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Abstract. Fluorescence in situ hybridization (FISH) is a molecular di-
agnostic technique in which a fluorescent labeled probe hybridizes to
a target nucleotide sequence of deoxyribose nucleic acid. Upon exci-
tation, each chromosome containing the target sequence produces a
fluorescent signal (spot). Because fluorescent spot counting is tedious
and often subjective, automated digital algorithms to count spots are
desirable. New technology provides a stack of images on multiple
focal planes throughout a tissue sample. Multiple-focal-plane imaging
helps overcome the biases and imprecision inherent in single-focal-
plane methods. This paper proposes an algorithm for global spot
counting in stacked three-dimensional slice FISH images without the
necessity of nuclei segmentation. It is designed to work in complex
backgrounds, when there are agglomerated nuclei, and in the pres-
ence of illumination gradients. It is based on the morphological top-
hat transform, which locates intensity spikes on irregular back-
grounds. After finding signals in the slice images, the algorithm groups
these together to form three-dimensional spots. Filters are employed
to separate legitimate spots from fluorescent noise. The algorithm is
set in a comprehensive toolbox that provides visualization and ana-
lytic facilities. It includes simulation software that allows examination
of algorithm performance for various image and algorithm parameter
settings, including signal size, signal density, and the number of slices.
© 2002 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1428292]
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1 Introduction
Recent advances in molecular medicine have provided
greater opportunity to understand the genetic basis of diseas
as well as the cellular mechanisms of disease, and to sele
appropriate treatments with the greatest likelihood of succes
One such technique for molecular diagnosis isin situ hybrid-
ization in which labeled hybridizing agents@such as deoxyri-
bose nucleic acid~DNA!, ribonucleic acid, or single stranded
or double stranded DNA probes# are exposed to intact tissue
sections. The probes can be labeled by direct or indirec
means. When fluorescent dyes are used as labels, the tec
nique is referred to as fluorescencein situ hybridization
~FISH!.1–4 The probe hybridizes to a defined target nucleotide
sequence of DNA in the cell, and the dye fluoresces to som
particular color when excited by a mercury arc lamp or argon
laser~in the case of a laser scanning microscopy!, so that the
labeled probe can be visually detected when the probed tissu
is viewed through a microscope. Each chromosome contain
ing the target DNA sequence will produce a fluorescent signa
~spot! in every cell when the specimen is illuminated with
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suitable excitation. FISH is an excellent method for the det
tion of gene copy number alterations in cancer and other
eases.

Application of FISH technology has been hampered b
cause fluorescent spot counting is tedious, inaccurate, o
highly subjective, and subject to substantial intraobser
variability. It also requires a highly trained technician to re
ognize the cells or tissue to be analyzed, and who can re
nize and count tiny fluorescent spots accurately. Finally,
most 100 or 200 cells are typically analyzed per specim
and in the case of gene amplification, much less than
~such as 20 per specimen!.

An instrumental impediment to accurate FISH spot cou
ing is that the probes hybridize throughout a thre
dimensional tissue sample, and therefore the use of a si
focal plane can result in a low estimation of the number
spots. This can happen in two ways. First, a lower sig
results for spots outside the focal plane, thereby exacerba
the confusion between true spots and noise, and resulting
low estimation of the number of true spots. Second, if o
spot lies below another, they produce a single signal rela
to the focal plane, and again there is low spot estimati
Although automated FISH spot
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Fig. 1 Two-color FISH.
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counting algorithms have been developed based on a sing
focal plane,5–7 they have been subject to both problems. Sat-
isfactory results have been achieved by using the morpholog
cal top-hat transform in a Bayesian context, where prior dis
tributions are assumed for spot and noise intensities.8 This
approach takes into account the distribution of intensities re
sulting from a single focal plane; however, it requires accurate
prior distributions and therefore is very sensitive to image
acquisition, in particular, precise protocol implementation on
the part of technicians.

