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Abstract. A strategy to escape from poor local minima by
switching merit functions during local optimization is
discussed. As a switching partner, we define a new auxiliary
merit function, which also tends to zero for ideal systems,
but differs significantly from traditional merit functions.
The examples include high-dimensional optimization
problems. © 2005 Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.2074827�

Subject terms: optical design; geometrical optics; optimization;
merit function; aberrations.

Paper 050610LR received Jul. 26, 2005; revised manuscript
received Aug. 26, 2005; accepted for publication Aug. 26, 2005;
appeared online Aug. 26, 2005; published online Oct. 24, 2005.

1 Introduction

The presence of multiple local minima during optimization
is one of the major challenges of optical system design. If
the number of optimization variables is not too large, recent
achievements in global optimization give the optical de-
signer very powerful tools to find good solutions.1–6 These
methods tend however to be very time-consuming if the
dimensionality of the optimization problem is large. In this
work we describe a computationally effective strategy
which, despite the fact that it cannot guarantee success, can
often improve the result of local optimizations that would
otherwise converge to poor local minima.

2 Modifying the Merit Function

One of the empirical strategies to find a new solution or to
escape from stagnation is to modify the conditions under
which local optimization algorithms operate. This can be
achieved by changing, for instance, some system param-
eters, some parameters of the local optimization algorithm,
or the merit function. Many computer programs allow an
easy switch between merit functions �MFs� based on trans-
verse and wavefront aberrations. Although occasionally
successful, this strategy is limited by the fact that when
system parameters change, the behavior of these two merit
functions is usually very similar. Experience shows that the
chances of success for finding a new solution increase
when the two MFs both tend to zero for ideal systems but
differ sufficiently from another.

If a standard merit function leads to an unsatisfactory
solution, an auxiliary merit function that could be tried out
0091-3286/2005/$22.00 © 2005 SPIE
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n the first stage of optimization can be defined as follows:
onsider an arbitrary ray �A�I� in Fig. 1� that has in the

mage space the direction cosines L and M with respect to
he x and y axes, respectively. The two components of the
ransverse aberration of the ray �defined with respect to the
hief ray� are denoted by �x and �y. The ray intersects in I�
he image plane and in A� a sphere centered in the intersec-
ion point I of the chief ray with the image plane. The
adius R of the sphere should be chosen larger, but still of
he same order of magnitude as the length II� of the trans-
erse aberration vector. The length R� of the segment A�I�
s then given by

�/R = a + �1 − b = a + 1 − b/2 − b2/8… , �1�

here we have used the abbreviations

= �L�x + M�y�/R �2�

nd

= ���x2 + �y2� − �L�x + M�y�2�/R2. �3�

ince for ideal imaging R� tends to R, the quantity R� /R
1, averaged over all rays, can be used as an auxiliary
erit function. �Since the chief ray is the reference, distor-

ion has no effect on the auxiliary MF.� The power series
xpression should be used in Eq. �1� instead of the exact
xpression in order to avoid abnormal termination when for
ertain rays that have large aberrations b becomes larger
han 1.

Starting the optimization with the auxiliary MF defined
bove and ending it with the standard MF required by the
pplication often leads to a different, sometimes better, so-
ution than when only the standard MF is used. In addition,
witching back and forth between the standard and the aux-
liary MF can be useful to escape from stagnation. Switch-
ng to the auxiliary MF in an optimization stage where the
tandard MF does not change any more may be sufficient
or escaping from stagnation but not for escaping from an
Fig. 1 Definition of the auxiliary merit function.
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unsatisfactory solution. To maximize the chances of suc-
cess for obtaining a different solution, optimization with
the auxiliary MF should be started at a poor configuration
for which the value of the standard MF is high enough.
Often, the initial configuration used for standard optimiza-
tion is adequate. The optimization can then take a path in
the variable space that differs sufficiently from the one in
the case of the standard MF.

3 Results

We have implemented the auxiliary MF as a user-defined
merit function in the optical design program CODE V. Fig-
ure 2 shows the evolution of the auxiliary MF as well as
that of the default MFs of CODE V, root mean square
�RMS� spot size and RMS wavefront, during an optimiza-
tion driven by the auxiliary MF. It can be observed that,

Fig. 2 The evolution during optimization of the auxiliary MF �thick
line�, and of the merit functions based on transverse aberration �thin
line� and wavefront aberration �dashed line�. The auxiliary merit
function is defined in such a way that the difference between it and
the transverse aberration is much larger than the difference be-
tween the transverse and the wavefront aberration.

Fig. 3 Two different solutions for several simple optimization prob-
lems. First row: triplet with variable curvatures; second row: triplet
with variable curvatures and air spaces; third row: system with nine
variable curvatures and ten variable thicknesses. Starting configu-
rations are shown in the first column, solutions obtained with the
default RMS spot size MF in the second column, and solutions ob-
tained after the two-step optimization �auxiliary+default� in the last

column. The values of both MFs are also given. v
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hile the auxiliary MF always decreases, the other two
Fs actually increase beyond point A. Moreover, the RMS

pot size and RMS wavefront appear to be strongly corre-
ated, i.e., they increase or decrease at the same time. In
everal other tests we have found that the behavior of the
ransverse aberration along trajectories in the variable space
s much stronger correlated with that of the wavefront than
ith that of the auxiliary MF. Therefore, the auxiliary MF

s a more successful switch partner for RMS spot size than
MS wavefront.

Several examples where the use of the auxiliary MF has
oved the local optimization into the basin of attraction of
new minimum of a standard MF are shown in Figs. 3–5.

ig. 4 Two different solutions in the optimization of a wide-angle
bjective with 17 variable curvatures and 17 variable thicknesses: a�
tarting configuration, b� the solution obtained with default RMS spot
ize MF, and c� the solution obtained after the two-step optimization.

ig. 5 Two different solutions in the optimization of a lithographic
bjective with 41 variable curvatures and 42 variable thicknesses: a�
tarting configuration, b� the solution obtained with the default RMS
avefront MF, and c� the solution obtained after the two-step opti-
ization. The part where the systems differ most is encircled. The
alues of the worst Strehl ratio over the field are also given.
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In the examples shown in Figs. 3 and 4 the default RMS
spot size of CODE V after the two-step optimization
�auxiliary+default� is lower than after optimization with
the default MF only. In the intermediate stage after optimi-
zation with the auxiliary MF �not shown in Figs. 3 and 4�
the solutions already have almost the same shape as that
shown after the final reoptimization with the default MF.

For complex systems with a large number of variables,
computational efficiency becomes extremely important in
the search for new solutions. Since the auxiliary MF uses
only standard data for the rays to be traced �L, M, �x, �y� it
is computationally efficient. A new local minimum obtained
with our method in an optimization problem with 83 vari-
ables is shown in Fig. 5. For this lithographic lens, distor-
tion control has also been included. The new two-stage so-
lution may be interesting even when, as in the example
shown in Fig. 5, it has a higher MF than the one obtained
directly with the standard MF. Sometimes, the new solution
differs sufficiently from the known ones, and, taken as a
starting system for other design techniques, it can lead to
unexpected design forms.

4 Conclusion

In this paper we have defined a new type of merit function
that differs significantly from the known ones. If the use of

a standard merit function leads to an unsatisfactory result

Optical Engineering 100501-3
poor local minimum or stagnation�, switching between the
ew and the standard merit function can lead to escape.
ven if success cannot be guaranteed, the switching can be

apidly tried out in design problems such as complex sys-
ems with many optimization variables where global opti-
ization methods are too slow or inapplicable for other

easons. The new merit function can be easily implemented
n existing optical software.
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