
Fluctuation-enhanced sensing
1

L.B. Kish(+), G. Schmera(++), Ch. Kwan(x), J. Smulko(xx), P. Heszler(*), C.-G. Granqvist(**)

(+)Texas A&M University, Department of Electrical and Computer Engineering, College Station,
TX 77843-3128, USA

(++)Space and Naval Warfare System Center, Signal Exploitation & Information Management, San
Diego, CA 92152-5001, USA

(x)Signal Processing, Inc., 13619 Valley Oak Circle, Rockville, MD 20850, USA

(xx)Gdansk University of Technology, WETiI, ul. G. Narutowicza 11/12, 80-952 Gdansk, Poland

(*)University of Szeged, Department of Experimental Physics, Dom ter 9, Szeged, H-6720, Hungary

(**)Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box
534, SE-751 21 Uppsala, Sweden

ABSTRACT

We present a short survey on fluctuation-enhanced gas sensing. We compare some of its main characteristics with those
of classical sensing. We address the problem of linear response, information channel capacity, missed alarms and false
alarms.
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1. INTRODUCTION

1.1.  Fluctuation-enhanced sensing

The classical way of physical and chemical sensing involves the measurement of the value of a physical quantity in the
detector/sensor. Recently, a new method has been proposed for chemical and gas sensing and developed that mimics the
biological way of sensing where the sensed agent changes the statistics of the neural output, which is a pulse noise.
Thus noise carries the sensory information. We call this type of sensing Fluctuation-Enhanced Sensing (FES). We note
that FES has been used long time ago to measure certain physical quantities under difficult conditions. For example, the
measurement of Johnson noise voltage of resistors has been utilized to determine temperature in cryogenic applications
for a long time.

In Figure 1, the usual Johnson voltage noise thermometry is compared with classical resistor thermometry. For a resistor
thermometer, the R(T) function must be known and a biasing DC current, which is heating the thermometer and causes
errors, and precise current and voltage measurements are needed. In the usual Johnson-noise thermometry, the R(T)
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published as an invited paper in Nanotechnology Perceptions. The present paper is modified and edited to match the community of
SPIE's Fluctuations and Noise Symposium.
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function is not needed but the resistance value R still must be known/determined (measuring it causes heating at
classical measurements) and precise current and voltage measurements are needed.
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Figure 1. Left: Resistor thermometer; the R(T) function must be known and a biasing DC current, which is heating the thermometer
and causes error, and precise current and voltage measurements are needed. Right: The usual Johnson-noise thermometry; the R(T)
function is not needed but the resistance value R must be known and precise current and voltage measurements are needed.
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Figure 2. Fluctuation-enhanced absolute thermometry based on Johnson noise and first principles. Left: The Johnson voltage noise is
measured. Right: The Johnson current noise is measured. The two measurements provide both the absolute temperature T and the
resistance R. No heating occurs and no preliminary knowledge is needed except precise current and voltage measurements.

In Figure 2, the method utilizes the full power of FES. This absolute thermometry is based on Johnson noise and first
principles. The Johnson voltage noise and current noise are measured. They result in a system of two separate equations.
Their solution provides both the temperature and the resistance:

  
T =

SuSi

4kT   

R =
Su

Si

(1)

No heating occurs and only precise current and voltage measurements are needed. This solution also indicates that FES
is a powerful tool, it does not mean that it is an easy/cheap measurement.

The focus topic of our paper is fluctuation-enhanced sensing of gases which is far less "clean" as first principle
measurements. Classical gas sensing methods are many orders of magnitude less sensitive than the nose of dogs or even
that of humans. So, how do biological noses do the job? They contain a large array of olfactory neurons which
communicate stochastic voltage spikes to the brain. When odor molecules are adsorbed by a number of neurons, the
statistical properties of these stochastic spikes change. The brain decodes the changes in statistics and matches the result
with an odor database in memory.

