
Evolutionary Computation and Data Mining
Andrew Kusiak

Intelligent Systems Laboratory
4312 Seamans Center

The University of Iowa
Iowa City, Iowa 52242 — 1527

andrew-kusiak@uiowa.edu
http://www.icaen.uiowa.edu/'ankusiak

Abstract
Future products and processes will be impacted by biology and information technology. The
developments in molecular and DNA computing may revolutionize the information technology.
In this paper, the product and process design challenges are discussed. Evolutionary computation
and data mining are two major tools that will cope with these challenges. The basic background
of the two tools as well as examples demonstrating their applications in design and manufacturing
are discussed.

Keywords: Evolutionary computation, data mining, machine learning, engineering design,
manufacturing

1. Introduction
The rapid changes in technology, biology, and information technology have made more difficult
to predict the exact shape of design and manufacturing. The two extreme views presented next
define the bound of dominant changes defining the design and manufacturing ofthe future.

Skeptic's View
Aliproducts and manufacturing systems are unique.

Optimist's View
Aliproducts across different technologies and manufacturing systems share commonality.

The two views are illustrated in Figure 1, where the items on the left are essentially products of
different degree of granularity and the items on the right are different scale manufacturing
systems.

I Optimist I I Skeptic I

Integrated Chip Machine Tool

Multi-Chip Module # Machining Center

Printed Circuit Board Machine Cell

System (Product) :: Factory__ __
Figure 1. The commonality paradigm

Intelligent Systems in Design and Manufacturing III, Bhaskaran Gopalakrishnan, Angappa Gunasekaran,
Editors, Proceedings of SPIE Vol. 4192 (2000) © 2000 SPIE · 0277-786X/00/$15.00 1

The two views can be synthesized into the following product-process commonality paradigm.

Product-Process Commonality Paradigm: Products and processes can built from the same
constructs defined by their functions and interfaces.

The commonality paradigm is saying that processes and products can be constructed from the
same set of constructs. The commonality paradigm seems to hold in industry. For example, a
machine tool is a product for the corporation that manufactures it and a process for the
corporation that is using it to manufacture other products.

The set of contracts to be used to design and manufacture products and processes makes up the
design periodic table illustrated in Figure 2.

• :

C)
/>

:

IC

-LI <.

Figure 2. Design periodic table

Such a periodic table could be created if a sufficient number of designs would be described with a
common language and made available to the designers. This leads to the need for the
development of the Design Description Language (DDL). Some elements of such a language
have emerged in electrical design in the form ofthe Hardware Description Language (HDL).

In the last ten years the industry has undertaken massive efforts to integrate engineering design,
manufacturing, and some services, e.g., supply chain. Many organizational and logistics barriers
have been removed to improve the communication between product designers, manufacturing
engineers, quality engineers, marketing specialists, and other experts that could contribute to the
design of products meeting all the requirements, e.g., customer requirements represented by
marketing experts or the customers themselves.

It appears that largely due to the progress in information technology, the trend of the last decade
aiming at the integration of various business areas will be replaced with the information and
financial integration over the organizational integration as illustrated in Figure 3.

I 990-2000 2000-XXXX

Increased organizatinal Organizational
and logistics integration seperation of product
of product design, and design, manufacturing,
services and services

Increased information
and financial integration.

Figure 3. The system integration paradigm in industry

Proc. SPIE Vol. 41922

System Integration Paradigm: A corporation of the future is likely to be a system of
autonomous components (e.g., product design, manufacturing, marketing) distributed in space
and over different time zones with close information and financial integration.

Process—Product Paradigm: Processes are likely to become a valuable subject of increased
economic activity in different forms, for example:

I Processes may be sold in the future the same way today's products are sold, e.g., a disease
diagnosis process may be sold by a bioinformatics company;

U Sold as product-process bundles, e.g., an airplane entertainment system and its diagnostic
system (process), or manufacturing tools and a reconfigurability service for the
manufacturing system;

L:I Benchmarks for expansion, e.g., analysis of business process will proceed a virtual merge
transition of business units belonging to different corporations;

c:i Medium providing competitive advantage, e.g., innovation process.
L:I Process models may become integrated with products, e.g., a software program managing a

supply chain.

The design and manufacturing is undergoing a tremendous change that will be accelerated in the
future. As knowledge is becoming the most valuable commodity, the tools for capturing and
processing information are of great importance. The scientific community has responded to the
knowledge and change calls by creating two new disciplines:
L Evolutionary computation bringing the concepts from biology to the technology,

and
Data mining for extraction of knowledge from data

The concepts, techniques, and tools offered by the two areas are described in the next two
sections.

