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ABSTRACT - The DARWIN mission is a project of the European Space Agency
that should allow around 2012 the search for extrasolar planets and a spectral
analysis of their potential atmosphere in order to evidence gases and particularly
tracers of life.

The principle of the instrument is based on the Bracewell nulling
interferometer. It allows high angular resolution and high dynamic range.
However, this concept, proposed more than 20 years ago, has never been
experimentally demonstrated in the thermal infrared with high levels of extinction.
We present here a laboratory monochromatic experiment dedicated to this goal.

A theoretical and numerical approach of the question highlights a strong
difficulty: the need for very clean and homogeneous wavefronts, in terms of
intensity, phase and polarisation distribution. A classical interferometric
approach appears to be insufficient to reach our goals. We have shown
theoretically then numerically that this difficulty can be surpassed if we perform
an optical filtering of the interfering beams. This technique allows us to decrease
strongly the optical requirements and to view very high interferometric contrast
measurements with commercial optical pieces.

We present here a laboratory interferometer working at 10,6 microns, and
implementing several techniques of optical filtering (pinholes and single-mode
waveguides), its realisation, and its first promising results. We particularly
present measurements that exhibit stable visibility levels better than 99,9% that is
to say extinction levels better than 1000.
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1 – NULLING INTERFEROMETRY: OPTICAL REQUIREMENTS AND LABORATORY
DEMONSTRATION STRATEGY

The key-points of the ESA's DARWIN mission, a space interferometer to detect extrasolar
planets and to perform spectral analysis of them, have been pointed out five years ago, when the
project began [Lége 93], [Lége 96]. Among these key-points, the question of an efficient rejection
of the stellar light was crucial. We decided thus, to study that difficulty under the point of view of
the optical requirements.

The concept of nulling interferometry on which DARWIN is based, was proposed in 1978
by Bracewell to face the problem of detecting faint objects near very bright ones, typically a planet,
located 0.1 arcsec away from a 107 times brighter star (at 10 m) [Brac 78]. In order to be efficient,
the interferometer must have an internal extinction comparable to the contrast that is to say at least
105 to 106. In addition, this extinction must be stable.

High values of extinction mean a great similarity of all the incoming wavefronts to be
recombined concerning their amplitude, phase and polarisation distributions. However, the different
optical paths each beam is going through introduce differential defects on the wavefronts. The
consequences are an immediate decrease in the quality of the null at the interferometer output. In
this paper, we will only consider the effects of amplitude and phase defects. The question of
polarisation has not been considered because the experiment we built to study these last points uses
a linearly polarised laser source. The effects of polarisation can be forgotten in a first time.

In order to get a 106 rejection rate with a two beam-interferometer, the amplitude
(respectively the phase) on each point of the beam recombiner must not differ from one wavefront
to the other by more than 0.4 % (respectively 2.10-3 radian for the phase) [Olli 99]. Among these
specifications, the phase requirements are the most stringent: translated into optical constraints, they
lead to a wavefront quality better than/3000 at the working wavelength (10 m). Even in the
optical range, the constraint is still /190. Such constraint can be achievable at reasonable costs on
small optical pieces, but not on several 1.5 m class telescopes. This last point was the major
difficulty we faced five years ago and that could have killed the project.

One solution to this problem was proposed by J-M. Mariotti and consists in the use of
optical filtering of the beams to be recombined [Mari 97]. Two kinds of optical filter can be
considered:
- spatial filters: pinholes placed in the focal plane of a lens are spatial filters. They eliminate the
high frequencies of the wavefront. Their main drawback is that they are efficient only if the defects
to filter are much smaller than the pupil size. Spatial filtering is thus inefficient to correct low order
defects such as differential piston, tilt or defocus [Olli 97a].
- modal filters: single-mode optical fibres perform a modal filtering. At the input of the fibre, the
beam is reduced over the base of the fibre modes. Since the fibre is single-mode, only the
fundamental mode propagates. Whatever the input beam can be, the output beam is the fundamental
mode of the fibre. The intensity at the output is thus directly linked to the injection conditions, and
the similarity of the beam to the fundamental mode of the fibre. The amplitude and phase defects
are theoretically  transformed into a global amplitude and phase variation of the fibre mode. This
kind of optical filtering allows to correct optical defects over the complete range of scales [Menn
00]. A minimal length of 1.5 m at 10 m appears necessary to eliminate all the non propagating
modes at a level of 10-4 [Lepr 00].

This concept is now under test in the visible and a rejection rate of 105 has been obtained
with a compact Michelson interferometer [Sera 99]. A ground based nulling interferometer working
in the thermal infrared has been proposed by Hinz et al [Hinz 98] but not with high and, more
important, stable values of rejection.
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We have built a laboratory interferometer working at 10.6 m to show high and stable
rejection could be obtained in the thermal infrared if optical filtering is used. When we began to
design the experiment, optical fibre working at 10 m did not exist. However, we considered they
should be available in the next years or at least small pieces of them allowing first tests. We finally
decided to design an interferometer that could work with either spatial or modal optical filters and
adopted the following strategy:
- Control of the low frequency defects: piston, tilt, and defocus of the wavefront, global equalisation
of the intensity of the beams,
- Optical filtering of the higher order amplitude and phase defects.

This strategy led to a concept of interferometer described on Fig. 1

Fig. 1: principle scheme of the demonstration experiment.