Neuron

Excitation
Stochastic
spike train

Neuron

Excitation
Stochastic
spike train

Neuron

Excitation
Stochastic
spike train

BRAIN
statistical signal analysis,

spatiotemporal cross-
correlation analysis,

pattern recognition

Figure 3. Fluctuation-enhanced odor and taste sensing by humans and animals.
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The first step is similar to the classical sensing method: the value of a physical quantity in the sensing medium is
measured, for example the output voltage of a chemical sensor. Then the microscopic spontaneous fluctuations of these
measurements are strongly amplified (typically 1-100 million) and the statistical properties of these fluctuations are
analyzed. These fluctuations are due to the dynamically changing molecular-level interactions between the odor
molecules and the sensing media, thus they contain the chemical signature of the odor. The results are compared with a
statistical pattern database to identify the odor. The new method has been named "fluctuation-enhanced" sensing.

In the next sections we first address the problem of classical gas sensing and then history of FES. Then we will address
some of the many practical problems of FES.

1.2. Classical gas sensing

Concerns about outdoor air-pollution are widely spread. However, it is less known that serious health-related problems
may emerge also from the indoor environment. Indoor air contains a wide variety of volatile organic compounds
(VOCs, e.g., formaldehyde and vapors of organic solvents), and a number of these VOCs have a higher concentration
indoors than outdoors [1]. Exposure to VOCs has been suggested to cause, e.g., mucous irritation, neurotoxic effects
(fatigue, lethargy, headache, etc.) and nonspecific reactions (e.g., chest sounds and asthma-like symptoms) [2, 3]. It is
clear that precise air quality monitoring is of great importance in both in- and outdoor environments. This requires
sensors capable of detecting low concentrations of CO2, CO, SO2, NOx, O3, H2S, HF, Cl2, VOCs, etc. sensitively and
selectively. (The listed gases have been selected as they have toxic effects [4].) This huge need could be best fulfilled
with simple, cheap, and replaceable sensors, most preferably electronic, semiconductor type that can be easily integrated
into existing monitoring and ventilation systems.

The operation principle of the “classical”, Taguchi-type semiconductor gas sensors is based on the change of
the sensor resistance as the gas to be sensed is adsorbed on the sensor surface [5]. This type of sensors represents a low-
cost option to the standardized and bulky methods (e.g., gas chromatography or mass spectroscopy). Metal-oxides, e.g.,
SnO2, TiO2, ZnO, Mn2O3 and WO3, are most commonly used as sensor materials [6]. There is continuous work for
improving the sensor performance, including sensitivity and, most importantly, the chemical selectivity of these kinds
of sensors.

Regarding sensitivity, nanotechnology—particularly the use of Nanostructured Materials (NsMs)—offers new
possibilities in this area. The characteristic structural length of a NsM is typically 1 to 100 nanometers. One class of
NsMs is composed of nanoparticles or nanocrystals, and in a porous structure these materials exhibit high surface area,
which can be orders of magnitude higher than that of coarser, micro-grained materials, therefore increasing sensitivity
of the gas sensors [7, 8]. It is likely that not only the high surface area but the actual nanostructure (e.g., neck and grain
boundary formation between nanograins) also plays a role for sensitivity enhancement of NsMs [9]. Sensitivity can also
be improved by doping the oxide materials [6, 10].

Chemical selectivity of semiconductor gas sensors can be boosted by operating an array of sensors, each of
them having different sensitivity for different gases (also referred to as “electronic nose”) [11]. This can be achieved by,
e.g., using different (or doped) sensor materials or by operating the sensors at different temperatures. The output of
sensor arrays is then analyzed by pattern recognition methods [12]. Investigating the dynamic response of temperature-
modulated sensors is also a possible way for improving chemical selectivity [13]. However, lack of selectivity is still a
significant problem for the widespread use of semiconductor gas sensors.

1.3. Short survey of the history of fluctuation-enhanced gas sensing

While some optical chemical sensors analyze the absorption or emission spectrum of gases and therefore are able to
generate a pattern, most chemical sensors produce a single number output only. For example the steady-state value of a
Taguchi sensor, or the steady-state current value of a MOS sensor, are such signals. To generate a separate pattern
corresponding to different chemical compositions, a number (6 to 40) of different types of sensors are needed, which
makes the system expensive and unreliable for practical applications. On the other hand Fluctuation-Enhanced Sensing
(FES), see Figure 4, is able to generate a complex pattern by the application of a single sensor [14-22].
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Figure 4. Fluctuation-enhanced chemical sensing.

