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ABSTRACT

X-ray imaging is the most popular medical imaging technology. While x-ray radiography is rather cost-effective,
tissue structures are superimposed along the x-ray paths. On the other hand, computed tomography (CT)
reconstructs internal structures but CT increases radiation dose, is complicated and expensive. Here we propose
”x-ray dissectography” to extract a target organ digitally from few radiographic projections for stereographic
and tomographic analysis in the deep learning framework. As an exemplary embodiment, we propose a general
X-ray dissectography network, a dedicated X-ray stereotography network, and the X-ray imaging systems to
implement these functionalities. Our experiments show that x-ray stereography can be achieved of an isolated
organ such as the lungs in this case, suggesting the feasibility of transforming conventional radiographic reading
to the stereographic examination of the isolated organ, which potentially allows higher sensitivity and specificity,
and even tomographic visualization of the target. With further improvements, x-ray dissectography promises to
be a new x-ray imaging modality for CT-grade diagnosis at radiation dose and system cost comparable to that
of radiographic or tomosynthetic imaging.
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1. INTRODUCTION

X-ray imaging is the first and still most popular modern medical imaging approach, which is performed by
various kinds of systems. In the low-end, x-ray radiography takes a two-dimensional projective image through a
patient, which is called a radiogram or radiograph. In the high end, many x-ray projections are first collected
and then reconstructed into tomographic images transversely or volumetrically. Between these two extremes,
digital tomosynthesis takes a limited number of projections over a relatively short scanning trajectory and infers
three-dimensional features inside a patient. These x-ray imaging modes have their strengths and weaknesses.
X-ray radiography is cost-effective but it produces a single projection, and has multiple oranges and tissues
superimposed along x-ray paths, compromising the diagnostic performance. On the other hand, x-ray CT
unravels structures overlapped in the projection domain into tomographic images in a 3D coordinate system but
CT uses a much higher radiation dose, is complicated and expensive. Digital tomosynthesis is a balance between
x-ray radiography and CT in terms of the number of needed projections, the information in resultant images,
and the cost to build and operate the imaging system.

Reducing radiation dose and improving imaging quality and speed are the main tasks for the development
of x-ray imaging technologies. As x-ray radiography has the lowest radiation dose, the fastest imaging speed,
and the lowest price, researchers have been focusing on improving the radiogram quality. Currently, there are
mainly two ways for this purpose: 1) suppressing interfered structures1–4 or enhancing related structures,1,5

and 2) generating 3D volumes.6–8 It is well known that superimposed anatomical organs in 2D radiographs
significantly complicate signal detection, such as for diagnosis of lung diseases. In early studies9,10 model-based
methods were developed to suppress ribs in chest radiographs, some of which require manually annotated bone
masks. In recent years, deep learning methods1–4 were proposed for suppression of ribs by leveraging 3D CT
prior. Instead of suppressing the ribs in CXR images, Gozes and Greenspan proposed to enhance lung structures
by extracting the extracted lungs first and then adding the result back with a scaling factor.5 Generating a 3D
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volume from a single or a few radiographs is another way to improve radiography. Ying et al. proposed X2CT
that generates a 3D CT volume from a pair of orthogonal radiographs using a CycleGAN framework.6 Recently,
some methods7,8 proposed to generate a 3D volume from single or few radiograhps.

Among the above-surveyed methods, those methods that are for suppressing/enhancing specific structures
are mainly intended to improve the performance of classification1–4 and detection5 from a single radiograph
without providing 3D information. On the other hand, although the rest of the existing methods that map 2D
radiograms to 3D CT volumes achieved remarkable results, they cannot reconstruct structures accurately and
reliably, since their clinical utilities have not been demonstrated so far. Particularly, it can be seen that almost
all the above methods depend on the GAN framework and/or unpaired learning for 2D/3D image generation. A
major potential problem is that GAN-based models tend to generate fake structures, which is a major concern
in the medical imaging field.

