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Abstract. Femtosecond laser pulses in the near-infrared region have
potential applications in the imaging and manipulation of intracellular
organelles. We report on the manipulation of intracellular organelles
by two-photon excitation. The dynamics of green fluorescent protein
�GFP�-histone are investigated by two-photon fluorescence recovery
after photobleaching �FRAP�. Intracellular ablation of fluorescently la-
beled organelles in living cells is performed by focusing femtosecond
laser pulses. We report on the selective marking of individual or-
ganelles by using two-photon conversion of a photoconvertible fluo-
rescent protein. © 2008 Society of Photo-Optical Instrumentation Engineers.
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Introduction

omplex cell behavior such as cell division, metabolism, and
ignal transduction is based on a combination of processes at
he subcellular level. Imaging and manipulation of intact or-
anelles in a living cell are essential to understanding such
omplex intracellular dynamics. Fluorescent proteins allow
nalyses of the dynamics of organelles. When the fluorescent
rotein is fused with a native protein or a signal peptide, it
ecomes possible to visualize and track the targeted cellular
tructures or organelles in real time. The applications of fluo-
escent proteins continue to provide new insights into various
ubcellular events in living cells.

Focused femtosecond lasers can be used to image intact
ubcellular structures using multiphoton excitation.1–3 Femto-
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IST, 1-8-31, Midorigaoka-Ikeda, Osaka 5638577, Japan; Tel: 81-72-751-8984;
ax: 81-72-751-4027; E-mail: wataru.watanabe@aist.go.jp
ournal of Biomedical Optics 031213-
second lasers in the near-infrared region offer attractive ad-
vantages, including high spatial resolution, deep penetration
into thick samples, and reduced photon-induced damage.
Femtosecond lasers are thus suitable for imaging and manipu-
lating intact organelles in living cells. The applications of ma-
nipulation of subcellular structures using multiphoton excita-
tion include fluorescence recovery after photobleaching
�FRAP�,4–9 intracellular ablation or nanosurgery,10–23 and pho-
toconversion or photoactivation.24–39

In this work, we report on manipulation of intracellular
organelles by two-photon excitation. In Sec. 2, we describe a
two-photon excitation method for monitoring the dynamics of
green fluorescent protein �GFP�-histone in vivo. We investi-
gate the dynamics of histone H1-sGFP in tobacco BY-2 cells
by single- and two-photon FRAP. We compare the recovery
rate of GFP-tagged histone H1 between single- and two-

1083-3668/2008/13�3�/031213/8/$25.00 © 2008 SPIE
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hoton FRAP in tobacco BY-2 cells, and obtain similar results
oth in HeLa cells and tobacco BY-2 cells. We find the uni-
ersality of molecular dynamics among species, because the
ecovery rates are similar both in HeLa and tobacco BY-2
ells.

In Sec. 3, we describe the differences between bleaching
nd intracellular ablation of a mitochondrion using a femto-
econd laser oscillator. We show the viability of the cells after
emtosecond laser radiation by using propidium iodide �PI�.

In Sec. 4, we demonstrate marking of mitochondria by
sing two-photon conversion of the photoconvertible protein,
aede. Photoactivation and photoconversion enable selective

ctivation and conversion of fluorescence signals from or-
anelles in living cells after focusing femtosecond laser
ulses. We demonstrate selective marking of individual mito-
hondria at different sites in a living BY-2 cell by using two-
hoton conversion of Kaede, and track of their dynamics.