FES means that, instead of using the mean value (time average) of the sensor signal, the small stochastic fluctuations
around the mean value are amplified and statistically analyzed. Due to the grainy structure of resistive film sensors,
these materials exhibit significantly (several orders of magnitude) increased electronic resistance fluctuations compared
the case of to single crystalline materials, and these fluctuations are strongly influenced by the random walk (diffusion)
dynamics of agents in the vicinity of intergrain junctions and by adsorption-desorption noise. Stochastic analytical tools
are used to generate a one-dimensional or two-dimensional pattern from the time fluctuations. The analysis of these
patterns can be done in the classical way by using pattern recognition tools.

The history of FES goes back more than a decade [14-37]. The name "Fluctuation-Enhanced Sensing" was created by
John Audia (SPAWAR, US Navy) in 2001. In this paper we mostly focus on journal papers and neglect the vast body of
conference contributions, except in cases where conference papers (or patents) have reserved the priority.
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Figure 5. Fluctuation-enhanced gas sensing setup at the Department of Electrical and Computer Engineering at Texas A&M
University.

Using electrical noise (spontaneous fluctuations) to identify chemicals was first proposed by Neri and coworkers
[14,15] in 1994-95 by showing the sensitivity of conductance noise spectra of conducting polymers as a function of the
ambient gas composition. In 1997, Gottwald and coworkers [16] published similar effects for the conductance noise
spectrum of semiconductor resistors with non-passivated surfaces. The first mathematical analysis of generic FES
systems, with the sensor number requirement versus the number of agents, was done by Kish and coworkers in 1998
[17-19]. The possibility of "freezing the smell" in a Taguchi sensor was first demonstrated by Vajtai [18] and later a
more extensive analysis was published by Solis et al [20]. In 2001, Smulko et al were the first to use higher-order
statistics to enhance the extracted information from the stochastic signal component [21,26,29]. Hoel et al showed FES
via invasion noise effects at room-temperature in nanoparticle films [22]. Schmera and coworkers analyzed the situation
of Surface Acoustic Wave (SAW) sensors and predicted the FES spectrum for SAW and MOS sensors with surface
diffusion [23-24]. Commercial-On-The-Shelf (COTS) sensors with environmental pollutants and gas combinations were
also studied [25,29,30]. In nanoparticle sensors with a temperature gradient, the possibility of using the noise of the
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thermoelectric voltage for FES was demonstrated [28]. Ederth et al analyzed the sensitivity enhancement in the FES
mode and compared it  to the classical mode in nanoparticle sensors and found an enhancement of a factor of 300.
Gomri et al [32,33] published FES theories for the cases of adsorption-desorption noise and chemisorption-induced
noise. Huang et al explored the possibility of using FES in electronic tongues [34].

2. ON THE SENSITIVITY AND SELECTIVITY IN FLUCTUATION-ENHANCED SENSING

The statistics of the microscopic fluctuations in a system are rich and sensitive sources of information about the system
itself. They are extremely sensitive because the perturbations of microscopic fluctuations require only very small
energy. On the other hand, the related statistical distribution functions are data arrays, and thus they can contain orders
of magnitude more information then a single number represented by the mean value of the sensor signal used in
classical sensing.

The underlying physical mechanism behind the enhanced sensitivity is the temporal fluctuations of the agent's or its
fragment's concentration at various points of the sensor volume where the sensitivity of the resistivity against the agent
is different. This effect will generate stochastic fluctuations of the resistance and the sensor voltage during biasing the
sensor with a DC current. The voltage fluctuations can be extracted (by removing the mean value by AC coupling) and
strongly amplified. Sensitivity enhancement by several orders of magnitude was demonstrated by Kish and coworkers
[29] in Taguchi sensors and by Ederth and coworkers [31] in nanoparticle films.