In this study, we propose x-ray dissectography (XDT) in general and specialize it for x-ray stereotography to
improve image quality and diagnostic performance. The essential idea is that we digitally extract a target organ
from the original radiograph or radiogram which contains superimposed organs via deep learning, facilitating
both visual inspection and quantitative analysis. Considering that radiograhs from different views contain
complementary information, we design a physics-based XDT network to extract the multi-view features and
transform them into a 3D space. In this way, the target organ can be synergistically analyzed in isolation from
different projection angles. As a special yet important application of our XDT approach, we propose X-ray
stereography that allows a reader immersively perceive the target organ from two dissected radiographs in 3D,
synergizing machine intelligence and human intelligence, similar to what CT does. Biologically, stereo perception
is based on binocular vision for the brain to reconstruct a 3D scene, and can be applied to see through dissected
radiograms and form a 3D rendering in a radiologist in mind. In this work, we design an X-ray imaging system
dedicated to this scenario. Different from our daily visual information processing, which senses surroundings with
reflected light signals, radiograms are projective through an object to allow 3D concept of x-ray semi-transparent
features.

To avoid fake structures, we optimize XDT neural networks in a supervised 2D-to-2D learning paradigm
without using a GAN-like model. To obtain a 2D radiograph of a target organ without surrounding tissues,
we can manually or automatically segment the organ in the associated CT volume first and then compute the
ground-truth radiograph through projecting the dissected organ according to the system parameters. In other
words, radiographs and CT images are obtained from the same patient and the same imaging system to avoid
unpaired learning. We utilize a cutting-edge simulation platform, such as the popular academic11 and industrial?

simulators, for training XDT networks. These simulators can take either a clinical CT volume or a digital 3D
phantom to compute a conventional x-ray radiograph, and then extracts a target organ digitally to produce the
ground-truth radiograph of the organ. Our initial experimental results have shown that XDT indeed separates
the lungs with faithful texture and structures, and we can perceive the extracted lungs via stereoscopic viewing
with a pair of 3D glasses. Potentially, this approach can improve the diagnostic performance in lung cancer
screening, COVID-19 follow-up, and other applications.

2. METHODOLOGY
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Figure 1. X-ray dissectography network (XDT-Net).
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Figure 2. X-ray stereoraphic imaging network (XST-Net).
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2.1 General Workflow of X-ray Dissectography

X-ray dissectography (XDT) is dedicated to transform a conventional radiogram x =
∑B

i=1 yi+yt to a projection

image yt, where yt is a projection of only a target organ, and
∑B

i=1 yi represents the superimposed image of
the B anatomical components involved in the conventional radiogram. In fact, it is an extremely ill-posed
problem as we can only observe the radiograph x, and impossible to obtain any analytic solution in a general
setting. Fortunately, a specific organ in the human body has a fixed relative location, a strong prior on material
composition, and similar patterns (such as shapes, textures, and other properties). Given this kind of knowledge,
a radiologist can identify different organs in the conventional radiogram. However, the superimposed organs
challenge the human in visual inspection for the target one. Considering the great progresses in deep imaging,12–14

deep neural networks (DNNs) is used to learn such priors and extract purified radiographs as if x-rays go only
through the target organ. Such DNNs can be trained with an individual or a specific population for quantitative
accuracy and clinical utilities.

In this study, we propose a physics-based XDT network (XDT-Net) for separating a target organ from more
than one views, as shown in Fig. 1. Note that various organs may be separated using this framework in different
combinations, depending on specific applications. The XDT-Net consists of the three modules: 1) a back-
projection module, 2) a 3D fusion module, and 3) a projection module. The back-projection module maps 2D
radiographs to 3D features, like a tomographic back-projection process. It consists of k 2D convolutional neural
networks (CNNs) followed by reshape operators, where k is the number of input views, each CNN is applied
to a specific view, and different CNNs have the same architecture but trainable parameters may be optimized
differently. The fusion module integrates the information from all views in the 3D feature space. It first aligns
the 3D features of different views by rotation according to their projection angles, and then combines them by
a 3D CNN. The projection module predicts each radiograph containing only the target organ. It first squeezes
each 3D feature volume to a 2D feature map along a given angle, and then the 2D CNN takes the 2D features
from both the squeeze operator and the back-projection module to predict the radiograph of the target organ.