2 - DESCRIPTION OF THE EXPERIMENTAL SET-UP

The interferometer we have built is a monochromatic modified Mach-Zehnder
interferometer where delay lines, a tip-tilt corrector (angular and lateral superposition of the beams)
and an IR flux balancing device (equalisation of their intensity) have been added to allow the two
wavefronts perfect overlap and interference. The output signal is sent to an optical filtering device
where the superimposed wavefronts are cleaned. The rejection rate is measured as the ratio of
constructive interference to destructive interference intensities while the interference state is
modulated by modifications of the optical path difference. The interferometer is working in the
infrared (CO2 laser at 10.59 m), and is servo-controlled using a tuneable visible laser. All its
optical elements are (vis)/20 gold coated mirrors for reflective optics and ZnSe or BaF2 plates for
refractive ones.

Each sub-system has been designed and realised to get a 106 final rejection rate. The path
difference is controlled with an accuracy of a few nanometres over a 1 kHz passband. The tip-tilt
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corrector allows the perfect angular (respectively, lateral) superposition of the two beams with an
accuracy of 1 arcsec (respectively, 2 m). The IR flux balance device allows the beam intensity
equalisation in a range of 3% with a relative accuracy of 10-3. The optical filtering bench allows
the positioning of either spatial or modal filters with an accuracy of a few m.

The spatial filters we use are simple metallic pinholes, which diameter varies from a few
hundreds to a few tens microns.

The modal filters are small pieces (from 1 mm to several centimetres now) of optical fibres
manufactured by the French company "Le Verre Fluoré''. Their length appears to be theoretically
insufficient to perform a complete modal filtering  but taking into account the limited transmission
of present materials, it is impossible to used longer waveguides. The geometry of the fibres has
been optimised to be single-mode at 10.6 m. The question to estimate how really single-mode they
are, taking into account the very short length, is now experimentally under tests.

Projects to increase the transmission of such filters are under way. Using adapted materials,
a few decimetres to metres long optical filters with a reasonable transmission at 10.6 m can be
expected in the near future [Perr 00]. A more complete description of this interferometer and
particularly, all its sub-systems has been done by Ollivier et al. [Olli 99], [Olli 00].

3 - FIRST RESULTS

The experiment has been completed at the beginning of October 1999 and is now under
development and use. It shown on Fig. 2. Several preliminary tests have been presented during the
ICSO'97 [Olli 97b].

Fig. 2: General view of the interferometer. From the foreground to the background, the beam-
splitter, the intensity balance device, the delay lines, the tip-tilt corrector, the beam-recombiner and
the optical filtering device.
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The first measurements of contrast in the IR have been performed using spatial filters only.
They have been presented during the DARWIN and Astronomy conference. At that time, we
exhibited a rejection rate better than 103, but relatively noisy. The origin of the noise was mainly the
turbulence over the set-up (the optical path is longer than 4 m in each arm). At that moment, the
thermal control of the enclosure was not used. The protective enclosure was namely open to allow
the settings. The path difference control was performed manually, and all the servo control loops
were open.

Since the end of November 1999, we have developed the set-up in two directions:
- improvement in the settings and alignment of the beams: more than 15 reflections and
transmissions are used on each beam and require perfect settings,
- time-stabilisation of the null.

The first point was achieved using the infrared camera CAMIRAS from the CEA. Its
128x128 CCD helped us to monitor our beams over the optical path and to eliminate the major
sources of vigneting. This operation, associated to the use of a more powerful laser lasing at 9.6 m
and providing about 1 W at that wavelength increased the S/N ratio by a factor better than 100.

The second point has been reached by the use of the heating enclosure. A vertical
temperature gradient, imposed by the presence of a protective enclosure heated from the top,
allowed to reduce drastically the laboratory turbulence, and thus, the phase noise, allowing to
stabilise the null at a value better than 103 during more than 3 minutes (Fig. 3).

Fig.3: Evolution of the intensity at the output of the system, in constructive and destructive
interference states. The recording reveals a stable rejection better than 1000 during more than 3
minutes without any path difference correction or servo-control system.

This stable value of 103 is not enough to demonstrate the validity of the principle for the
detection of stellar companions in that range of wavelengths. However, we have serious reasons to
hope for an improvement in these results. The interferometer is still under development, and lots of

ICSO  2000
International Conference on Space Optics

Toulouse Labège, France

5 - 7 December 2000

Proc. of SPIE Vol. 10569  1056911-6



parameter can be improved, like the optical filtering devices, the optical path difference control, and
the beams superposition accuracy.

4 - FUTURE PLANS AND DIFFICULTIES

The short-term goal for this demonstration experiment is to reach 104 to 106 rejection rates
in a monochromatic case (the interferometer is illuminated by a laser). This goal should be reached
in the next months particularly with the development of new modal optical filters.

The next step is to widen the spectral range of the null. The main problem is the difficulty to
find bright sources in that range of wavelengths, where the detection is quickly limited by the
thermal background. In the monochromatic case, this problem was eliminated by the use of a laser
that concentrates fully coherent energy in a collimated beam with a high surface brightness.

Another problem is the achromatic phase shift to get the null. Several solution have been
proposed:
- dielectric plates  [Ange 97],
- rooftops [Shao 92],
- focus crossing [Gay 96].

Our demonstration experiment will have to integer such a device. At present, the phase shift
is obtained by path difference that is highly chromatic. The optimal solution has not yet clearly been
determined, and each method is under test by several groups in the world.

The technological challenges induced by nulling interferometry are severe, but this new type
of instrument should open horizons in the dark objects astronomy in the next years and decades.
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