Significantly increased selectivity can be expected depending on the type of sensor and types of available FES
“fingerprints”. We define the selectivity enhancement by the factor specifying how many classical sensors a fluctuation-
enhanced sensor can replace. When using power density spectra, the theoretical upper limit of selectivity enhancement
is equal to the number of spectral lines. At typical experiments that is about 10000. However, when the elementary
fluctuations are random-telegraph signals (RTSs) the underlying elementary spectra are Lorentzians [35,36] and the
situation is less favorable because their spectra strongly overlap. As a consequence, experiments with COTS sensors
indicate that the response of spectral lines against agent variations is often not independent. In a simple experimental
demonstration with COTS sensors, a selectivity enhancement of six was easily reachable [18]. However, nanosensor
development may be able to use all of the spectral lines more independently. Because both the FES signal in
macroscopic sensors and the natural conductance fluctuations of the resistive sensors usually show 1/f-like spectra
[35,36], the lower the inherent 1/f noise strength in the sensor the cleaner the sensory signal. An interesting analysis can
me made if we suppose that we shrink the sensor size so much that the different agents probe different RTS signals.
Then principles for 1/f noise generation [37,38] indicate that one can resolve at most a few Lorentzian components in a
frequency decade. Supposing six decades of frequency, the maximal selectivity enhancement would be around 18,
supposing three fluctuators/decade.

With bispectra [21,26,27], the potential of selectivity increase is even greater because bispectra are two-dimensional
data arrays. In the case of 10000 spectral lines, as mentioned above, the theoretical upper limit of selectivity increase is
100 million, but in the Lorentzian fluctuator limit that number is again radically reduced. Bispectra sense only the non-
Gaussian part of the sensor signal, and for the utilization of the full advantages of bispectra it seems necessary to build
the sensor within the submicron characteristic size range in order to utilize elementary microscopic switching events as
non-Gaussian components. Moreover, the sixfold symmetry of the bispectrum function yields a further reduction of
information by roughly a factor six. Using the above-mentioned estimation with three Lorentzian fluctuators/decade,
over six decades of frequency, the selectivity enhancement would be around 50. It should be noted that this
enhancement is independent from the spectral enhancement discussed above because bispectra probe the non-Gaussian
components [35].
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3. INFORMATION CHANNEL CAPACITY IN RESISTIVE GAS SENSORS

3.1. Information channel capacity in resistive gas sensors

Using Shannon's formula of information channel capacity in analog channels, it has recently been shown [35] that, in
the case when the probing current density in the sensor is homogeneous and the sensor resistance fluctuations in the
reference gas have 1/f spectrum, classical resistive sensors have the following upper limit of information flow rate:
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Where tm  is the measurement time window, R  and R0  are the resistance response in the test gas and in the reference

gas, respectively. V  is the volume of sensor film, AS  is the surface of the sensor film and d  is its thickness. The

strength of the 1/f noise in the film is characterized with the well known semiempirical formula:

  

Su ( f )

U 2
=

A
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(3)

where f  is the frequency and A is the factor describing the strength of 1/f noise.

According to Eq. (2), in the practical (1/f-noise-dominated) limit and at fixed measurement time and film thickness, the
larger the surface of the classical resistive sensor the greater the information channel capacity. However, in the limit of a
sufficiently large agent concentration, the saturation time is controlled by the underlying diffusion processes taking
place through the thickness of the film; therefore, in this case, the shortest measurement time is also controlled by
diffusion according to
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where D  is the diffusion coefficient of the agent and/or its fragments through the film. Therefore the thinner and larger

the film the greater the information channel capacity. This fact indicates that, in classical films, small thickness and
large surface are preferable. From these two, the thickness is the dominant control parameter.

4. Information channel capacity in fluctuation-enhanced gas sensors

Suppose, the power density spectrum of the resistance fluctuations in a FES sensor has K different frequency ranges, in
which the dependence of the response on the concentration of the chemical species is different from the response in the
other ranges, one can write [17-19]:

  
DS( f1) = A1,1C1 + A1,2C2 +  ...  + A1, NC N

.

. (6)

.

  
DS( fK ) = AK ,1C1 + AK ,2C2 +  ...  + AK , NC N

where 
  DS( fi ) is the change of the power density spectrum of resistance fluctuations at the i-th characteristic frequency

band, and the Ai, j  quantities are calibration constants in the linear response limit. Thus, a single sensor is able to
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provide a set of independent equations to determine the gas composition around the sensor. The number K of different
applicable frequency ranges has to be greater than or equal to the number N of chemical species, i.e.,   K ¥ N . This
idealized situation needs sensors with linear response. Taguchi sensors do not produce linear response, see Figure 6,
however future nanoscale devices may provide this property by the linear superposition of elementary fluctuations.
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Figure 6. Experimental proof that the response in Taguchi sensors in not additive (nonlinear) [30].

