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Abstract. Contrast-detail analysis is used to evaluate the
imaging performance of diffuse optical fluorescence to-
mography �DOFT�, characterizing spatial resolution limits,
signal-to-noise limits, and the trade-off between object
contrast and size. Reconstructed images of fluorescence
yield from simulated noisy data were used to determine
the contrast-to-noise ratio �CNR�. A threshold of CNR=3
was used to approximate a lowest acceptable noise level
in the image, as a surrogate measure for human detection
of objects. For objects 0.5 cm inside the edge of a simu-
lated tissue region, the smallest diameter that met this cri-
teria was approximately 1.7 mm, regardless of contrast
level, and test field diameter had little impact on this limit.
Object depth had substantial impact on object CNR, lead-
ing to a limit of 4 mm for objects near the center of a
51-mm test field and 8.5 mm for an 86-mm test field.
Similarly, large objects near the edge of both test fields
required a minimum contrast of 50% to achieve accept-
able image CNR. The minimum contrast for large, cen-
tered objects ranged between 50% and 100%. Contrast-
detail analysis using human detection of lower contrast
limits provides fundamentally important information
about the performance of reconstruction algorithms, and
can be used to compare imaging performance of different
systems. © 2005 Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.2114727�
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Diffuse optical fluorescence tomography �DOFT� is an
emerging technology to image fluorophore spatial distribu-
tions in deep tissues or other structures that are dominated by
elastic scattering. The modality involves both a complex the-
oretical framework1–4 as well as advanced experimental
systems.5–7 Several studies have shown evidence of successful
fluorescence tomography in both phantom and animal
models.8 Case examples have been presented to illustrate the
accuracy and precision of select images, but few studies have
addressed the limits of imaging performance in a systematic
manner, following the conventions of standard medical imag-

*
Tel: 603-646-2230; E-mail: scott.c.davis@dartmouth.edu

Journal of Biomedical Optics 050501-
ing practice. Graves et al. examined the limits of detectable
contrast for a particular sized object and the spatial resolution
limits for a particular contrast level for their system
configuration.8 The natural extension of this work is to fully
consider the known trade-off between an object’s size and
contrast, in terms of detectability. Contrast-detail analysis can
be used to systematically define three imaging performance
regimes; a spatial-resolution-limited regime, a signal-to-noise
�SNR�-limited regime, and a transitional regime that describes
the trade-off between object size and contrast. In this letter, an
optimized DOFT reconstruction algorithm is evaluated in the
context of size-contrast analysis, and the expected limits of
image recovery are discussed.

Contrast-detail analysis is commonly used to determine
the performance of a medical imaging system9–11 and has
been previously adapted to near-infrared �NIR� diffuse
tomography.12,13 Such performance measurements seek to de-
termine the contrast thresholds for an imaging system, provid-
ing quality assurance, optimization, and intersystem compari-
sons. Determining the detection threshold for a given range of
object diameters can generate limits on minimum detectable
object size and contrast.

The diffuse nature of NIR photon propagation in biological
tissue is the foundation of the model system used. In this
regime, the initial excitation source and the fluorescence
emission photon field can be described by a system of coupled
diffusion equations, as presented in Ref. 1. The imaging algo-
rithm used here incorporates a finite element solution of these
coupled equations, and the inverse problem is solved itera-
tively for the spatial distribution of fluorescence yield, ��af,
where � is the fluorescence quantum yield and �af is the
fluorophores absorption at the excitation wavelength.

Simulated data was generated by solving the model system
using typical tissue optical property parameters of �a

=0.01 mm−1 and �s�=1.0 mm−1, and extracting the boundary
data at each simulated detector position. To compare the in-
fluence of domain size on contrast-detail characteristics, two
circular test fields were used; one 51 mm in diameter and the
other 86 mm in diameter. The smaller test field approximates
a domain expected to be encountered in small animal imaging
and the 86-mm test field mimics larger imaging fields such as
a human breast. Each test field was simulated as a 10,000-
node circular mesh circumscribed by 16 source/detector fiber
positions and used to generate 240 data points, matching our
experimental fluorescence tomography design. The system is
similar to our automated tomography system currently in
clinical trials.14 Random noise was added to each transmission
data point with 1% mean error.