New technology now allows the cost-efficient acquisition
of a stack of images on multiple focal planes throughout a
tissue sample. Each of these provides an intensity gradient
a particular focal plane, and thereby overcomes the two low
biases mentioned previously. This paper presents an algorith
for three-dimensional spot estimation from the image stack b
using the morphological top-hat transform on each slice im
age in the stack. Owing to the greater accuracy of the spo
intensity readings, good results are obtainable without a Baye
sian methodology.

A drawback to previous automated spot counting algo-
rithms is their dependence on the detection of nuclear bound
aries. This can be extremely difficult~or impossible! in many
kinds of tissue sections. Moreover, overlapping nuclei require
segmentation. Not only is segmentation difficult for irregu-
larly shaped nuclei, or nuclei sitting within complex back-
grounds, even when nuclei are successfully segmented, the
is the problem of determining to which nuclei a spot belongs
The difficulty is illustrated in Figure 1~a!. The figure illus-
trates two-color FISH, in which two probes are labeled with
different dyes that fluoresce with different colors. The red
label ~black! may, for example, be attached to a probe that
hybridizes to a gene of interest~such as a hormone receptor
gene that may be amplified in certain tumors!. The green label
~gray! may be attached to a probe that hybridizes to a known
chromosomal locus that is not expected to vary in diseas
states~such as the centromere of a chromosome on which th
gene of interest is found!. The gene of interest could be rec-
110 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
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ognized by a probe on the X chromosome labeled with sp
trum orange~to provide an orange-red spot signal!, and the
reference probe could be labeled with spectrum green~to pro-
vide a green spot signal! for the centromere of the X chromo
some. A single green signal would therefore be observed
the nuclei of the schematic representation of Figure 1~a! from
male cells~which have only one X chromosome!, while two
green signals would be seen in female cells. Amplification
the gene of interest would be noted in certain cells in
schematic representation of Figure 1~a! in which there is an
increase in the ratio of red signals to green signals.

Relative to Figure 1~a! it is conventional to count the num
ber of signals in each nucleus of a large number of cells. T
approach has been adopted because the amplification or
tion of a gene occurs in large populations of cells, and sign
cant changes in the copy numbers of genes are often
detected by examining a large number of~for example, at
least 200! cells. Because the amplification has been cons
ered to be a nuclear event, a change in the copy number
gene with respect to each nucleus has been counted,
manually and in automated systems.

Our approach here@Figure 1~b!# avoids nuclear segmenta
tion by determining the probe ratios without reference to
cells ~or the nucleus! containing the probes. Thus, Figure 1~b!
shows the FISH spots of Figure 1~a! in a region of interest
@such as the microscope field of view shown in Figure 1~a!
but without reference to the nuclear contours#. We calculate
the ratio of test probes~red! to reference probes~green!. This
ratio provides sufficient information over a sufficiently larg
number of cells in a region of interest to be informative abo
the relative amplification or deletion of a target gene. In so
instances, a region of interest is a microscopic field of view
low magnifications~e.g., 100–2003!. An entire microscope
field of view can then be used for the image capturing a
analysis at 400–10003 magnification~340–100 objectives!
for FISH analysis. The thickness of the tissue sections u
for FISH analysis is the same as in sections routinely used
histopathological analyses, ranging from 4–10m in thickness.

We note that a different algorithm for multiple-focal-plan
FISH spot counting has been proposed.9 Besides involving
different image processing tools, that algorithm requires
clei segmentation and assumes even illumination. By us
the top-hat transform as the basis for spot identification,
algorithm introduced here is fairly insensitive to substant
and irregular illumination gradients.