In [35], the information channel capacity of power density spectrum based FES was estimated by assuming equal
frequency bands and supposing that the relative error of the spectrum is much less than unity, then the information
channel capacity (roughly) scales as:

  

C
tmtw fs

2

Df
, (12)

where tw  is the duration (time window) of a single data sequence (for a single Fourier transformation), tm  is the total

measurement time (the elementary power spectra are averaged over that) and fs  is the sampling frequency. It is

supposed that the FES measurement starts after the sensor reached a stationary state in the test gas and that tm  is much

longer than the time needed to reach the stationary state, and that condition supposes thin sensor film just like in the
classical sensor considerations above.

In such a case, the most important conclusion of Eq. 6 is that, in resistive FES applications, the sensor surface can be

very small without limiting the performance (as large as enough Lorentzian fluctuators are present for each frequency
band) because measurement time related statistical inaccuracies limit the information channel capacity, not a
background noise.

In [35], similar conclusions are obtained for bispectrum based FES sensors.

5. ON THE PRACTICAL RECOGNITION OF SPECTRA AND ROC CURVES

In the rest of the paper, as an example for the advantage of o\linear response, we show the result of simulations in a
simple nanostructured FES sensor arrangement, which is based on one-dimensional diffusion noise [24].
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Molecules A, and/or B, and/or C were executing a stationary diffusion (random walk), with molecule-specific diffusion
coefficients, over the surface of the sensor with an active zone (sweet spot) at the middle and diffusion barriers at the
side. The geometry of the system provides a one-dimensional diffusion noise [23-24], see Figure 7. Molecules over the
sweet spot provide uniform output level, independently of the type of the molecule. In the low-concentration limit, the
molecules move independently and the spectra are adding up linearly.

This system excellently shows the advantages of FES because the DC average signals of a single A, B or C molecule or
that of equal concentrations of them are identical. Therefore, the classical sensor output can tell us only the total number
of molecules on the surface (total molecular concentration) with zero selectivity/specificity.

However, FES can provide very much more information, especially, if proper analyzer and pattern recognizer tools are
available. The results shown below were obtained by Signal Processing Co. (SPC) by using their hyperspectral analysis
tool [36] which is a proprietary algorithm for the efficient determination of the linearly added spectral components (see
Eqs. 6. Figures 8 and 9 show the actual and estimated abundance (molecule number) data. It is obvious that the
algorithm performs much better then the naked eye when analyzing the spectra..

                  

1A

1B
1C

1B-3C 2A-3C

1A-2B

3A-5B-6C

f -1.5

f 0.5

Figure 7. Spectra of the simulated situations. Molecules A, B ad C. Notations: 1A: 1 molecule A; 1B: 1 molecule C;  1A-2B: 1
molecule A and 2 molecules B; etc. The white noise at low frequencies is caused by the diffusion barriers.

Figure 8. Abundance (molecule number or concentration) data for molecule A (see Figure 7). Actual data (+), Estimates with
power density spectra (o) and estimates with bispectra (x). Left: 1 million data points/spectrum. Right: 5 million data
points/spectrum). The X axis is the index number of data files; each actual abundance was tested 100 times (100 files each).
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Receiver operating characteristic (ROC) curves are standard characterization tools of the quality of a sensing system. In
Figure 10, the ROC curves generated by varied threshold values from the abundance estimations based on the
simulations (see Figure 7). A threshold (quantization) value was defined to estimate if the abundance value is 0 or 1.
Then this threshold value was varied so that the system went from the zero detection probability to the 1 detection
probability and the detection and false alarm probabilities were recorded and plotted. For molecule A, power density
and bispectra perform equally well, however for molecule B, the bispectra provide superior ROC curves.

           

6. CONCLUSION

Fluctuation enhanced gas sensing has very different requirements and superior characteristics compared to classical gas
sensing. Further research is needed to develop sensors with linear response against the components in gas mixtures
because these sensors provide the best FES performance.
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