Image reconstruction was performed with a nonlinear
Newton-Raphson type algorithm, which was stopped when
the projection error changed by less than 2% between itera-
tions. Intrinsic optical properties �ax, �am, �sx� , and �sm� were
held constant, as were the fluorophore lifetime � and quantum
yield �. The algorithm recovered the fluorescence yield only,
��af, as a best-case scenario for how accurately the images
can be formed. The homogeneous background fluorescence
yield, ��af =0.0001 mm−1, was used as an initial estimate for
the iterative algorithm. Figure 1 shows an example of a re-
constructed image and compares the estimated property val-
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ues with the true values for an object near the edge of the
51-mm phantom. The regularization parameter was selected
empirically and weighted at each iteration by the maximum of
the diagonal of JJt, where J is the Jacobian matrix �240
�900�. The algorithm in this example converged after 12
iterations.

The contrast parameter, fluorophore absorption �af, was
varied for a single object, or region of interest �ROI�, while
the background fluorophore absorption was held constant at
0.001 mm−1. Contrast was calculated as

contrast = ��af
true�ROI − �af

true�background�/�af
true�background, �1�

where the absorption coefficient values were the true values
used to simulate the data. Images were recovered for each
contrast and test object diameter combination. For both test
fields, 51 mm and 86 mm, these calculations were repeated
for two different object positions, one near the edge of the
phantom �object edge 5 mm from the boundary�, and one near
the center �object center 2 mm from the test field center�. At
least 2,000 images �similar to the image shown in Fig. 1� for
each of the four test cases were used in the analysis.

Contrast-detail studies for clinical systems often use
trained readers to determine the threshold for detectable con-
trast and size. In the current study, CNR is specified as a
surrogate parameter of detectability, which provides an objec-
tive threshold measure. CNR was calculated directly from the
reconstructed images following the approach outlined in Song
et al.13

CNR =
�af

ROI − �af
background

�wROI�ROI
2 − wbackground�background

2 �1/2 , �2�

where wROI and wbackground are weighting factors compensat-
ing for the relative area of the ROI and the background, as a
fraction of the total test field area. The values �ROI and
�background are the standard deviations in the ROI and back-
ground regions of the reconstructed image, respectively. The
ROI size and location are assumed known, which is common
for contrast-detail analyses where the objective is to deter-
mine system performance for a known test field.

CNR is plotted as a function of both ROI diameter and true
contrast for an object just off-center in the 51-mm test field
edge �Fig. 2�. Similar plots were generated for the other three
cases examined. By specifying a minimum CNR value re-
quired to “detect” an object, the contrast threshold for visibil-

Fig. 1 Typical reconstructed image �a� in the 51-mm test field show-
ing the value of ��af for simulated data with 1% random noise and �
set to 0.1. Reconstructed and actual values are compared �b� along
the vertical transect through the object superimposed on the image.
ity is determined for each object diameter. The choice of a
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minimum CNR value is somewhat arbitrary since it represents
the threshold of object detection in the images. Evaluating
human detection of objects is more complicated than CNR
analysis and intra- and interhuman observer variability can
result in a range of CNR threshold values. However, empirical
observations indicate human detection thresholds are reason-
ably well approximated with CNR=3, which is the value
used in the current analysis.15

The contrast-detail results for a threshold limit of CNR
=3 are plotted in Fig. 3 for the two test fields and object
positions. Objects that are recovered with greater than CNR
=3 have contrast-detail characteristics that are above and to
the right of the line shown in Fig. 3, while those below and to
the left are too small or have too little contrast to be recovered
with CNR�3 in the image. Accordingly, the limiting diam-
eter for an object near the edge of the field is approximately

Fig. 2 Calculated CNR ratio for a range of object diameters and con-
trast levels. In this case, the object is near the test field center �2 mm
from the center of a 51-mm phantom�. In this analysis, objects that are
reconstructed with a CNR value below 3.0 are thought to be unde-
tectable by human perception, illustrating that there are regions of
size and contrast that are not feasible to image with the algorithm.