The algorithm is presented as a morphological algorit
for counting three-dimensional grains via multiple slice im
ages. It belongs to the large class of morphological algorith
used for counting grains, without reference to the particu
FISH application, and is based on the morphological top-
transform.10,11Other morphological grain-counting algorithm
depend on different morphological transformations, includ
those based on the watershed transformation9,12,13 and those
involving granulometric measurements.14,15

There exist commercial software packages for sing
focal-plane spot counting and, more recently, for multiple
cal planes. We do not wish to comment on these because
do not have access to the details or knowledge of the kind
images for which they give satisfactory results.
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Morphological Spot Counting from Stacked Images . . .
2 Morphological Algorithm for Spot Estimation
The algorithm has the following general structure. A morpho-
logical top-hat transform is applied to each ofL gray-scale
slice images to yieldL outputs, each possessing brightness
intensity spikes jutting above a fairly flat background. Each
bright spike can correspond either to a signal or to noise. Eac
top-hat image is thresholded to produce a stack ofL binary
images showing spike locations. Morphological filters are ap
plied to the binary images to eliminate noise, and touching
spots are segmented. Binary spot markers occurring as ver
cal neighbors in the stack are grouped into one final spo
located at a particular assigned stack level. Various algorithm
parameters are set according to characteristics of the physic
images. These include window size for the top-hat transform
threshold levels, and sizes of filter structuring elements.

For a detailed description of the algorithm, we begin with
an intensity function,j(x,y,z), defined on three-dimensional
~3D! space. To model the situation in whichj results from a
set of concentrated 3D intensity signals, assume it can b
decomposed as

j~x,y,z!5f~x,y,z!1(
i 51

n

a i~x,y,z!1(
j 51

m

b j~x,y,z!,

~1!

wherea1 ,a2 ,...,an denote individual intensity functions cor-
responding to physical entities to be counted,b1 ,b2 ,...,bm
denote noise, and f denotes background intensity.
a1 ,a2 ,...,an will be referred to as spots. We have modeled
the overall intensity function via a sum of intensity signals
only to provide a framework for understanding the algorithm.
In fact, the actual manner in which local intensities are com-
bined to formj is no doubt very complicated and dependent
on various aspects of the image acquisition technology an
intensity formation. Moreover, the background functionf in-
cludes all sources of energy outside of the intensity function
themselves. In FISH,f includes nuclei. The task of our algo-
rithm is to estimaten. In giving a detailed algorithm descrip-
tion, we will refer to the block diagram of Figure 2.

The intensityj is sampled by taking slices atL values
of z, thereby yielding L gray-scale slice images,
f 0(x,y), f 1(x,y),...,f L21(x,y). These slice images are the
actual input to the algorithm~block 1!. From them, we calcu-
late the max-image,f max(x,y), formed by taking pixel maxima
over the slice images~block 2!. The histograms off max and
f mid , the midlevel slice image, are calculated and smoothed
by a moving average filter to formHmax(m) and Hmid(m),
respectively~block 5!.

Figure 3 shows five slice images, sampled from top to
bottom from a total of 16 slices, and the max-image arising
from normal glands. In our nomenclature, these slices form
Stack 64-TRI~red dye!. As expected for normal glands, there
is an equal number of androgen receptor~AR! signals and
reference probe signals, since normal glands do not hav
chromosomal aberrations. The red/green~FITC/TRITC! ratio
is therefore 1. Image size is4363345pixels, magnification is
3100, and the stack step size is 0.35mm.

For each slice imagef k , the top-hat transform is calculated
by
i-

l

gk5 f k2GB~ f k!, ~2!

whereGB( f ) is the gray-scale opening by the flat structurin
elementB, which is taken to be a535 square, but could be
chosen differently for different kinds of images and ima
resolutions~block 3!. Figure 4 illustrates application of th
top-hat transform on a signal possessing spikes:~a! signal;~b!
opening of the signal;~c! top-hat signal; and~d! binarization
of the top-hat signal via a thresholdT ~to be discussed
shortly!. The opening is defined byGB( f )5DB@EB( f )#,
where DB and EB are the gray-scale dilation and erosio
respectively, byB, and are calculated by

DB~ f !~x,y!5max$ f ~x1x8,y1y8!:~x8,y8!PB%,
~3!