Two-Photon Excitation for Analyzing
Molecular Dynamics in Nuclei

.1 Two-Photon Fluorescence Recovery after
Photobleaching for Analyzing Histone
with High Mobility In Vivo

he packaging of eukaryotic DNA is performed by histones,
hich are mainly classified into H1, H2A, H2B, H3, and H4.
he H2A, H2B, H3, and H4 histones are core histones that
ssemble into an octamer as a nucleosome core particle. The
1 histone is a linker histone that connects one nucleosome

ore particle to the next. Data regarding the mobility of GFP-
agged histone H1, H2A, H2B, H3 and H4 proteins in living
uman cells have been reported.40–43 In those studies, single-
hoton excitation was used to obtain the mobility. However,
hotobleaching using single-photon absorption has a disad-
antage, namely, collateral absorption outside the focal vol-
me, as mentioned before. Therefore, it is difficult to observe
he mobility of a fluorophore along the beam propagation axis
z axis� by single-photon excitation. With two-photon bleach-
ng, the photobleached volume along the z axis can be
imited.7,9

We established a HeLa cell line to stably express enhanced
FP �EGFP�-histone H1.2.44 Using this cell line, we mea-

ured the dynamics of EGFP-histone H1.2 in a selectively
leached heterochromatic region of the nucleus by single-
hoton and two-photon FRAP �Fig. 1�. In the case of single-
hoton FRAP, the GFP fluorescence of bleached areas recov-
red within a maximum of 900 s, as shown by the
epresentative recovery curve. In contrast, with two-photon
RAP using the same region of interest �ROI� size, the EGFP
uorescence recovered within 200 s. Thus, the fluorescence
ecovery rate �t1/2� for two-photon excitation was much
horter than that for single-photon excitation. The difference
n the fluorescence recovery rates was due to differences in
he bleaching properties between single- and two-photon ex-
itation. Similar to fixed cells, in living cells, EGFP molecules
xisting above and below the focal plane were completely
leached by single-photon excitation, whereas in two-photon
ournal of Biomedical Optics 031213-
excitation, the bleached area was limited to the vicinity of the
focal plane.9,45 Therefore, EGFP fluorescence recovered more
rapidly in two-photon FRAP.

We established a tobacco BY-2 cell line stably expressing
histone H1-sGFP �a GFP variant in which threonine is substi-
tuted for serine at 65� and analyzed the histone H1 mobility in
plant cultured cells by two-photon FRAP �Fig. 2�. The BY-2
cells have spherical nuclei, which are different from the flat
nuclei in mammalian adhesive cultured cells. The recovery
rate in two-photon FRAP using a tobacco BY-2 cell was also
approximately four times faster than that in single-photon
FRAP. This result indicates that two-photon FRAP is also
suitable for investigating molecules in thick subcellular or-
ganelles. Furthermore, living cells are damaged to a lesser
extent when two-photon excitation is used for in-vivo analy-
ses, because a near-infrared laser is employed for the excita-
tion. We compared the recovery rate of GFP-tagged histone
H1 between single- and two-photon FRAP in tobacco BY-2
cells, and obtained similar results both in HeLa and tobacco
BY-2 cells. We found that the recovery rate is not mainly
dependent on the kinds of host cells, but types of target
proteins.
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Fig. 1 FRAP analyses of EGFP-histone H1.2. �a� The heterochromatic
region within an open box of living HeLa cell nuclei was excited and
bleached by single-photon excitation using Ar+ laser light with a
wavelength of 488 nm. Scale bar indicates 5 �m. �b� The heterochro-
matic region within an open box of living HeLa cell nuclei was ex-
cited and bleached by two-photon excitation using femtosecond laser
light with a wavelength of 928 nm. Scale bar indicates 5 �m. �c�
Circles and squares indicate fluorescence recovery curve obtained
from single- and two-photon FRAP, respectively.
May/June 2008 � Vol. 13�3�2
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.2 Two-Photon Fluorescence Recovery after
Photobleaching for Analyzing Histone
with Low Mobility In Vivo

RAP is an indispensable method for analyzing the molecular
ynamics in living cells. Analysis of the dynamics of mol-
cules with low mobility by conventional single-photon
RAP is time consuming, as observed for core histones whose

