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Abstract. We report the application of the Laguerre deconvolution
technique �LDT� to the analysis of in-vivo time-resolved laser-induced
fluorescence spectroscopy �TR-LIFS� data and the diagnosis of athero-
sclerotic plaques. TR-LIFS measurements were obtained in vivo from
normal and atherosclerotic aortas �eight rabbits, 73 areas�, and sub-
sequently analyzed using LDT. Spectral and time-resolved features
were used to develop four classification algorithms: linear discrimi-
nant analysis �LDA�, stepwise LDA �SLDA�, principal component
analysis �PCA�, and artificial neural network �ANN�. Accurate decon-
volution of TR-LIFS in-vivo measurements from normal and athero-
sclerotic arteries was provided by LDT. The derived Laguerre expan-
sion coefficients reflected changes in the arterial biochemical
composition, and provided a means to discriminate lesions rich in
macrophages with high sensitivity ��85% � and specificity ��95% �.
Classification algorithms �SLDA and PCA� using a selected number of
features with maximum discriminating power provided the best per-
formance. This study demonstrates the potential of the LDT for in-vivo
tissue diagnosis, and specifically for the detection of macrophages
infiltration in atherosclerotic lesions, a key marker of plaque
vulnerability. © 2006 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Laser-induced fluorescence spectroscopy �LIFS� has been ex-
tensively explored as a technique for detecting biochemical
changes in tissue due to pathological conditions, including
cancer and atherosclerosis.1–8 A central task in the develop-
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ment of LIFS-based diagnosis systems is designing a compu-
tational framework for processing the fluorescence signal and
assessing the tissue composition. Such framework includes
algorithms for 1. identifying and extracting features from the
fluorescence signal that best reflect the tissue composition;
and 2. combining these fluorescence-derived features for tis-
sue classification. Ultimately, such algorithms are to be em-
bedded into the LIFS instrumentation to provide automated,
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real-time, and accurate diagnostic information to clinicians.
Most of the applications of LIFS to tissue diagnosis have

been developed for steady-state domain,2–7 where features re-
trieved from fluorescence emission spectrum are correlated to
tissue composition. Although the fluorescence spectrum pro-
vides a wealth of information about the tissue biochemistry,
the steady-state measurements are sensitive to intensity arti-
facts, tissue absorption and scattering distortion, and
excitation-collection geometry variation. In contrast, time-
resolved �TR� fluorescence measurements are related to the
submillisecond decay properties of the fluorophore lifetime
and are insensitive to intensity variations. Thus, TR measure-
ments are more robust and more suitable for clinical applica-
tions, where the presence of endogenous absorbers �i.e., he-
moglobin� and intensity artifacts �i.e., probe/tissue movement�
cannot be fully controlled.

Recently, we reported a new deconvolution method for the
analysis of TR-LIFS data, in which the intrinsic fluorescence
decay is estimated using a nonparametric expansion on an
orthonormal Laguerre basis.9 The Laguerre deconvolution
technique presents a number of advantages over conventional
multiexponential methods, including the linearization of the
fitting parameters and faster convergence, and the potential of
providing quantitative information about tissue biochemical
composition.9 In this study, the performance of the Laguerre
deconvolution is evaluated in TR-LIFS measurements taken
in vivo from rabbit aortas. In addition, the derived Laguerre
expansion coefficients are investigated as a new domain for
representing TR-LIFS data.

A number of classification algorithms have been tested for
steady-state LIFS-based tissue diagnosis. Principal component
analysis �PCA� and multivariate linear discriminant analysis
�LDA� have been applied in LIFS-guided angioplasty and de-
tection of cervical cancer.10,11 Artificial neural networks
�ANN� were designed to analyze autofluorescence of periph-
eral vascular tissue.12,13 More advanced methods, including
Bayesian and radial basis function networks and support vec-
tor machines, have been applied to the diagnosis of cervical
and nasopharyngeal carcinomas.14,15 On the contrary, very
few studies have explored classification algorithms for TR-
LIFS-based diagnosis. In this work, we present the application
of multivariate statistical methods to the analysis of TR-LIFS
data, and evaluate the potential of this approach for assessing
the biochemical composition of atherosclerotic plaques. Due
to the limited sample size available, this study focused on the
more elementary algorithms of LDA, PCA, and feed-forward
ANN.

Atherosclerotic plaque composition is an important predic-
tor for plaque rupture. Plaque rupture and subsequent throm-
bosis are the most frequent underlying cause of acute coro-
nary events and sudden death.16 Rupture typically occurs at
the lesion edges rich in mononuclear inflammatory cells,17–19

including macrophage/foam cells.20,21 Consequently, tech-
niques capable of detecting macrophages in vivo will be in-
strumental to assess the risk of plaque complication. Previous
studies have characterized the emission spectra of the main
fluorescence components of the arterial wall �elastin, and vari-
ous collagen and lipids types�.1 A few other studies have re-
ported the application of LIFS to the identification of plaque
disruption,22 detection of plaques with thin fibrous caps,23 and

1
discrimination of lipid-rich lesions. Nevertheless, to the best
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of our knowledge, the in-vivo detection of macrophages in
atherosclerosis using LIFS has not been reported.