2. Evolutionary Computation
The basic concepts, typology, and literature review of evolutionary computation are presented.

Evolutionary Computation; Problem solving systems that use computational models of
evolutionary processes as the key elements in design and implementation. A number of
evolutionary computational models have been developed, including evolutionary algorithms,
genetic algorithms, the evolution strategy, evolutionary programming, and artificial life.

Evolutionary Algorithm (EA) ; An algorithm incorporates aspects of natural selection or survival
of the fittest. An evolutionary algorithm maintains a population of structures (initially randomly
generated) that evolves according to rules of selection, recombination, mutation and survival,
referred to as genetic operators. A shared "environment" determines the fitness or performance of
each individual in the population. The fittest individuals are more likely to be selected for
reproduction (e.g., retention, duplication), while recombination and mutation modify those
individuals, yielding potentially superior ones.
EAs differ from genetic algorithms (GAs). A GA generates each individual from some encoded
form known as a "chromosome". Chromosomes are combined or mutated to breed new
individuals.
EAs are useful for optimization when other techniques such as gradient descent or direct,
analytical discovery unsuccessful. Combinatorial and real-valued function optimization, in which
the optimization surface or fitness landscape is 'rugged', possessing many locally optimal
solutions, are well suited for evolutionary algorithms. The background on various

Proc. SPIE Vol. 4192 3

implementations of evolutionary algorithms is provided in Fonseca and Fleming (1995), Back
(1996), Coello (1999), and Van Veidhuizen and Lamont (2000). The last paper provides a
comprehensive typology of EAs. The coevolutionary algorithm is a variation of BA where each
individual represents only a partial solution to the problem (see Horn et a!. 1994 andMoriarty and
Miikkulainen 1998). It is a promising alternative in solving difficult and dynamic problems.

Evolution Strategy (ES); An algorithm where individuals (potential solutions) are encoded by a
set of real-valued 'object variables' (the individual's 'genome'). For each object variable an
individual has a 'strategy variable' which determines the degree of mutation to be applied to the
corresponding object variable. The strategy variables mutate, allowing the rate of mutation of the
object variables to vary. An BS is characterized by the population size, the number of offspring
produced in each generation and whether the new population is selected from parents and
offspring or only from the offspring. BS were proposed in 1963 by Ingo Rechenberg and Hans-
Paul Schwefel at the Technical University of Berlin while searching for the optimal shapes of
bodies in a flow.
Eiben and Back (1997) presented an extension of the evolution strategy approach to multiparent
recombination involving a variable number of parents to create an individual offspring. The
extension was experimentally evaluated on a test suite of functions of different modality and
separability and the regular/irregular arrangement of their local optima. Multiparent diagonal
crossover and uniform scanning crossover and a multiparent version of intermediary
recombination are considered in the experiments.
Olafsson (1996) demonstrated the use of evolutionary game theory for allocation of service
requirements on to an ensemble of heterogeneous network components. By incorporating
differentiated pricing structures into a system utility function, network agents were encouraged to
increase their usage of those components, which were poorly utilized. It was demonstrated how
this approach could enhance network utilization. The work also reported some new results
regarding evolutionarily stable strategies in non-linear evolutionary games.

A road network usually has to fulfill two requirements: (i) it should as far as possible provide
direct connections between nodes to avoid large detours; and (ii) the costs for road construction
and maintenance, which are assumed proportional to the total length of the roads, should be low.
The optimal solution is a compromise between these contradictory demands. . The road
optimization problem belongs to the class of frustrated optimization problems. Schweitzer et al.
(1997) applied Boltzmann and Darwin and mixed strategies to find differently optimized
solutions (graphs of varying density) for the road network, depending on the degree of frustration.
They showed that the optimization process occurs on two different time scales. In the asymptotic
limit, a fixed relation between the mean connection distance (detour) and the total length (costs)
of the network exists that defines a range of possible compromises. Furthermore, they
investigated the density of states, which describes the number of solutions with a certain fitness
value in the stationary regime. The authors found that the network problem belongs to a class of
optimization problems in which more effort in optimization certainly yields better solutions. An
analytical approximation for the relation between effort and improvement was derived.

Artificial Life: Non-biological systems, such as computer programs, which evolve to greater
levels of fitness by means analogous to natural selection. The process usually requires the
algorithms to meet a fitness test before they reproduce, thus improving the fitness of each
subsequent generation. The programmer may in some cases define a goal for the competing
algorithms (e.g., 'solve this equation').