EB~ f !~x,y!5min$ f ~x1x8,y1y8!:~x8,y8!PB%.

Efficient implementation of the opening is achieved by stru
turing element decomposition. LettingB, B1 , and B2 be the
535, 135, and531 centered structuring elements, respe
tively, EB( f )5EB2

@EB1
( f )# and DB(X)5DB2

@DB1
( f )#.

The max-top-hat-image,gmax(x,y), is formed by taking pixel
maxima over the slice top-hat images~block 4!. The
smoothed histogram,H top, of the top-hat maximum is then
computed~block 5!.

Each top-hat imagegk needs to be thresholded to obtain
binary image whose components mark spikes in the slice
age f k . The algorithm provides two methods to find th
thresholdT ~block 6!. The first method, a variant of a standa
approach, estimates the minimum between the peaks of
histogram representing the high-intensity spikes and the lo
intensity background. The program calculates the point w
the first maximum value ofHmid . This point gives the first
peak of the graph ofHmid . We would like to use the deriva
tive of Hmid to find the minimum between the first and seco
peaks ofHmid , but even with smoothing,Hmid is not suffi-
ciently smooth. To avoid the small changes in the graph,
instead compute the differential operators

d15Hmid~m21!2Hmid~m!,
~4!

d25Hmid~m!2Hmid~m11!,

and find the point for whichd1d2,0. If there is more irregu-
larity in the histogram, it can be better to use an increm
larger than 1 in the differential operators. If desired, the h
togram can be displayed on screen and the threshold cha
on-line. If Hmid has only one peak, then the method cannot
used to findT and we employ the second method, which us
H top, the histogram of the top-hat image after smoothing. T
method just described, usingHmid , is the default choice of the
algorithm.

Because the spatial areas of the spikes in the slice ima
comprise only a small portion of slice-image area, and si
the gray-levels of the nonspike region ingmax tend to be
small, the mass ofH top is concentrated mainly at low values
Moreover, whenH top drops off permanently to small values
these small values result from high intensities ingmax. Hence,
T can be chosen as a domain point ofH top at the place where
this final falloff is commenced. Specifically,T is the point at
which the derivative ofH top falls below a very small thresh
old.
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 111



Grigoryan et al.
Fig. 2 Diagram of the algorithm.
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T having been determined, each top-hat transformgk is
thresholded byT, thereby yielding in a binary image having
value 1 at~x,y! if gk(x,y).T and value 0 ifgk(x,y)<T
~block 7!. Figure 5 shows the top-hat image from the middle
slice shown in Figure 3 from Stack 64-TRI,H top, and the
resulting binarization byT. Each binary image is composed of
disjoint maximally connected components. These componen
are segmented~identified! and labeled using a rapid procedure
whose details we omit~block 8!. A component with too few
pixels, below a specified thresholdt, is deleted under the
assumption that it either represents noise or a small tail of
spot whose main concentration is in other slices~t may be set
112 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
s

to 1! ~block 9!. For processing efficiency, the filtering is pe
formed inside the segmentation routine. Following the de
tions, each binary image is of the form

Xk5 ø
l 51

n~k!

Ckl , ~5!

where Ck1 ,Ck2 ,...,Cn(k) are the components ofXk . Each
componentCkl will be called a slice signal. The following



Morphological Spot Counting from Stacked Images . . .
Fig. 3 The max image and five slices of the stack.
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data are stored for each slice signalC: the center(xC ,yC), the
cardinality, and the coordinates of the minimal bounding rect-
angleR.