In this study, a computational framework for TR-LIFS
based diagnosis was developed. Fluorescence measurements
were obtained in vivo from normal and atherosclerotic rabbit
aorta, and analyzed to evaluate: 1. the performance and ro-
bustness of the Laguerre deconvolution technique for in-vivo
applications; 2. the applicability of the Laguerre expansion
coefficients as features reflecting tissue composition; and 3.
the performance of several classification algorithms for the
diagnosis of atherosclerosis.

2 Methods
2.1 Animal Model and Experimental Procedure
Eight male New Zealand white rabbits �10 to 15 lbs body
weight� were included in this study. Each rabbit was fed a
high cholesterol diet for at least eight weeks prior to study.
The experimental procedure involved exposing the intimal lu-
minal surface of the rabbit aorta, and obtaining TR-LIFS mea-
surements from areas visually identified as either normal or
atherosclerotic. After spectroscopic investigations, the interro-
gated arterial segments were removed for histological analy-
sis. A detailed description of the animal model and experi-
mental protocol has been described in detail elsewhere.24,25

2.2 Time-Resolved Laser-Induced Fluorescence
Spectroscopy Instrumentation

The experiments were conducted with a TR-LIFS prototype
system, recently developed by our group and previously
described.26 Briefly, artery autofluorescence was induced with
a pulsed nitrogen laser �wavelength 337 nm, pulse width
700 ps�. Laser excitation output measured at the tip of the
probe was set at 2 �J /pulse.27 Excitation and collection were
performed via a bifurcated fiber optic probe. The collected
autofluorescence was dispersed by an imaging spectrometer/
monochromator, and detected with a gated multichannel plate
photomultiplier tube �rise time 180 ps�. The autofluorescence
was temporally resolved using a digital oscilloscope �band-
width 1 GHz, sampling rate 5 Gsamples/s� coupled to a pre-
amplifier �bandwidth 1.5 GHz�.

2.3 Time-Resolved Laser-Induced Fluorescence
Spectroscopy In-Vivo Measurements

TR-LIFS measurements were obtained with serial scanning of
the monochromator across the spectral range of 360 to
600 nm, in increments of 5 nm. The total acquisition time
across the scanned emission spectrum was about 37 s. After
acquisition of each time-resolved fluorescence spectrum, the
laser pulse temporal profile was measured at a wavelength
slightly below the excitation laser line. This profile was used
as the input signal �system response� in the deconvolution
algorithm to estimate the intrinsic fluorescence decays.

2.4 Histological Analysis
Following in-vivo TR-LIFS measurements, the aortic seg-
ments were removed, fixed, processed routinely, and evalu-
ated microscopically by two cardiovascular pathologists. Each
sample was characterized based on its overall histopathology

�normal versus atherosclerotic lesion�, intima thickness �thin
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versus thick�, and biochemical composition �collagen-rich
versus macrophage-rich�. A lesion was defined as thin if the
intima thickness was less than 50 �m, or as thick otherwise.
A collagen-rich lesion was defined as having collagen content
greater than 50% and macrophage content less than 20%. A
macrophage-rich lesion was defined as having macrophage
content larger than 20% and collagen content smaller than
50%. Overall, the following five categories were identified: 1.
normal artery �normal�, 2. thin collagen-rich lesion �thin-
collagen�, 3. thin macrophage-rich lesion �thin-mac�, 4. thick
collagen-rich lesion �thick-collagen�, and 5. thick
macrophage-rich lesion �thick-mac�.

2.5 Time-Resolved Laser-Induced Spectroscopy Data
Analysis

The arterial TR-LIFS measurements were processed using the
Laguerre deconvolution technique �LDT�. This nonparametric
method expands the intrinsic fluorescence decay or impulse
response function �FIRF� on the discrete time Laguerre
basis.9,28 The Laguerre functions �LF� form an orthonormal
basis with a built-in exponential term that makes them suit-
able for modeling physical systems with asymptotically expo-
nential relaxation dynamics.29 Due to the LF’s orthogonality,
LDT can reconstruct FIRFs of arbitrary form, providing a
unique and complete expansion of the decay function.

In the context of time-domain TR-LIFS, the measured
fluorescence intensity decay data y�n� can be expressed as the
�discrete� convolution of the FIRF h�n� with the system re-
sponse x�n�9,30:

y�n� = T · �
m=0

K−1

h�m�x�n − m�, n = 0, . . . ,K − 1. �1�

The parameter K in Eq. �1� is the number of data samples,
while T is the sampling interval. LDT uses the orthonormal
set of discrete time LF bj