1/2 of the slow fraction is more than 510 min.42 We also
stablished a HeLa cell line to stably express one of the core
istones, namely, histone H2A �Fig. 3�.9 In the case of histone
2A, the recovery rate in two-photon FRAP has been re-
orted to be twice faster than that in single-photon FRAP.9 As
escribed in the prevous section, in the case of histone H1, the
ecovery rate can be reduced to approximately one-fourth us-
ng two-photon FRAP. This demonstrates that two-photon
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ig. 2 FRAP analysis of histone H1-sGFP in BY-2 cells. �a� The het-
rochromatic region of living BY-2 cell nuclei was excited and
leached by two-photon excitation using femtosecond laser light with
wavelength of 928 nm. Arrow shows the bleaching area. Scale bar

ndicates 5 �m. �b� Fluorescence recovery curve obtained from two-
hoton FRAP.

Pre 0 min 1 min 20 min

ig. 3 FRAP analysis of EGFP-histone H2A. The heterochromatic re-
ion of living HeLa cell nuclei was excited and bleached by two-
hoton excitation using femtosecond laser light with a wavelength of
28 nm. Scale bar indicates 5 �m.
ournal of Biomedical Optics 031213-
FRAP is a powerful tool to analyze molecules with low
mobility in vivo.

3 Femtosecond Laser Nanosurgery
3.1 Difference between Bleaching and Intracellular

Ablation
Cell and intracellular surgery based on femtosecond laser
pulses is attractive in cell biology because it allows noninva-
sive intracellular ablation at subdiffraction resolution to be
performed within vital cells.10–23 A femtosecond laser pulse at
higher energies can produce localized energy absorption, and
intracellular ablation occurs only in and around the focal vol-
ume, allowing site-specific dissection, removal, or disruption
of organelles to be carried out.

We previously investigated fluorescence recovery after
femtosecond laser irradiation to distinguish between bleach-
ing and intracellular ablation.17 Here, we used the EGFP-
tagged histone H1 for visualization of the nucleus.44 Figure 4
shows fluorescence images of the EGFP-tagged nucleus be-
fore and after femtosecond laser irradiation with different en-
ergies �0.26 and 0.39 nJ/pulse� at a wavelength of 930 nm. A
nuclear region of 1.5�1.5 �m2 in a living HeLa cell ex-
pressing EGFP-histone H1 was irradiated. Figure 5 shows the
relative fluorescence intensity of the bleached area after fem-
tosecond laser irradiation. We defined the relative fluores-
cence intensity as the fluorescence intensity after femtosecond
laser irradiation divided by that before irradiation. At the en-
ergy of 0.39 nJ/pulse, fluorescence disappeared after irradia-
tion and fluorescence recovery was not observed. At the en-
ergy of 0.26 nJ/pulse, fluorescence disappeared after
irradiation; however, fluorescence recovery was observed.
This result demonstrates that the fluorophore was bleached;
however, subsequent recovery of fluorescence in the bleached
region occurred due to the exchange of unbleached fluoro-
phore molecules.

After femtosecond laser irradiation, we restained the cell
with Hoechest 33342. The nuclei normally became uniformly
stained 40 min after the addition of 0.1 �g /mL of Hoechest
33342, and therefore, we obtained fluorescence images after
45 min. When intracellular ablation of the nucleus was per-
formed at 0.39 nJ/pulse, no fluorescence was observed from
EGFP or Hoechest 33342 in the laser-irradiated region. When

0.26 nJ/pulse

0.39 nJ/pulse

before after 20 sec

Fig. 4 FRAP analysis of enhanced green fluorescent protein �EGFP�-
labeled nucleus at different energies. An EGFP-labeled nuclear region
within an open box of 1.5�1.5 �m2 in a living HeLa cell was irradi-
ated. Scale bar indicates 5 �m.
May/June 2008 � Vol. 13�3�3
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leaching occurred at 0.26 nJ/pulse, fluorescence was ob-
erved from both EGFP and Hoechest 33342. These results
onfirm that fluorescence recovery is an indicator of intracel-
ular ablation of organelles in living cells. Table 1 summarizes
he differences between bleaching and intracellular ablation.