Genetic Programming (GP): The main difference between genetic programming and genetic
algorithms is the representation of the solution. Genetic programming creates computer programs

Proc. SPIE Vol. 41924

in the scheme computer languages as the solution. A genetic algorithm creates a string of
numbers that represent the solution.
Genetic programming, uses four steps to solve problems:
1) Generate an initial population of random compositions of the functions and terminals of the

problem (computer programs).
2) Execute each program in the population and assign it a fitness value according to how well it

solves the problem.
3) Create a new population of computer programs.

i) Copy the best existing programs
ii) Create new computer programs by mutation.
iii) Create new computer programs by crossover (sexual reproduction).

4) The best computer program that appeared in any generation, the best-so-far solution, is
designated as the result of genetic programming (Koza 1992, Benzhaf et a!. 1998).

Genetic programming is distinguished from other evolutionary algorithms in that it uses a tree
(hierarchical) representation of variable size rather than of linear strings of fixed length. The
flexible representation scheme is important because it allows the underlying structure of the data
to be discovered automatically. One primary difficulty, however, is that the number of solutions
may become excessive without any improvement of their generalizabilty. Zhang and
Muehlenbein (1995) investigated the fundamental relationship between the performance and
complexity of the evolved structures. The essence of the parsimony problem is demonstrated
empirically by analyzing error landscapes of programs evolved for neural network synthesis.
They considered genetic programming as a statistical inference problem and applied theBayesian
model-comparison framework to introduce a class of fitness functions with error and complexity
terms. An adaptive learning method was introduced that automatically balanced the model-
complexity factor to evolve parsimonious programs without losing the diversity of the population
needed for achieving the desired training accuracy. The effectiveness of this approach was
empirically demonstrated on the induction of sigma-pi neural networks for solving a medical
diagnosis problem as well as other tasks.

Iba et al. (1995) introduced a new approach to genetic programming by integrating a GP-based
adaptive search of tree structures and a local parameter tuning mechanism employing statistical
search. In traditional GP, recombination can cause frequent disruption of building blocks, or
mutation can cause abrupt changes in the semantics. To overcome these difficulties, they
supplemented traditional GP with a local hill-climbing search, using a parameter tuning
procedure. More precisely, the authors integrated the structural search of traditional GP with a
multiple regression analysis method and establish their adaptive program called STROGANOFF
(i.e., STructured Representation On Genetic Algorithms for NOnlinear Function Fitting). The
fitness evaluation was based on a minimum description length (MDL) criterion, which effectively
controls the tree growth in GP. The authors demonstrated its effectiveness by solving several
system identification (numerical) problems and compare the performance of ROGANOFF with
traditional GP and another standard technique (radial basis functions). Thereafter they extended
STROGANOFF to symbolic (non-numerical) reasoning, by introducing multiple types of nodes,
using a modified MDL-based selection criterion, and a pruning of the resultant trees. The
effectiveness of this numerical approach to GP is demonstrated by successful application to
symbolic regression problems.

Parsimony pressure, the explicit penalization of larger programs, has been increasingly
used as a means of controlling code growth in genetic programming. However, in many cases
parsimony pressure degrades the performance of the genetic program. Soule and Foster (1998)
showed that poor average results with parsimony pressure are a result of "failed" populations that

Proc. SPIE Vol. 4192 5

overshadow the results of populations that incorporate parsimony pressure successfully.
Additionally, they showed that the effect of parsimony pressure can be measured by calculating
the relationship between program size and performance within the population. This measure can
be used as a partial indicator of success or failure for individual populations.

Yao et al. (1999) proposed a fast evolutionary programming algorithm that that uses Cauchy
instead of Gaussian mutation as the primary operator. The proposed algorithm is efficient in
search of a large neighborhood. The authors showed the relationship between the search step size
and the probability of finding a global optimum.

The feasibly of the ideas discussed in this paper is illustrated with three examples from the
evolutionary computation literature. Lohn and Colombano (1999) presented an evolutionary
search method for automatic generation of circuit designs. They used a set of circuit primitives
that were synthesized in valid circuits. The algorithm allows for the evolution of the circuit size,
circuit topology, and device values. Thompson et al. (1999) presented evolutionary strategy to
design a reconfigurable controller. The designed product exhibit better properties than the one
designed with conventional constraint based methods. Moriarty and Miikkulainen (1998) applied
coevolutionary search to design a neural network. The deigned network was robust due to
neurons assuming overlapping roles as well as more diversity.