��n� to expand the FIRF:

h�n� = �
j=0

L−1

cjbj
��n� . �2�

In Eq. �2�, cj are the unknown Laguerre expansion coeffi-
cients �LEC�, bj

��n� denotes the j’th order orthonormal dis-
crete time LF, and L is the number of LFs used to expand the
FIRF.9,29 The LF basis is defined as:

bj
��n� = ��n−j�/2�1 − ��1/2�

k=0

j

�− 1�k�n

k
�� j

k
�� j−k�1 − ��k,

n � 0. �3�

The Laguerre parameter �0���1� determines the rate of
exponential decline of the LF. Thus, FIRF with a longer life-
time will require a larger � value for efficient
representation.9,29 By inserting Eq. �2� into Eq. �1�, the con-
volution Eq. �1� becomes:

y�n� = �
L−1

cj� j�n� ,

j=0
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� j�n� = T�
m=0

K−1

bj
��m�x�n − m� . �4�

In Eq. �4�, � j�n� are the discrete time convolutions of the
system response x�n� with the LF of order j. Finally, the
unknown expansion coefficients can be estimated by the gen-
eralized linear least-square solution of Eq. �4� using the mea-
sured discrete signals y�n� and � j�n�. The number of Laguerre
functions and the � value were chosen to minimize the nor-
malized mean square error �NMSE� and secure the random-
ness in the estimation residuals. To assure this, L was changed
from 1 to 6 and � from 0.6 to 0.9, and LDT was applied using
each combination of these parameters to all the measured
data. NMSE and the 95% confidence interval for random in-
dependent residuals were inspected for each L-� combination
in all datasets. Optimal values of L=4 Laguerre functions and
�=0.88 were determined.

Once the FIRF was estimated for each emission wave-
length, the steady-state spectrum �I�� was computed by inte-
grating each h�n� as a function of time. To characterize the
temporal dynamics of each fluorescence decay, three sets of
parameters were estimated: 1. the average lifetime �� f−��,
computed as the interpolated time at which the FIRF decays
to 1/e of its maximum value; 2. the time constants ��1−� and
�2−�� and the relative amplitude �A1−�� from a biexponential
model of the FIRF; and 3. the normalized value of the corre-
sponding LECs �cj−� , j=0, . . . ,L−1�. Therefore, a complete
characterization of the fluorescence TR spectrum for each in-
vestigated aortic segment was given by the variation of these
spectroscopic parameters �I� ,� f−� ,�1−� ,�2−� ,A1−�, and cj−��
as a function of emission wavelength �E.

2.6 Statistical Analysis
A univariate statistical analysis �one-way analysis of variance,
ANOVA� was used to compare the parameters
�I� ,� f−� ,�1−� ,�2−� ,A1−�, and cj−�� at specific �E’s for each
category of aortic segments as defined by histopathology. A
post-hoc comparison test �Student-Newman-Keuls� was used
to complement the results of the ANOVA test. A p-value of
�0.05 was assumed to indicate statistical significance. Re-
sults of this statistical analysis provided a semiempirical
evaluation of those spectroscopic parameters likely to provide
discrimination among the different histopathological catego-
ries. All the results are presented as mean ± standard error
�SE�.

2.7 Classification Methods
Three linear classification algorithms were investigated: linear
discriminant analysis �LDA�,10,31 stepwise linear discriminant
analysis �SLDA�, and principal component analysis
�PCA�.10,11,32 A nonlinear classifier, the feed-forward neural
network �FFNN�, was also evaluated.12,13,31 Based on the sta-
tistical analysis described before, three different sets of TR-
LIFS parameters were selected and defined as: 1. spectral �SP:
ratios of I��, 2. TR Laguerre �LAG: values/ratios of cj−��, and
3. TR biexponential �BEXP: values of �1−� ,�2−� ,A1−�� fea-
tures. Based on the histopathological categories defined in the
previous sections, two classification criteria were applied.

Classification 1 was designed to discriminate normal, thick-
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collagen, and thick-mac specimens. Classification 2 was de-
signed to distinguish normal, thin-collagen, and thin-mac
specimens. These two criteria were used to evaluate the per-
formance of the different feature types and classification
algorithms.

2.7.1 Linear classification algorithm
Given an initial feature space, linear discriminant analysis
�LDA�10,31 aims to find an optimal transformation to map the

Fig. 1 Representative time-resolved fluorescence spectra, measured a
�NErr� and autocorrelation function �ACorr� for: �a� and �b� normal, �c
original feature vectors into a lower-dimensional space that
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best discriminates among classes. Such an optimal transfor-
mation minimizes the within-class statistical distance and si-
multaneously maximizes the between-class statistical dis-
tance. The resulting mapping is defined by a set of
discriminant functions, one for every dimension in the opti-
mal space. In this study, the discriminant functions were esti-
mated from the training dataset, and classification of new data
was performed based on the minimum distance of the new
data sample to the centroids of each group in the discriminant

imated decays �at 390 nm�, and the corresponding normalized error
�d� thin-mac, �e� and �f� thick-collagen, and �g� and �h� thick-mac.
nd est
space. One disadvantage with LDA, however, is that features
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not relevant for classification can be unnecessarily included in
the discriminant functions.

To overcome this limitation, LDA can be applied in a step-
wise manner �stepwise LDA �SLDA�	.10,31 In SLDA, the fea-
ture with the maximum discriminating power is first selected.
This feature is then combined with the remaining features,
one at a time, to find the combination with largest discrimi-
nating power. The process is continued until the addition of a
new feature does not increase the discriminating power. It
should be noted that SLDA does not warranty that the final
feature combination would be superior to other possible ones.
There are several available criteria for entering or removing
new variables at each step: Wilks’ lambda, unexplained vari-
ance, Mahalanobis’ distance, and smallest F ratio. In this
study, the Mahalanobis’ distance criterion with a partial F test
��=0.15� was adopted to sequentially incorporate features.

