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ABSTRACT 

This paper describes RTBioT, one of the first Internet of Things (IoT) healthcare platforms based on spatially resolved 
near infrared (NIR) spectroscopy to support non-invasively quantify chromophores in biological tissue. Bluetooth Low 
Energy (BLE) is used as the primary communication protocol, an IR-enhanced Si PIN photodiode is for a light-receiving 
element, and a compact fiber-stub type beam combiner is employed as a multiple wavelengths light-emitting source. 
Most of all, a lock-in amplifier is to retrieve the low noise signal from photodiode which enables accurate measurement 
of small modulated signals in the presence of noise interference orders of magnitude greater than the signal amplitude by 
using phase-sensitive detection technique (PSD). The sampling rate of the RTBioT is up to 33Hz, so that it can directly 
measure mayer wave oscillation, respiration, and cardiac cycle from the raw data. However, it is necessary to approach to 
the statistical analysis to quantify the concentration of tissue chromophores. First, we determine the optical absorption 
and scattering properties in the tissue from the locked-in received signal by using the algorithm composed of least square 
method and diffusion equation. Then, inverse-matrix equation with absorption, reduced scattering and extinction 
coefficients is solved by the algorithm with respect to chromophores. We conducted an experiment through phantoms 
simulating human tissue and human subjects to demonstrate its feasibility for the IoT healthcare platform. The 
experimental results show that it is possible to monitor the biological signals and the concentrations of chromophores in 
a human subject in near real time fashion. 
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1. INTRODUCTION

With the advent of the smart healthcare, the medical paradigm is shifting from “patient to technology” to “technology to 
patient.” Previously, people visit hospitals only when they are sick but, now it is changing to constantly monitor the 
human health conditions by using the Internet of Things (IoT) devices. Recently, IoT devices capable of medical-level 
healthcare have been attracting attention such as near infrared spectroscopy (NIRS) technologies, which quantify 
chromophores in tissue, specifically analyze diffuse light propagation [1].  

In this paper, we have developed a real-time Bio-IoT device (RTBioT) to provide medical-level healthcare information 
by noninvasively measuring the absorption coefficient and the reduced scattering coefficient of light in a biological 
tissue. The developed RTBioT adopted the continuous-wave (CW)-based spatially resolved near infrared spectroscopy to 
provide physiological information such as oxyhemoglobin, deoxyhemoglobin, water, and lipids. 

In fact, there are four types of methods to measure the absorption coefficient and the reduced scattering coefficient in 
biological tissue: continuous-wave, spatially-resolved, time-resolved, and the frequency-domain methods [2]. Among 
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them, the CW method in spatially-resolved domain is advantageous in designing wearable IoT devices in terms of simple 
circuitry, low power, cost effectiveness, and small form factor [2,3].  

The RTBioT was designed by considering three critical design parameters: low power consumption, high-fidelity data 
acquisition, and system-level optimization for the implementation of wearable size, even it has equipped with six lasers 
diodes. In more detail, to make our device more compact than any other medical IoT devices, we also have built a beam 
combiner which is almost quarter coin size and equipped with six different near infrared (NIR) wavelength laser diodes 
(LDs). Moreover, the beam combiner was fabricated with high coupling efficiency suitable as a battery-operated IoT 
device. In addition, Bluetooth Low Energy (BLE) is suitable for the data communication interface of the low-power 
RTBioT.  

Optical properties such as absorption and reduced scattering coefficients are the factors to derive concentrations of major 
chromophores in a biological tissue [4]. In order to separate absorption from reduced scattering in CW domain, it is 
necessary to use multi-distance configuration, called spatially-resolved method. In our system, three IR-enhanced 
photodiodes are located in different distances and the light propagation information through turbid medium (i.e., living 
tissue) is analyzed depending on three different distances.  

The received signals from different locations are processed by a lock-in amplifier. In this multi-distance model, thanks to 
lock-in technique, we can not only avoid ambient light perturbation, but also effectively attain a variable from an 
algorithm based on diffuse reflectance theory [5]. Furthermore, auto-gain control scheme at receiving part of the RTBioT 
plays a pivotal role in acquiring secure received signal regardless of various skin tones. With these advanced data 
processing schemes of the RTBioT, it can guarantee the high-fidelity data acquisition at the system level. The measured 
data by the RTBioT are converted into optical properties in tissue on the basis of reflectance of spatially resolved light 
theory, then separated absorption coefficient is turned into physiological information, using molar extinction coefficient 
for each chromophore so that the quantities of major chromophores are retrieved [6]. 