3. Evolutionary Process Design
Some of the evolutionary computation concepts discussed in this paper are illustrated with the
design of a process. Process modeling involves two notions (see Figure 4):
L:I Horizontal, and
c:i Vertical

A process model is seldom developed at one level rather it is built horizontally and vertically. The
top node in the hierarchy denotes the overall process that is decomposed into lower level
components. The highest granularity model is usually a network of activities (the horizontal
notion).
To support the horizontal notion of process modeling concepts from evolutionary computation
will be applied. The feasibility of applying evolutionary computation, in particular genetic
programming, is illustrated with the IDEF3 methodology (Kusiak 1999). The crossover operator
applied to the original process model in Figure 5(a) produces the model in Figure 5(c) by using
the submodel in Figure 5(b).

Figure 4. Horizontal and vertical expansion of process model

Proc. SPIE Vol. 41926

The crossover operator shown in Figure 5 is one of many operators defined in genetic
programming that can be applied. The selection of operators could be enhanced with intelligent
search strategies.

The concepts from evolutionary computation support the horizontal notion of process modeling.
To illustrate the use of evolutionary computation in horizontal process modeling consider the
following simplistic algebra that includes examples three activity operators:

Specialize
c1 Generalize
1i Mutate

To illustrate the there operators consider the model in Figure 6 that is represented in a simplified
form in Figure 7(a).

Activity 2

Figure 6. Simple process model

The generalization operator transforms the model in Figure 7(a) in the model in Figure 7(b) by
incorporating activity 5. Similarly the specialization and mutation operations are illustrated in
Figure 7(b) and 7(c).

Figure 5. IDEF3 tree involved in crossover

Proc. SPIE Vol. 4192 7

c)

Figure 7. Activity model operators: (a) reference model, (b) generalization, (c) specialization, (d)
mutation

In addition to the activity operators, algebra for inputs, outputs, controls, mechanisms, and logical
connectors can be defined. For example, the generalize operator applied to an Exclusive OR
connector would transform it into an OR-connector as illustrated in Figure 8(b). An add operator
applied to output-input O-114 inserts this input between activities 1 and 4 as shown in Figure 8(c).

Figure 8. Logical junction and input operators: (a) base model, (b) generalization of Exclusive
OR junction, (c) Add Input-Output1 operator

4. Data Mining
The core concept of data mining is machine learning. Some of the best-known learning
algorithms are listed next.

Many of the existing rule extraction algorithms fall into one of the following two classes (Kusiak
2000):
L:I Decision tree algorithms
Examples: 1D3: Induction Decision Tree is a supervised learning algorithm developed byQuinlan
(1986); AQ15: Inductive learning system generates decision rules, where the conditions are
logical formulas Michalski et a!. 1986); and C4.5: The decision-tree induction algorithm by
Quinlan (1993).
I Rough set theory algorithms
Examples: LERS: Learning from Examples using Rough Sets System (Grzymala-Busse 1997),
and algorithms developed by Stefanowski and Slowinski (1997a,b) based on the rough set theory
proposed by Pawlak (1982).

One of the tools that can contribute to autonomy of process models is data mining. For example,
a decision rule derived by a data mining algorithm applied to process model in Figure 8(b) selects
the path {Activity 1 - Activity 2 - Activity 4}.

Design of a product or a process involves a series transformations discussed in Kusiak (1999).
These transformations are not well defined therefor data mining naturally fills the gap by

a) b) c)

Proc. SPIE Vol. 41928

discovering the knowledge governing the design and its process. One of numerous potential
applications of data mining in product design is illustrated in Figure 9. The data mining model
facilitates the transformation of design requirements into functions.

Requirement - Data Functional
domain mining domain

model __j

Figure 9. Requirement —function transformation

5. Conclusions
In this paper, three paradigms governing the design and manufacturing ofthe future were defined.
Evolutionary computation and data mining support these paradigms. The background of the two
research areas as well as examples demonstrating their use in design and manufacturing were
discussed.