Principal component analysis �PCA�10,11,32 also transforms
the original feature space into a smaller set of linear combi-
nations of the original variables. Although PCA may not pro-
vide direct insight into the biochemical basis of tissue fluo-
rescence, this method condenses the spectroscopic
information into a few manageable components, with minimal
information loss. In PCA, the eigenvectors and the eigenval-
ues from the covariance matrix of the feature vector are esti-
mated. By ordering the eigenvectors in descending order of
the eigenvalues �largest first�, one can create an ordered or-
thogonal basis with the first eigenvector having the direction
of largest variance of the data. In this way, we can find direc-
tions in which the feature set has the most significant amounts
of information. Projection of the original feature vectors into
each of these directions will define a new independent vari-
able called a principal component or factor. Since each factor
accounts for a certain percentage of the variation in the origi-
nal features, only a subset of factors accounting for most of
the variation is considered for classification. In this study,
PCA was applied to the original feature space, and LDA
was applied to the reduced space defined by the principal
components.

2.7.2 Nonlinear classification algorithm
Artificial neural networks have been successfully used in
many classification problems.12,13,31 The most commonly used
neural network architecture is the feed-forward neural net-
work �FFNN� with an input layer, an output layer, and mul-
tiple hidden layers. Under FFNN configuration, each layer is
connected only to the subsequent layer by variable weights,
which are adjusted to minimize a cost function �classification
accuracy� using an optimization algorithm. In this study, a
FFNN with a single hidden layer and a Levenberg-Marquardt
optimization approach31 was developed.

2.7.3 Classification performance analysis
Estimation of the expected performance of a classifier is an
important yet difficult problem in pattern recognition. A num-
ber of testing procedures have been proposed and are widely
used. In the holdout method, a number of the original samples
are withheld from the design process. This provides an inde-
pendent test set, but drastically reduces the size of the training
set. In the resubstitution method, the classifier is tested on the

original training samples. This maintains the size of the train-
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ing set, but ignores the independence issue, generating a dan-
gerously optimistic performance estimate. The leave-one-out
method is designed to alleviate these difficulties. In the leave-
one-out method, one sample is excluded from the database
and the classifier is trained with the remaining samples. It
avoids drastically dividing the available sample set into train-
ing and test, while maintaining independence between them.
Thus, the procedure utilizes all available samples more effi-
ciently, and produces a conservative error estimate.

One of the goals of the present study was to investigate
whether spectral information alone or a combination of spec-
tral and time-resolved information were needed for lesion
classification. Therefore, three types of spectroscopic feature
were independently used to develop each of the classification
algorithms described before: 1. SP alone, 2. a combination of
SP-LAG, and 3. a combination of SP-BEXP. The classifica-
tion results were tested using the leave-one-out approach. Val-
ues of sensitivity �SE� and specificity �SP� were reported for
each combination of classifier �LDA, SLDA, PCA, FFNN�
and feature type �SP, SP-LAG, SP-BEXP�.

3 Results
3.1 Histology
A total of 73 sections of aorta �eight rabbits� were investigated
in vivo. Out of these, 26 sections corresponded to normal
aorta and 47 sections to atherosclerotic lesions. The lesions
were divided as thin-collagen �N=10�, thin-mac �N=7�,
thick-collagen �N=16�, and thick-mac �N=14�.

3.2 Time-Resolved Fluorescence Spectra
Representative time-resolved fluorescence spectra are shown
in Fig. 1 �left panels�. All spectra presented a main peak at

385 to 395 nm. A secondary peak was observed at 
440 to
450 nm. The peak intensity values of the latter were found as
being tissue-type dependent, as they were the corresponding
decay rate. The corresponding measured and estimated decays
at 390 nm �right panels� and the normalized error �NErr� as
retrieved by LDT are shown in Fig. 1 �right panels�. NErr
values were �5% of the peak fluorescence amplitude and
randomly distributed around zero. The autocorrelation func-
tion of the residuals did not present low-frequency oscillations
characteristic of nonrandom residuals, and was mostly con-
tained within the 95% confidence interval for random inde-
pendent time series �dotted lines�. These observations indicate
excellent fit between the measured and estimated fluorescence
decays, showing that the fluorescence FIRFs were properly
estimated using LDT.

3.3 Spectroscopic Parameters
The group values �mean ± SE� of the spectroscopic param-
eters along the emission wavelengths are depicted in Fig. 2.

3.3.1 Steady-state spectral parameters
The normalized steady-state spectrum �Fig. 2�a�	 presented a
relatively broadband emission �a main peak at 
385 to
395 nm and a second peak at 
440 to 450 nm� and a valley
at 415 nm. The valley corresponds to the hemoglobin absorp-
tion as previously reported.8 The broadest band emission

spectrum corresponded to the normal and thin-collagen
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samples, with the highest peak at 
450 nm �
80% of the
main peak�. The emission intensity of the thin-mac subgroup
at 440 nm averaged 
65% of the main peak intensity. The
emission of the thick lesions was narrower, presenting the
lowest intensities values at 
450 nm �
50% of the main
peak�. These results suggest that the relative intensity at

450 nm may provide information for discriminating normal
and thin-collagen lesions from thin-mac and thick lesions.