A binary maximum image,Xmax, is obtained by taking the
maximum of the slice signals~block 10!, the segmentation
routine is applied toXmax, and the same data are stored for
Xmax ~block 12!. Figure 6 shows examples ofXmax compo-
nents and binary slice images beneathXmax. The numbers at
the top of the figure correspond to the enumeration of the
bounding rectangles forXmax. The numbers at the bottom in
brackets give the numbers of pixels in the spots. In rectangl
No. 76 the algorithm performs a horizontal segmentation to
find two spots; in No. 85 it performs a vertical segmentation;
and in No. 124 it performs a segmentation in which there is
vertical and horizontal interaction. A threshold filter is applied
to omit from further processing all components inXmax pos-
sessing less than a required number of pixels~block 14!. De-
leted components are not discarded, but stored in case
desires to redo the analysis with a lower threshold. For e
bounding rectangle inXmax, we elicit from previous steps al
slice signals lying spatially within the rectangle~block 11!.
The slice signal with the largest cardinality is called the ma
slice signal and others are tagged as being above or below
main slice signal for the rectangle. This ordering is used
visualization and for subsequent processing~block 13!. One
needs to be cognizant of the possibility that there may
more than one spot associated with a rectangle. The main
signal may represent one of a number of spots lying in
stack beneath the rectangle. Graphical tools can be use
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 113
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Fig. 4 Top-hat transform: signal, opening, top-hat, threshold.
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display a stack of images in which the main slice signal is
shown, along with slices above and below the main slice.

The next stage of the algorithm analyzes the slice signal
associated with each rectangle and estimates the number
spots associated with the rectangle. If taken alone, a spota i

produces an intensity functionj i5f1a i and slice signals
f i0 , f i1 ,...,f i ,L21 . Applying the top-hat transform to the slice
signals yields top-hat signalsgi0 ,gi1 ,...,gi ,L21 , and thresh-
olding yields the binary slice imagesXi0 ,Xi1 ,...,Xi ,L21 . If,
momentarily, we assume thata i is a radial function and a
114 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
f

relatively high threshold is chosen, then most of the bin
images will be null, and a few consist of a single compon
about the~x, y! center ofa i . One of these components, sa
Ck , will include the others as subsets, andCk can be associ-
ated witha i . If the spots and noise functions composing t
intensity function in Eq.~1! are noninterfering and the thresh
old can be picked to yield null binary slice images for eachb j

and at least one non-null binary slice for eacha i , then the
number of spots is found exactly by counting the number
maximal components resulting from the labels. This id
situation is not typical. First, when the labels are dens
packed, they will agglomerate to some degree; indeed, eve
the nuclei are sparse in FISH images, it is possible for lab
to be interfering. Second, the label and noise slice images
usually not sufficiently different to exactly separate them b
thresholded top-hat transform.

More generally, suppose spota i produces a set ofr ( i )
non-null binary slice images, where the non-null binary sl
images appear in a sequence of adjacent slices and the
ground of each binary slice image corresponding toa i is con-
nected. The slice images need to be grouped together to
a single spot for counting. The problem with counting spots
that the slice images from a particular spot are not necess
separated from those of a different spot. This means th
slice signal may be composed of slice images from more t
a single spot. Moreover, if one label is above another, th
may not be a slice separating their slice images; indeed,
ing to thresholding sensitivity, it may not be that all bina
slices corresponding to a single spot are connected. There
to count spots, the slice signals must be segmented and
the resulting images combined in such a way as to prov
estimates of the spots.

There are various ways in which spot contiguity manife
itself in the slice images. Many are handled by the algorith
Others are eliminated by the deletion of very small comp
nents prior to formation of the slice signals. For a situati
that is too complicated for the algorithm~not recognized by
the algorithm!, the data~all channels! in that portion of the
stack images are not used. The data correspond to a s

Fig. 5 Binarization of slice 8.



Morphological Spot Counting from Stacked Images . . .
Fig. 6 Decomposition of eight spots by slices.
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component of the max image. This situation has proven to b
very rare in practice. To explain the kinds of contiguities
treated by the algorithm, we refer to Figure 7. Each part of the
figure shows a two-dimensional~2D! idealization of the spot
situation, the components resulting from the spots, and th
resulting slice signals after deletion of too-small components
by the thresholdt. In each case, the topmost line represents
Xmax. Segmentation need only be applied locally under con
nected components ofXmax.