Fig. 3 Contrast-detail curve showing the CNR of 3 to approximate
limits of detectable contrast and diameter for two anomaly positions
in 51-mm �dashed lines� and 86-mm �solid lines� diameter test fields.
In this analysis, objects above and to the right of each line are in the

region where CNR�3 and “detection” is considered possible.
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1.7 mm for both test field diameters. There seems to be little
influence of test field diameter on CNR limits for high-
contrast objects near the edge. Above an object contrast of
about 8, the continued decrease in the minimum size for
CNR=3 is very small with increasing contrast, indicating that
this size is a fundamental limit of the imaging algorithm for
this geometry. It does not appear that the fundamental limits
have been reached for objects near the center of either test
field for the contrast range studied and expected to be encoun-
tered experimentally. Furthermore, CNR value of objects near
the center is strongly influenced by the test field size. For a
51-mm test object, the limiting diameter is approximately
4 mm, for the maximum object contrast �10�. This increases
to approximately 8.5 mm for the larger test field. These re-
sults indicate the dramatic decrease in sensitivity for objects
deeper in the test field.

The horizontal asymptotes of these lines represent the SNR
limitations of the imaging system. These correspond to the
low-contrast large-detail portion of the curve where small
changes in contrast result in large changes in the diameter for
the CNR=3 threshold. For objects near the phantom edge, the
minimum contrast for CNR=3 is less than 0.5, though this
limit is reached for smaller object sizes in the 51-mm test
field, indicating slightly better imaging performance. This
same contrast limit applies to objects near the center of the
smaller test field, though again, it is not reached until the
object diameter is larger than on the edge. Due to the poor
sensitivity to objects in the center of the 86-mm test field,
SNR limits are outside of the test range. The SNR limits de-
termined in this study will likely vary with the noise level in
the system.

In addition to fundamental limits of the imaging system,
the contrast-detail curve provides information on the trade-off
between object size and contrast. This “transition” zone lies
between the vertical �spatial-resolution-limited� and horizon-
tal �SNR-limited� asymptotes and defines system imaging
performance for objects mostly likely to be encountered
experimentally.

Algorithms based on the photon migration equation are
considered to be more sensitive closer to the source/detectors
and this nonlinear sensitivity is manifested as a nonuniform
image response across the field of view. The contrast-detail
curves shown in Fig. 3 demonstrate the significance of this
effect. For the smaller test field, the minimum object diameter
for the best-case high-contrast regime differs by 150% be-
tween an object at the edge and one centered in the test field.
In a larger field, that difference increases to 360%. Thus, ob-
jects closer to the center will need to be larger in order to be
detected. Further contrast-detail studies may be used to inves-
tigate image reconstruction parameters in addition to object
position, such as adaptive meshing techniques16 and the effect
of intrinsic optical properties.

The results provide a best-case analysis for imaging tissue
containing fluorophore in vivo with this algorithm. A number
of factors will increase the contrast and size required to detect
an anomaly in an experimental or clinical setting, thus shifting
the contrast-detail curves up and to the right, including:

1. reconstruction of unknown intrinsic optical properties;
2. heterogeneity of optical properties and fluorophore dis-

tribution;
3. excitation cross-talk in the fluorescence signal;
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4. higher experimental noise or model-mismatch; and
5. increased phantom size and/or intrinsic absorption.
Contrast-detail analyses may also be used to track imaging

performance as system improvements/adjustments are imple-
mented. Future work will explore some of the factors ex-
pected to degrade performance in practice, especially cases
where the intrinsic optical parameters are unknown. These
analyses may also be used to compare reconstruction tech-
niques now beginning to emerge within the research commu-
nity, thus offering an efficient and systematic approach to in-
tersystem comparison.
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