 

2. MATERIALS AND METHODS 

2.1 RTBioT for wearable healthcare device 

A Bio-Internet of Things (IoT) device, RTBioT was developed based on continuous-wave (CW) spatially resolved near 
infrared spectroscopy to support non-invasively quantify chromophores in living tissue. The developed RTBioT in Fig. 1 
is composed of three units which are as follow:  

Light Transmitter:  a fiber-stub type beam combiner is a dominant component that couples the output of  six 
wavelengths (685, 785, 830, 852, 920, and 980nm) through a single 400-µm-diameter fiber stub for wearable Internet of 
Things (IoT) devices [7]. The major feature for the beam combiner is high optical coupling efficiency. This is the 
because the wearable IoT devices for medical-level healthcare should be operated by a battery; therefore, the essential 
factor in low-power RTBioT of a wearable type is optical coupling efficiency to minimize the power to drive the light 
sources. Basically, the optical coupling e�ciency of a beam combiner is expressed as the ratio of the input power to the 
output power. RTBioT has achieved the average coupling e�ciencies > 80% for each of the 6 laser diodes. The driving 
circuit supports an auto power control (APC) function for constant optical output power. 

Light Detection: RTBioT has three IR-enhanced photodiodes (S11499) with multi-distances by each 10mm as a light-
receiving component. The IR-enhanced photodiode detects the reflected diffusion signal on the surface of the tissue and 
converts it into an electric signal with a gain from amplifier. Above all, the primary function in the light receiving part is 
auto-gain control scheme. Optical properties in tissue is dependant on skin colors [8]. As a result, the auto-gain control 
scheme was designed to broaden the dynamic range in receiving subsystem of the RTBioT to cover varying optical 
properties due to skin colors. 
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3.2 Real-time measurement for hemoglobin change  

We have conducted an experiment to verify the feasibility of RTBioT’s performance of chromophores quantification in 
real time fashion. The experimental setup is as shown in Fig. 4(a). We placed the RTBioT on lower arm of a subject and 
cuff machine on the upper arm to see the change of hemoglobin during cuff. First, we have checked the hemoglobin 
information ten seconds in normal condition. After ten seconds, we started the cuff machine to set up a different 
condition to the measurement. This condition is kept for thirty seconds and the cuff machine released to be back to the 
normal condition. The concentration of hemoglobin information was recorded in real- time fashion. As a result, we were 
able to monitor their change according to before and after cuff. The result is shown in Fig. 4 (b), the concentration of 
both are steady before cuff. When we started the machine, blood vessel is blocked gradually by the machine. Therefore, 
the concentration of oxyhemoglobin is decreasing, and the concentration of deoxyhemoglobin is increasing. When the 
machine is released, an effect of a blockage in blood vessel is getting lower so that the concentration of oxyhemoglobin 
is increasing, meanwhile the concentration of deoxyhemoglobin is decreased. 

(a) Cuff experiment setup (b) Real-time measurement
Figure 4. Real-time measurement of hemoglobin changes by using cuff machine 

We have presented a novel fast Bio-IoT device based on spatially resolved near infrared spectroscopy. The performance 
of accuracy and a real time measurement at RTBoT is proved by both silicon phantom analysis between mDOSI and 
RTBioT and a real implementation of a cuff device-based blood flow with oxy-hemoglobin and de-oxyhemoglobin 
concentration algorithm. Experimental results show it promising on real applications. The low power consumption and 
small form factor of the RTBioT enables implementation on the IoT sensing front end or wearable devices. We also 
showed that the fast analysis algorithm supported by high sampling rate of RTBioT to be a viable option, in contrast to 
traditional NIRS or DOS used in previous works. We accelerate the process by taking advantage of the lock-in function, 
pipelining, and auto gain control schemes. Our experience shows two important implications: 1) The signal processing 
properties should be thoroughly studied in order to reduce the complexity of RTBioT. 2) The algorithm for the 
physiological information in tissue should be specific to the target applications.  
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