References
Back, T. (1996), Evolutionary Algorithms in Theory and Practice, Oxford University Press, New

York.
Benzhaf, W., Nordin, P., Keller, R.E., and F.D. Francone (1998), Genetic Programming; An

Introduction, Morgan Kaufmann, San Francisco, CA.
Coello, C.A.C. (1999), A comprehensive survey of evolutionary-based multiobjective

optimization techniques, Knowledge andlnformation Systems, Vol. 1, No. 3, pp. 269-308.
Eiben, A.E. and T. Back (1997), Empirical investigation ofmultiparent recombination operators

in evolution strategies, Computational Intelligence, Vol. 5, No. 3, pp. 347-3 65
Fonseca, C.M. and P.J. Fleming (1995), An overview of evolutionary algorithms in

multiobjective optimization, Evolutionary Computation, Vol. 3, No. 1, pp. 1-16.
Grzymala-Busse, J.W. (1997), A new version of the rule induction system LERS, Fundamenta

Informaticae, Vol. 31, pp. 27-39.
Horn, J., Goldberg, D.E., and K. Deb (1994), Implicit niching in a learning classifier system:

Nature's way, Evolutionary Computation, Vol. 2, No. 1, pp. 37-66.
Iba, H., deGaris, H., and T. Sato (1995), A numerical approach to genetic programming for

system identification, Evolutionary Computation, Vol. 3, No. 4, pp. 4 17-452.
Koza, Z. (1992), Genetic Programming, MIT Press, Cambridge, MA.
Kusiak, A (2000), Computational Intelligence in Design and Manufacturing, John Wiley, New

York.
Kusiak, A. (1999), Engineering Design. Products, Processes, and Systems, Academic Press, San

Diego, CA.
Lohn, J.D. and S.P. Colombano (1999), A circuit representation technique for automated circuit

design, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 3, pp. 205-219.

Proc. SPIE Vol. 4192 9

Michaiski, R.S., Mozetic, I., Hong, J., and N. Lavrac (1986), The multi-purpose incremental
learning system AQ15 and its testing application to three medical domains, Proceedings of
the 5th National Conference on Art/lcial Intelligence, AAAI Press, Palo Alto, CA, pp. 104 1-
1045.

Moriarty, D.E. and R. Miikkulainen (1998), Forming neural networks through efficient ad
adaptive coevolution, Evolutionary Computation, Vol. 5, No. 4, pp. 373-399.

Olafsson, S. (1996), Resource allocation as an evolving strategy, Evolutionary Computation, Vol.
4, No. 1, pp. 33-55.

Pawlak Z. (1982), Rough sets, International Journal oflnformation and Computer Science, Vol.
1 1, No. 5, pp. 341-356.

Quinlan, J.R. (1993), C4.5. Programsfor Machine Learning, Morgan Kaufmann, Los Altos, CA.
Quinlan, J.R. (1986), Induction ofdecision trees, Machine Learning, Vol. 1, No. 1, pp. 81-106.
Schweitzer, F., Rosé, H., Ebeling, W., and 0. Weiss (1997), Optimization of road networks using

evolutionary strategies, Evolutionary Computation, Vol. 5, No. 4, pp. 419-438.
Stefanowski, J. and K. Slowinski (1997a), Rough set theory and rule induction techniques for

discovery of attribute dependencies in medical information systems, Proceedings ofthe First
European Symposium on PKDD '97, Trondheim, Norway, pp. 36-46.

Stefanowski, J. and K. Slowinski (1997b), Rough sets as a tool for studying attribute
dependencies in the urinary stones treatment data set, Rough Sets and Data Mining: Analysis
oflmprecise Data, T.Y. Lin and N. Cercone (Eds), Kiuwer Academic Publishers, Dordrecht,
The Netherlands, pp. 177-196.

Soule, T. and J.A. Foster (1998), Effects of code growth and parsimony pressure on populations
in genetic programming, Evolutionary Computation, Vol. 6, No. 4, pp. 293-309.

Thompson, A., Layzell, P., and R.S. Zebulum (1999), Exploration in design space:
Unconventional electronics design through artificial evolution, IEEE Transactions on
Evolutionary Computation, Vol. 3, No. 2, pp. 167-196.

Van Veldhuizen, D.A. and G.B. Lemont (2000), Multiobjective evolutionary algorithms:
Analyzing the state-of-the-art, Evolutionary Computation, Vol. 8, No. 2, pp. 125-147.

Yao, X., Liu, Y., and G. Lin (1999), Evolutionary programming made easier, IEEE Transactions
on Evolutionary Computation, Vol. 3, No. 2, pp. 82-102.

Zhang, B.-T. and H. Muehlenbein (1995), Balancing accuracy and parsimony in genetic
programming, Evolutionary Computation, Vol. 3, No. 1, pp.17-38.

Proc. SPIE Vol. 419210