3.3.2 Conventional time-resolved parameters
The average radiative lifetime values �Fig. 2�b�	 diminished
gradually with the increasing �E ��400 nm�. The lifetime de-
crease rate was found to be tissue-type dependent. The thick-
mac subgroup was characterized by the shortest lifetime val-
ues and the steepest decrease of lifetime with increasing �E. It
was followed by the thin-mac and thick-collagen samples, and
by the normal and thin-collagen samples. These results indi-
cate that the lifetime values at longer wavelengths
��440 nm� may provide information for discriminating nor-
mal and thin-collagen lesions from thin-mac and thick-

Fig. 2 Group values �mean ± SE� of the spectroscopic parameters al
Laguerre coefficients �c� LEC-0 and �d� LEC-1.
collagen, and these from thick-mac lesions.

Journal of Biomedical Optics 021004-
The biexponential time constant �1 also decreased with
increasing �E �Fig. 2�c�, top panel	. Values of �1 at shorter
wavelengths �below 400 nm� provided information for dis-
criminating normal and thin-collagen from thin-mac and thick
samples. The time constant �2 presented very similar distribu-
tion to �1 �Fig. 2�c�, bottom panel	. However, between 
420
and 450 nm, �2 values from the thick-mac samples presented
shorter values than those from the other groups. The relative
amplitude A1 at wavelengths between 390 and 450 nm pro-
vided information for discriminating normal and thin-collagen
samples from thin-mac and thick-collagen samples, and thick-
mac samples from the other groups �Fig. 2�d�	. Estimation of
�2 and A1 became less accurate at wavelengths above
530 nm, as is evident by the large error bars.

3.3.3 Laguerre expansion coefficients
The Laguerre expansion coefficient of zero order �LEC-0�
presented a similar distribution to that of average lifetimes
�Fig. 2�e�	. The LEC-1 coefficients �Fig. 2�f�	 revealed oppo-
site trends to the LEC-0 coefficients, decreasing with �E until

e emission wavelengths: �a� normalized spectrum, �b� lifetimes, and
ong th
450 nm, before increasing afterward. The minimal variation
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of LEC-1 with wavelength was observed for the thick-mac
samples. Both LEC-0 and LEC-1 above 450 nm provided in-
formation for discriminating normal and thin-collagen
samples from thin-mac and thick-collagen lesions, and these
from thick-mac lesions.

3.4 Statistical Analysis
The results of the statistical analysis �mean ± SE� of the main
spectroscopic parameters providing discriminant information
among distinct types of tissues are depicted in Fig. 3. The
statistical analysis indicated that spectral parameters such as
the ratios of intensities at a few emission wavelengths �360,
390, and 450 nm� provided information for discriminating
normal and thin-collagen lesions from thin-mac and thick le-
sions. For example, the ratios of emission intensities at
450 nm over 360 nm �I450/ I360� from the normal and thin-
collagen groups were both significantly larger than those from
the other groups. More interesting, the ratio I450/ I360 from the

Fig. 3 Results of the statistical analysis �mean ± SE� of the main
thick lesions was significantly smaller than those from the
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other tissue types �Fig. 3�a�	. The opposite was found for
I390/ I450 �Fig. 3�b�	.

The statistical analysis also indicates that time-resolved pa-
rameters such as the Laguerre expansion coefficients at a few
emission wavelengths �390, 450, and 500 nm� and their ratios
provide information to discriminate the tissues in question.
The LEC-1 at 450 nm �LEC−1450� from the thick-mac group
was significantly larger than those from the other groups �Fig.
3�c�	. More interesting, the ratio of LEC−2500/LEC−2390
was significantly different for every group, except for the nor-
mal and thin-collagen samples �Fig. 3�d�	. The biexponential
parameters at 390 and 450 nm were also different among tis-
sue types. The �2 at 450 nm ��2−450� was significantly smaller
for the thick-mac lesions, relative to the collagen lesions �Fig.
3�e�	. The relative amplitude A1−450 was significantly smaller
for the normal and thin-collagen group, and larger for the
thick-mac group, with respect to the thin-mac and thick-
collagen lesions �Fig. 3�f�	. Table 1 summarizes the values of
the main spectral and time-resolved parameters used for clas-

al and time-resolved �Laguerre and bi-exponential� parameters.
spectr
sification.
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3.5 Classification
Classification 1 was designed to separate normal, thick-
collagen, and thick-mac subgroups. The classification results
are summarized in Table 2. Based on the statistical analysis, a
total of five SP, 14 LAG, and six BEXP features were selected
for developing the classification algorithms. LDA and FFNN
used the complete sets of features, while SLDA selected three
SP, eight LAG, and six BEXP features. In the PCA classifica-
tion, a total of five SP, six LAG, and six BEXP principal
components were used. Classification with only SP param-
eters discriminated normal from thick lesions, but not thick-
collagen from the thick-mac lesions. Classification with com-
bined SP and time-resolved features �either LAG or BEXP
parameters� discriminated the three groups from each other.
There was no significant difference in using the LAG or the
BEXP features in terms of classification performance �86.5
and 87.6%, respectively�. The comparison among the differ-
ent classification algorithms �Table 2 and Fig. 4�a�	 showed
that for our data, SLDA and PCA approaches provided the
best performance �86.7 and 86.3%, respectively�, followed by
LDA and FFNN �81.5 and 78.2%, respectively�.