In Figure 7~a!, the labels are vertically contiguous, but are
separated upon application of the thresholdt. Two spots are
formed: the upper and lower sets of vertically contiguous
slices. Note that we are implicitly defining a spot to be a
collection of binary components. The situation is more com-
rge
ice.
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re
plicated in Figure 7~b!, where application oft does not sepa-
rate the slice signals of the two spots. This case is recogn
by two conditions:~1! each slice beneath the maximum com
ponent contains at most a single slice signal;~2! running
downward, the pixel-count sequence has two local max
and a local minimum between the two maxima that has
leastk pixels less than the smaller of the two maxima, whe
k is some preassigned parameter. The second condition
sures that there are two spots, not a single large one. To f
two spots as in the case of Figure 7~a!, the local minimum
between the maxima is deleted. Ifk is not obtained, then
segmentation will not occur and the algorithm will estima
there to be a single spot. A horizontal touching case is sho
in Figure 7~c!. After the application of the thresholdt, there is
one large segment slice, two signal slices above the la
slice, and two signal slices below the large segment sl
Upon the segmentation of the large slice, two spots
formed. Finally, Figure 7~d! shows another situation wher
there are two spots corresponding to one signal slice in
max-image. These can be isolated into two spots because
do not touch. These segmentation and grouping technique
implemented in block 16. Graphical tools are available
visualization of reconstructed spots. In Figure 8, the algorit
identifies three spots in the red channel.

At this point, there areN spots,S1 ,S2 ,...,SN , each com-
posed of one or more binary slice signals. No two slice sign
from separate spots contain common binary pixels. The id
tified spots are visually shown on the max-image~even
though there may be more than one because of vertical oc
sion!. Each spot corresponds to an authentic spot or to no
Prior to counting it is necessary to select the authentic sp
~block 17!. To filter out small spots, we define a size measu
w and a thresholdr such that spotS is classified as authentic
Fig. 7 Examples of spot view by Z axis.
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 115
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Fig. 8 Complex particle No. 81 with 21 pieces on eight slices consists of three spots.

Fig. 10 Green and red spots on stack64.
116 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1



Morphological Spot Counting from Stacked Images . . .
Fig. 9 The maximum images of the filtered stacks.
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 117
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Fig. 11 The maximum images of the stack87.
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if and only if w(S)>r. A straightforward approach is to de-
fine w(S) to be the maximum of the pixel counts in the binary
components composingS. This approach works fairly well. A
problem with it is that narrow spots may be missed if their
elongated axis lies vertically so that the maximum of the com
ponent pixel counts is not large, whereas the volume of the
spot is relatively large. This problem is addressed by defining
w(S) to be the sum of the pixel counts in the components
composingS. We have found that this latter approach works
best. Not only is it necessary to eliminate small noise spots
118 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
huge spots are also not likely to be authentic. These are
cated on the max-image by utilizing the minimum boundi
rectangles. For each rectangleR the algorithm takes the prod
uct of the maximum intensity withinR and the area ofR. If
this exceeds a preset threshold, then the spot is not coun
Figure 9 shows the marked max-images for red-channel
age ~stack64TRI! and the green channel~stack64FIT! after
filtering.

In addition, if two spots appear the same in both the
and green channels, then we conclude that they result f



Morphological Spot Counting from Stacked Images . . .
Table 1 Accuracy of automated spot counting in tissue sections.

Specimen FISH probes Red/green spots Automatic ratio Manual ratio

Normal prostate AR/Xcen 95/96 0.99 1.0

Normal prostate AR/Xcen 124/126 0.98 1.0

Normal prostate AR/Xcen 92/91 1.01 1.0

Prostate cancer HER2/17cen 212/199 1.07 1.0

Breast cancer 17q23/17cen 763/79 9.66 10.6
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fluorescent noise, since it is very unlikely that they would
appear together if they were legitimate~block 15!. Spots are
considered the same in both channels according to a thresho
y : if the number of pixels in the symmetric difference of the
spots does not exceedy, then the spots are considered to be
the same. In practice,y has been chosen to be very small, no
greater than 2. Figure 10 shows the max-image containin
both red and green signals, with spots appearing in both chan
nels being shown in yellow.

