave front in the exit pupil in order to 
calculate the performance criterion of the estimators. Fig. 3 shows a block diagram of this process. 
 

 
Fig. 3. Active optics simulation Block diagram 

 
IV. RESULTS: 
 
In the next section, we present a comparison of the two estimators developed in the previous section. Firstly we 
show the performance in terms of residual wave front in a medium noise case. Fig. 4 shows the Zernike 
polynomial coefficients variance with respect to the Zernike polynomial number. The solid lines (red and blue) 
represent the wave front distortion in the exit pupil coming from the random perturbations of primary and 
secondary mirrors. There are two curves because the perturbation generation is a random process but both 
curves are nearly confounded. The dash-dot line (green) shows the noise level. The dash line (red) shows the 
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residual wave front error variance for the LS estimator. The residual wave front can be expressed as           
���' =	�� � �. Finally the dot line (blue) represents the residual wave front error variance for the MMSE. 

 

 
Fig. 4. Zernike polynomial variance versus Zernike polynomial number for perturbation (Blue and red solid 

line), noise (green dash dot line), LS residue (red dash line) and MMSE residue (blue dot line) 
 
To analyse these results we define the Signal to Noise Ratio (SNR) as () = 	*+,-. "
�# *+,-.�
��⁄  . We can 
separate the previous figure in two parts. In the left part of the graphic, the SNR is high (0() > 104), both 
estimators have the same performance and the residual variance follows the noise variance curve. In the right 
part of the graphic, the SNR decrease down to 10�4,	MMSE follow the perturbations variance and thus have 
better performance than LS solution. On the contrary, the LS estimator continues to follow the noise variance 
curve. This behaviour is a qualitative illustration in a working case of the estimators’ behaviour foreseen in the 
previous section. 
The Fig. 5 gives more quantitative information about the estimators’ performances. It shows the variations of 
the mean square error for each estimator with respect to the SNR. The solid line represents the perturbations 
variance. The behaviour expected from the expression of the mean square error derived in the Sec. III, can be 
observe on the previous graphic. 
 

 
Fig. 5. Mean square error versus SNR for the LS (dash line) and the MMSE estimators (dot line) 

 
From the Fig. 5 we can conclude that the MMSE has always better performance than the LS estimator. To reach 
a few nanometres error on the estimated wave front we need a SNR value around 104. At this SNR the 
difference of performance between the LS and MMSE estimator represents a factor 5. 
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V. CONCLUSION: 
 
In this paper, we start from the perturbations of a next generation space telescope when it begins its in-flight 
operation. Alignment and optimal image quality recovering is a major part of the commissioning phase. In this 
context, we present an optimal wave front estimator to reconstruct these perturbations and to separate those 
coming from the primary and secondary mirrors. This optimal approach derives from a MMSE estimator that 
minimizes the mean residual wave front error in the exit telescope pupil. It corresponds to a tomographic 
reconstruction of the perturbations.  
Then we compare the MMSE estimator with a LS estimator. We show that the MMSE estimator’s performance 
is always better than the LS one whatever the measurement noise level. But the differences in term of mean 
square error increase when the SNR decrease.  
 
In the present paper we only consider the behaviour of the MMSE estimator with respect to the noise level. 
Future work should be developed on two axes. In a first step at short time scale, the study of the influence of the 
WFS position in the FOV. In a second step at a longer time scale, we need to take account of the correction 
system performance to have a complete active optics loop simulation. 
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