Table 1 Representative set of spectroscopic parame

N-athero Thin-collagen

I450/ I360 1.51±0.05 1.55±0.04

I390/ I450 1.19±0.02 1.22±0.03

LEC−1450 0.024±0.003 0.026±0.005

LEC−2500/LEC−2390 1.24±0.01 1.28±0.01

�2−450 5.09±0.04 5.19±0.09

A1−450 0.65±0.004 0.65±0.003

Table 2 First classification results: norma

Feature Sample LDA

SE SP

Spectral Normal/thin 92.3 100

Thick-collagen 62.5 87.5

Thick-mac 64.3 80.9

Spectral
Laguerre

Normal/thin 92.3 96.7

Thick-collagen 81.3 87.5

Thick-mac 64.3 90.5

Spectral
Bi-Exp

Normal/thin 96.2 100

Thick-collagen 81.3 90.0

Thick-mac 71.4 90.5
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The classification based on SLDA provided the best per-
formance �92.9%�. Figures 4�b� through 4�d� depict samples
of the three representative groups and the corresponding
means in the space spanned by the two discriminant functions.
For the case of the SP-based classification �Fig. 4�b�	, the
normal samples were discriminated from the thick samples
�SE�90%, SP 100%�; however, the thick-collagen and thick-
mac samples were not classified correctly �SE�65% �. For
the case of the SP-LAG-based classification �Fig. 4�c�	, the
normal samples were also separated from the thick samples
�SE�96%, SP 100%�. More important, the thick-collagen
samples were also discriminated from the thick-mac samples
�SE�93%, SP�95%�. Similar results were observed for the
SP-BEXP-based classification �Fig. 4�d�	.

Classification 2 targeted the discrimination of normal, thin-
collagen, and thin—mac samples using the best-performed
SLDA and PCA algorithms. The classification results are sum-
marized in Table 3. The classification based on only SP pa-
rameters did not allow discrimination of any of the groups.
The classification using both SP and TR features �either LAG
or BEXP parameters� facilitated discrimination of most of the

t allows for tissue subgroup discrimination.

in-macrophage Thick-collagen Thick-macrophage

1.10±0.12 0.84±0.06 0.68±0.05

1.56±0.16 1.86±0.09 2.00±0.12

.049±0.005 0.049±0.007 0.081±0.009

1.40±0.03 1.47±0.02 1.57±0.04

5.09±0.03 5.18±0.09 4.81±0.12

0.69±0.009 0.69±0.007 0.71±0.004

ersus thick-collagen versus thick-mac.

SLDA PCA FFNN

SP SE SP SE SP

100 96.1 100 95.4 95.3

87.5 62.5 82.5 52.5 85.0

80.9 57.1 85.7 51.4 80.5

100 92.3 100 92.3 96.7

95.0 93.8 92.5 76.3 85.0

95.2 85.7 95.2 61.4 90.0

100 100 100 96.9 98.7

92.5 87.5 92.5 71.3 88.0

95.2 78.6 95.2 68.6 89.1
ters tha

Th

0

l/thin v

SE

92.3

62.5

64.3

96.2

93.8

85.7

100

87.5

78.6
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thin-mac samples �SE�85%, SP�94%�, but did not allow
discrimination of normal and thin-collagen samples from each
other. The classification performance based on LAG �67.5%�
was similar with that based on BEXP features �66.3%�.

As shown in Fig. 5�a�, the SLDA performed better than
PCA �69 and 62%, respectively�. The classification with the
SLDA algorithm is shown in Figs. 5�b�, 5�c�, and 5�d�. In the
case of SP-based classification �Fig. 5�b�	 none of the groups
were discriminated. While in the case of SP-LAG and SP-
BEXP �Figs. 5�c� and 5�d�	, the thin-mac samples were sepa-
rated from normal and thin-collagen samples. It is important
to note that only seven thin-mac samples were available
for this analysis; thus these results need to be carefully
interpreted.

4 Discussion
4.1 Laguerre Deconvolution Technique as a Method

for Analysis of Time-Resolved Laser-Induced
Spectroscopy Data from Tissue

Our results demonstrated that the Laguerre deconvolution
technique represents an accurate and robust approach for the
analysis of TR-LIFS data. The technique was able to estimate

Fig. 4 First classification results �normal versus thick-collagen versus
SP-LAG, SP-BEXP� and algorithms �LDA, SLDA, PCA, FFNN�; and sam
with �b� SP, �c� SP-LAG, and �d� SP-BEXP features.
the FIRF of a variety of arterial samples presenting distinct

Journal of Biomedical Optics 021004-
Table 3 Second classification results: normal versus thin-collagen
versus thin-mac.