2.2 Specific Embodiment for X-ray Stereography

We perceive the world in 3D thanks to binocular vision. Given binocular disparity, the human brain is capable
of sensing the depth in the scene. Inspired by this amazing fact, here we investigate X-ray stereography (XST)
with two radiograms of an isolated organ. When inspecting the human body with x-rays, organs with large
linear attenuation coefficients will overwhelm the ones with small attenuation coefficients in radiograms. As a
result, it is difficult to discern subtle changes in internal organs due to the superimposition of multiple organs,
significantly compromising stereopsis. With our proposed XDT-Net and XST-Net, we can integrate machine
intelligence for target organ dissection and human intelligence for stereographic perception so that a radiologist
can perceive a target organ in 3D with details much more vivid than in 2D, potentially improving diagnostic
performance.

To enable XST of a specific organ, we adapt the XDT-Net to the XST-Net as shown in Fig 2. The XST-Net
also consists of the same three modules: the backprojection module, the 3D fusion module, and the projection
module. Each module of the XST-Net shares the same network architecture as that of the XDT-Net but needs
to be adapted for stereo viewing. First, the backprojection module of the XST-Net takes two radiographs as
inputs, which are two images into our eyes. Second, in reference to the view angles of two eyes, the 3D fusion
module uses a different rotation center to align 3D features from two branches appropriately. Our proposed XST
imaging system is described in Subsection 2.3. Third, the projection module translates the merged 3D feature
first and then squeezes it to 2D feature maps according to the human reader’s viewing angles. Finally, two
dissected radiographs are respectively sent to the left and right eyes through a pair of 3D glasses for stereoscopy.

2.3 Design on X-ray Dissectography and Stereography

We assume that radiographs from sufficiently many different angles can be obtained in the network training
stage such that image volumes can be reconstructed. The traditional cone-beam CT system, as shown in Fig. 3
(a), serves this purpose. Then, many pairs of conventional radiographs and the counterparts of the target-only
radiographs can be obtained from a reconstructed CT volume and a segmented organ in the reconstructed CT
volume respectively. In the testing stage, the same XDT system only needs to generate few radiographs at
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Figure 3. X-ray imaging system configuration to facilitate
radiographic, stereographic and tomographic analysis on a
digitally isolated organ or tissue.
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Figure 4. XST image pair and rendering for stereo-viewing.

any angles for the trained XDT-Net to extract the corresponding radiograms of the target organ alone, without
surround tissues, for much-improved visual inspection and quantitative analysis. To achieve x-ray stereopsis, we
design an XST imaging system, as shown in Fig. 3 (b) and (c), where each source is regarded as an eye while
the projection through the body is recorded on the opposite detector. In a simple setting, we directly take two
radiograms from the XDT system so that the distance between eyes is d, as shown in Fig. 3 (b). In this case, the
center X-rays from the source positions intersect at the object center. For the adaption to different applications
and readers, we further design an adjustable XST system in Fig. 3 (c). There are two parameters of the system
to control the offset between the two eyes and the viewing angle from a pre-specified principal direction. In Fig.
3 (c), red and blue dots denote the left and right eyes, the red and blue plates are the corresponding detectors,
and green cross is viewed as the object center. The distance between two eyes is d, the distance between the
source and the object center is r, and the angle between center X-ray and the pre-specified reference direction is
α for both eyes. Thus, the intersection point of two center X-rays is translated from the object center along the
vertical direction. The distance offset δ can be computed as δ = d

2 tan(α) −
√

r2 − (d/2)2, which is used to adjust

the rotation center for XST-Net as introduced in Subsection 2.2.