3 Experimental Results
To illustrate the basics of the algorithm, we have used the
red-dye stack64TRI from normal glands. The corresponding
green-dye stack is stack64FIT. Here we summarize the re
sults. Thresholding the top-hat images for stack64TRI yields
1166 slice signals across all 16 slices. Using the thresholdt
51, no slice signals are eliminated. With the spot-size thresh
old w(S)53, there are 133 spots~3 of these being hidden in
the max image!. A 535 top-hat transform has also been used
for the green-dye stack stack64FIT. For this stack, 1233 slic
signals have been found, and following the thresholdw(S)
53, there are 137 spots~six hidden!. This gives a ratio of
133/13750.97 prior to the final filtering of large spots and
spots showing identically on both channels. There are six too
large spots for stack64TRI, ten too-large spots for stack64FIT
and 16 identical spots. This gives final counts of 111 for both
stacks, a ratio of 1.

For a second example, we consider stack87, in which ther
is a large amplification, and in which there are ten slices. Her
there are clusters in the red channel and the red~TRITC!
signals greatly outnumber the green~FITC! signals. In our
notation, the two stacks are stack87FIT and stack87TRI. Th
max images are shown in Figure 11. Following application of
the top-hat transform, there are 4083 slice signals in the re
channel, and this is reduced to 1732 by the thresholdt53.
After grouping the algorithm yields 469~seven hidden! spots.
In this case, settingw(S)53 means there is no further filter-
ing. For the green channel, there are 366 slice signals an
none are filtered out by the thresholdt53. Grouping yields
88 spots and the thresholdw(S)53 reduces this to 71~three
hidden!. In this case, no spots are removed because they a
too large or cross channels. Hence, the final ratio is469/71
56.6. This estimate is below the manually counted ratio of
10. The problem appears to be too few slices. In fact, when
the same samples are examined using 15 slices, the algorith
gives a ratio of 9.5.
d

-

-

e

The results from five other stacks are given in Table 1. T
columns give the specimen, FISH probes, spot counts fo
by the algorithm, the ratios corresponding to the algorith
spot counts, and the ratios from manual counting. The ab
viations for the FISH probes are:AR5androgenreceptor,
Xcen5X centromere,Her25Her-2 gene, 17cen517 cen-
tromere, and 17q23 is the chromosome location of the He
gene.

4 Simulation Software
To study problems such as the number of slices required
good estimation, we have built simulation software for t
model of Eq.~1! under the assumption that the background
flat. This assumption means that the top-hat transform
performed well, since the top-hat transform performs a lo
thresholding to eliminate background effects. In practice,
top-hat transform has worked very well, so that this assum
tion is warranted. The simulation is in the framework of t
MATLAB -based graphical user interface~GUI!. It takes a geo-
metrically simple form of Eq.~1! in which the spots are in-
tensity functions defined on three-dimensional balls distr
uted in a 3D cube of dimensionsN3M3H. In effect, we are
dealing with a four-dimensional image. Each ball has a brig
ness functiona(x,y,z), with the maximum intensity at the
center and the intensity falling radially to the outside. T
GUI allows the visualization of the balls as well as their 2
projections onto slices, which themselves appear as ordin
images. The dynamic interface provides the manipulation
various parameters, such as the box size, number of balls,
radii, and intensity functions. It also allows one to choose
desired number of slices of the modeled four-dimensio
~4D! image, along with storage of slices and data deriv
from each slice. The GUI has many graphical tools, includ
displaying and printing data in the form of 2D and 3D image
plotting histograms, and displaying density functions.