Feature Sample SLDA PCA

SE SP SE SP

Spectral Normal 65.4 88.2 57.7 88.2

Thin-collagen 80.0 63.6 70.0 66.7

Thin-mac 42.9 97.2 57.1 88.9

Laguerre Normal 69.2 76.5 61.5 64.7

Thin-collagen 70.0 81.8 60.0 72.7

Thin-mac 85.7 94.4 71.4 97.2

Bi-Exp Normal 69.2 70.6 61.5 70.6

Thin-collagen 60.0 75.8 60.0 72.7

Thin-mac 85.7 100 71.4 94.4
thick-mac�: �a� classification performance for the different feature types �SP,
ple maps in the discriminant function domain from the SLDA classification
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biochemical compositions with good precision �NErr�5% �.
An important observation was that the estimation of the con-
ventional biexponential parameters at wavelengths above
530 nm became less accurate as the signal-to-noise ratio de-
creased �error bars in Figs. 2�e� and 2�f�	, while the estimation
based on Laguerre expansion coefficients remained unaffected
�error bars in Figs. 2�e� and 2�f�	. This suggests that the La-
guerre deconvolution technique represents a more robust
method for TR-LIFS data analysis than the conventional itera-
tive multiexponential method.

The traditional multiexponential technique involves the es-
timation of intrinsic nonlinear parameters �the decay con-
stants�, which requires more complex and computationally ex-
pensive nonlinear least-square iterative approaches.30

Although single exponential fitting can be linearized via loga-
rithmic transformation, complex fluorescence systems con-
taining more than one fluorophore cannot be accurately mod-
eled with a single decay. An alternative for fitting complex
decays is the stretched exponential method, which also allows
for fast convergence. One drawback of this approach, how-
ever, is that curve fitting instead of actual deconvolution is
usually applied. In the Laguerre deconvolution technique, the

Fig. 5 Second classification results �normal versus thin-collagen versu
SP-LAG, SP-BEXP� and algorithms �SLDA in black, PCA in gray�; and sa
with �b� SP, �c� SP-LAG, and �d� SP-BEXP features.
problem of deconvolving the system response and estimating
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the FIRF is reduced to finding the expansion coefficients of an
overdetermined system of linear equations �Eq. �5�	 via the
linear least-square minimization approach.9,29 Such a linear-
ization of the convolution equation via an orthonormal expan-
sion allows fast and robust TR-LIFS data deconvolution.
These specific advantages of the Laguerre method become
even more important in the context of TR-LIFS-based in-vivo
tissue diagnosis, where the quality of the signal cannot always
be warranted and the speed of data analysis is of crucial
importance.

4.2 Laguerre Expansion Coefficients as New Means
for Characterizing the Time-Resolved Laser-
Induced Spectroscopy Data

It was observed that the Laguerre expansion coefficients
�LEC� were highly correlated with the intrinsic lifetime values
�especially LEC-0�, suggesting that the LECs describe the dy-
namics of the fluorescence intensity decay.9 This can be ex-
plained by the orthogonality of the Laguerre basis, which im-
plies that the value of each LEC depends exclusively on the
fluorescence decays to be fitted.18,30 The fluorescence time-

ac�: �a� classification performance for the different feature types �SP,
aps in the discriminant function domain from the SLDA classification
s thin-m
mple m
decay characteristics captured by the LECs also reflect the
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biochemical composition of the artery. The normal and thin-
collagen groups presented constant lifetimes values
�
1.9 ns� along the emission spectra �370 to 450 nm�, sug-
gesting that their fluorescence emission is dominated by elas-
tin, characterized by a fairly constant lifetime value of 
2 ns
between 
360 and 500 nm.1,8 The thick lesions presented
slightly longer but decreasing lifetimes �
2 ns� at increasing
wavelengths, similar to the lifetime-wavelength dependency
found in collagen.1,8 The LEC-0 presented the same tissue
dependency variation as the lifetime values, indicating that
this coefficient captures the average fluorescence time-decay
characteristics of the tissue.

Lipid components exhibit shorter-lived emission when
compared to the structural proteins of elastin or collagen.1,8

This was consistent with our results showing a significant
decrease in lifetime in the lesion rich in macrophages relative
to those rich in collagen. Also, a large normalized LEC-1 is
characteristic of a faster FIRF decay.9 Thus, lipids should also
present large LEC-1 values. This was reflected in the thick-
mac samples, which were characterized by the largest LEC-1
and provided the best discrimination of the thick-mac group
�Figs. 2�f� and 3�c�	. This particular result indicates that im-
portant characteristics of the fluorescence decay shape, not
reflected on their conventional lifetime values, can be cap-
tured by the higher-order Laguerre expansion coefficients. All
these results taken together demonstrate that Laguerre expan-
sion coefficients offer a new domain for representing time-
resolve information in a very compact, accurate, complete,
and computationally efficient way.