In practice, the XST system for inspecting different organs may require different geometric parameters. Both
XDT and XST systems can be implemented in various ways such as with robotic arms15 so that the geometric
parameters can be easily set to match a reader’s preference.

3. EXPERIMENTAL RESULTS

3.1 XDT and XST Simulation

Here we used a clinical CT dataset, denoted as CT-lung, and simulated radiograms in cone-beam geometry.
Specifically, 50 reconstructed CT volume of patients were selected, including 10 patients from16 and 40 patients
from.17 The data from16 provide the 3D lung masks. Hence, we can simulate the paired radiograms with and
without lung masks.18 Note that before performing the cone-beam projection, the patient bed in the CT volume
was first masked out in a semi-automatic manner. Since the lung masks provided in17 are not consistent with
those provided in,16 we trained a semantic segmentation UNet with the annotated data in16 to identify the body
region for removal of the patient bed and segment the lung region slice-by-slice for the data in17 consistently.
When 2D radiograms were synthesized, we rotated the patient CT volume from 0◦ to 180◦, where the angle of
0◦ is the frontal view. Totally, we obtained 9,000 pairs of radiograms, and the image size is 320× 320.

3.2 XDT Results

We first evaluated the effectiveness of the proposed XDT-Net on the CT-lung dataset. In the current experiments,
we focused on simultaneously dissecting two radiograms at orthogonal angles. To be more specific, the region
of interest was first segmented from 2D radiograms before forwarding to the XDT-Net. In this way, the task
of XDT-Net is purified to improve dissection results. For this purpose, we trained a segmentation model to
identify the region of interest. The target mask for training this segmentation model can be easily obtained by
thresholding the radiogram of isolated lungs, where the threshold was empirically set to 0.01 in the unit of linear
attenuation coefficient.
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Figure 5. XDT testing results from two new orthogonal
views of the same patient.
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Figure 6. XST testing results from two new stereo views of
the same patient.

The testing results are shown in Fig. 5, where radiographs of the same patient were collected from different
angles. From the first to the fourth columns are the input radiograms, the segmentation results, the dissection
results, and the ground-truth respectively. The first and the second rows present two orthogonal projections
respectively. The visual inspection shows that the dissected radiograms are very close to the ground-truth in
terms of detailed structures despite being slightly smoother. The blurring effect may be due to noise reduction.19

Compared to normal radiograms, the dissected radiograms remove irrelevant surrounding structures, highlight
the target organ, and potentially improve the diagnosis performance.

3.3 XST Results

Then, we evaluated the feasibility of the proposed XST-Net for X-ray stereoscopic imaging on the CT-lung
dataset. We first evaluated the joint dissection results from two stereo radiograms collected at two new angles
of the same patient and then generalized the stereo-imaging technology to different patients. Our representative
results are shown in Fig. 6, showing XST-Net achieves very promising results for stereo views. In addition, we
have found that the dissection networks are quite robust to segmentation results, geometric parameters, and
image noise. Finally, we generated 3D perception by overlapping the left-eye and right-eye images in red and
blue channels and then viewing both through a pair of red/cyan glasses. Fig. 4 shows stereo images and two 3D
images adjusted with different geometric parameters, as discussed in Subsection 2.3. Readers can enjoy watching
the 3D lungs through red/cyan glasses (you may need some visual adaptation to see the 3D scene).

4. CONCLUSION

In conclusion, we have proposed the x-ray dissectography (XDT) and x-ray stereography (XST) systems and
methods for improving the utilities of conventional X-ray radiography and digital tomosynthesis. The proposed
XDT and XST can dissect a target organ type from X-ray radiograms with deep learning. The experimental
results clearly demonstrate the feasibility and potential utility of the proposed imaging technology. In the future,
we will continue improving the network model and producing clinically relevant results systematically. Hopefully,
the proposed XDT and XST techniques empowered by artificial intelligence may open a new door for traditional
X-ray radiography to have new impacts on healthcare.
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