Two distributions must be specified for the random mod
A number k of balls is selected, and the ball locations a
uniformly distributed in the box. An interval@1,R# is set for
ball radii. The radii are beta distributed in the interval, and t
chosen beta distributionB(a r ,b r) can be displayed. The de
fault beta distribution is the uniform distribution over the in
terval. Once a ball has been chosen, a radial intensity func
must be defined over the ball. As presently constructed, th
intensity functions are symmetric beta densities, and
maximum intensity~at the center of a ball! satisfies a beta
distributionB(a i ,b i).
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 119
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Fig. 12 Random 4D ball of radius 12.
ox

t
e

Once a set of balls is generated according to the random
model, a numbern of desired slices is chosen, a set of equa-
tions describing model geometry is automatically solved, and
the slices are displayed~and stored!. The morphological spot-
counting algorithm is applied to the model by applying it to
the slices. The GUI allows the number of slices to be changed
Figure 12 shows the rendering of an intensity ball and a slice
of the ball.
120 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
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To illustrate the random model, we use 128 balls in the b
5123640364. The radii interval is@1, 16# and the radii pos-
sess a beta distribution witha r51.5 andb r54.0.The inten-
sity interval is @0, 255# and the intensity distribution is se
with a i55.0 and b i52.5. Figure 13 shows the balls in th
box, absent their intensity functions~which, as shown in Fig-
ure 12, can be seen quite well on the monitor!. Using 22
Fig. 13 128 random balls.



Morphological Spot Counting from Stacked Images . . .
Fig. 14 Error of counting of 128 balls.
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slices, a total of 312 slice signals result. With the thresholdt
52, the algorithm gives the correct number of spots, 128~11
hidden!. If we use less than 22 slices, the algorithm does no
perform as well for the model with the given settings. Forn
,22, the sampling rate~number of slices! is too low. Forn
>22, the algorithm does very well, with at most two errors
for 22<n<40, the range tested. The error curve, with the
percentage error as a function of the number of slices i
shown in Figure 14.

Besides the effect of the number of slices, the model can
be used to check many other effects on the algorithm. Th
model can have both spots and noise, and the distributions o
these can be varied to check the effects of model paramete
on separating spots from noise. The ball locations can b
made nonuniform, in particular, they can be made to cluster t
check the effect of the algorithm on clustered spots. The spot
can be made smaller or larger, and dimmer or brighter. More
peaked or flatter intensity functions can be studied. The mode
provides a toolbox to study the spot counting algorithm, or
derivatives of the algorithm that might be developed in the
future for different imaging environments.

5 Conclusion
The algorithm proposed herein provides global spot counting
in stacked three-dimensional slice FISH images without the
necessity of nuclei segmentation. It has been designed to wo
in complex backgrounds, when there are agglomerated nucle
and in the presence of irregular and substantial illumination
gradients.

Filters are employed to remove noise and these work bes
when the spots are not too small. In the extreme, it is impos
sible to separate spots from noise if spots consist of only
single pixel. When authentic spots are large, it is easier to
f
s

l

k
i,

t

segment them and there is less chance they will be confu
with noise. Thus, centromeric probes tend to produce m
accurate results than those that attach to unique DNA
quences. Imaging at sufficient resolution and using a su
cient number of slices to discriminate the sequence pro
from noise alleviates this problem.

Except for parameter setting the algorithm is fully aut
mated. In practice, parametric settings are stable for a con
tent imaging environment, and for fixed parameters the res
have been robust relative to modest changes in imaging e
ronment. The salient situation in which the algorithm is se
sitive to parametric settings is when there is large amplifi
tion, say, in the neighborhood of 10–1. At that point, there
many tight clusters in which the spots are very small a
often contiguous. This can result in an undercount, and
algorithm can report a ratio as low as 5–1. Still, a high a
plification is detected. Moreover, the algorithm has a facil
that identifies clusters and reports their number, thereby a
ing the user to the cluster problem.
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