4.3 Feature Selection
The results of the statistical analysis showed that TR-LIFS
information most relevant for discriminating atherosclerotic
lesions was concentrated at a few number of emission wave-
lengths �360, 390, 450, and 500 nm�, confirming previous
observations.10,12 This indicates that it is no longer necessary
to acquire the complete time-resolved fluorescence spectrum,
but only the fluorescence at a reduced number of emission
wavelengths. Consequently, the acquisition time could be re-
duced significantly, thus facilitating the real-time diagnostics
of atherosclerotic plaque. We hypothesize that similar concen-
trations of discriminant information in a reduced number of
emission wavelengths might be found in other biological tis-
sue and biochemical systems, as it has been suggested
elsewhere.2,4,6

4.4 Classification
Although in this study we used a small database, our results
indicate that classification algorithms derived from the La-
guerre expansion coefficients are robust enough to allow good
detection of macrophage infiltration in arterial intima �
70%
for thin-foam and 
93% for thick-foam lesions�. Moreover,
the classification accuracy could be further improved once the
number of samples for each tissue type in the training set
increases. It was also observed that features from the steady-
state fluorescence spectrum can discriminate a normal artery
from more advanced thick lesions. However, they cannot de-
tect the presence of macrophages. On the other hand, by in-
corporating features related to the fluorescence time-decay

characteristics of the artery �i.e., LECs or biexponential pa-
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rameters�, it is possible not only to improve the detection of
advanced �thick� lesions, but also to discriminate lesions with
macrophages infiltration. Thus, our results showed that time-
resolved fluorescence information derived from the LECs can
be used to develop TR-LIFS-based tissue diagnosis methods,
and specifically to detect macrophage infiltration in athero-
sclerotic plaques, an important predictor of plaque rupture.

It was also observed that classifications with either LECs
or biexponential parameters provided similar performance.
One important advantage of LDT over the multiexponential
approach, however, is that the former performs significantly
faster. This would be of special importance in the context of
real-time tissue diagnosis using fluorescence lifetime imaging
�FLIM�, where conventional methods of analysis are time
consuming, making it almost impossible to allow real-time
applications.33 The LDT technique can be easily adapted for
FLIM analysis34 and, combined with proper classification al-
gorithms, has the potential for imaging features of plaque vul-
nerability �such as the presence of macrophages� and other
interesting tissue pathologies in real time.

The use of redundant features may generate a classifier that
is specifically designed to discriminate the training set and
may unduly weight less distinct features.10,12,31 This could re-
sult in a discriminant function with decreased ability to clas-
sify new samples. Such outcome was observed in the LDA
and FFNN algorithms, which use all the features available. In
contrast, SLDA and PCA, which use a reduced but more se-
lected group of features, provided the best classification per-
formance. One possible additional explanation of the poor
performance of the FFNN approach is that the number of
parameters to be estimated is much larger, thus demanding a
larger number of training samples. These results also support
the empiric observation that the differences in the fluores-
cence emission of the various types of atherosclerotic lesions
are manifested in a reduced number of spectral and TR
features.10,12

Another interesting observation was that all four algo-
rithms correctly classified most of the normal samples
�
96% �, while the classification accuracy of atherosclerotic
samples was lower �
90% �. This is explained by the greater
heterogeneity of atherosclerotic lesions relative to normal
aorta. In the present study, lesions were characterized based
on their intima plaque thickness and their relative collagen/
macrophage contents. Because atherosclerosis is a progressive
disease, the lesions are quite heterogeneous and present a
large variability in their morphology and biochemical
composition.17 Thus, a histopathological categorization of the
lesions �the gold standard for the development of our TR-
LIFS classifiers� can by itself be difficult to define. This might
explain the difficulty on classifying different types of athero-
sclerotic lesions, as compared to normal arterial walls. Thus, a
more comprehensive classification of the plaques based on
their histopathological, morphological, and biochemical char-
acteristics should help to improve the diagnosis capability of
TR-LIFS.

5 Conclusion
We have demonstrated that the Laguerre deconvolution
method applied to in-vivo TR-LIFS measurements provides

accurate FIRF estimation of normal and atherosclerotic arter-
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ies. In addition, the Laguerre expansion coefficients can be
used to characterize the arterial tissue and to detect changes in
its biochemical composition. This study also indicates that,
although steady-state characteristics can be used to separate
normal and early lesions from more advanced lesions, time-
resolved properties are essential for detecting macrophages in
the arterial wall. Since discriminate information is concen-
trated in a few emission wavelengths, it is no longer necessary
to acquire the entire emission spectrum. Thus, the acquisition
time can be reduced, facilitating the development of real-time
diagnostic methods. Although classification with both La-
guerre and multiexponential parameters show similar perfor-
mance, the Laguerre approach is faster and more robust, and
can be easily extended to imaging analysis. Finally, our re-
sults indicate that classification algorithms �SLDA and PCA�
that use a reduced but selected number of features yield the
best performance in tissue classification. In summary, this
study demonstrates the potential of using TR information, by
means of Laguerre expansion coefficients, for in-vivo
fluorescence-based tissue characterization and diagnosis, and
specifically for the detection of macrophages infiltration in
atherosclerotic lesions, a key predictor for plaque rupture.
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