.2 Intracellular Ablation of Mitochondria
e previously showed intracellular ablation of individual mi-

ochondria in living HeLa cells using a femtosecond laser.17

ere, we show the viability of the cells after femtosecond
aser radiation by use of a femtosecond laser oscillator at a
epetition rate of 76 MHz. The cells expressed the enhanced
ellow fluorescent protein �EYFP� in the mitochondria. Fem-
osecond laser pulses with an energy of 0.39 nJ/pulse were
ocused on the cells. Figures 6�a� and 6�b� show the stacked
onfocal images obtained before and after irradiation. The fig-
res show that fluorescence from a single mitochondrion dis-
ppeared. That is, a mitochondrion irradiated by the femtosec-
nd laser pulses did not exhibit fluorescence recovery. We
lso confirmed intracellular ablation of the mitochondrion by
estaining with MitoTracker Red. Note that displacement of
he mitochondria outside the focal region between the before
nd after images was attributed to cytoplasmic streaming,
hich indicated the viability of the cells. The viability of the

ells after intracellular ablation was also verified by the ob-
ervation of cell division. These experiments demonstrate that
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ig. 5 Fluorescence intensity of the femtosecond laser irradiated area.

able 1 Difference between bleaching and intracellular ablation.

Fluorescence after
femtosecond laser
irradiation

Fluorescence
recovery

Fluorescence
after restaining

Intracellular
ablation

x x x

FRAP x o o

=not observed, o=observed
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femtosecond laser pulses can be used to ablate a specific or-
ganelle from living cells without compromising their viability.

The viability of the cells after femtosecond laser radiation
was ascertained by using PI. The membranes of living cells
are impermeable to PI; it only penetrates dead or apoptotic
cells with compromised membranes. PI was added to the me-
dium just after irradiation of the femtosecond laser pulses, and
fluorescence images were observed after 30 min. Cells whose
mitochondria were ablated at the energy of 0.39 nJ/pulse
were not stained by the PI. The viability of the cells after
femtosecond laser irradiation was ascertained by imperme-
ability of PI, as well as by the presence of cytoplasmic
streaming. These experiments demonstrate that the cells re-
mained viable when mitochondria were ablated by femtosec-
ond laser pulses. In contrast, at the energy of 0.55 nJ/pulse,
red fluorescence derived from PI was observed in the nuclei,
because the plasma membrane was distorted or destroyed by
laser irradiation, allowing PI to penetrate the cell �Fig. 7�,
even if the focal point was a mitchondrion beneath the cell
membrane. At the energy of 0.55 nJ/pulse, cytoplasmic
streaming in the cells was not observed. To perform intracel-
luar ablation of mitochondria in a living cell without compro-

(a)(a) (b)(b)

Fig. 6 Stacked 3-D confocal images �a� before and �b� after femtosec-
ond laser irradiation with 0.39 nJ/pulse �exposure time: 32 ms�. Target
mitochondrion is indicated by the arrow. Scale bar indicates 10 �m.

Fig. 7 Confocal image of the cells after femtosecond laser irradiation
and the addition of PI. Just after irradiation of femtosecond laser
pulses, PI was added to the culture. The fluorescence images were
observed 30 min after addition of the PI. At an energy of
0.55 nJ/pulse, red fluorescence derived from PI was observed in the
nuclei. Scale bar indicates 5 �m.
May/June 2008 � Vol. 13�3�4
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ising cell viability, it is important to select optimal laser
nergy.

Labeling of Single Organelle by Two-Photon
Conversion

e have reported photoconversion of a single mitochondrion
abeled with Kaede by two-photon excitation.39 In this sec-
ion, we show the photoconversion of individual mitochondria
abeled with Kaede at different sites by two-photon excitation.
emtosecond laser pulses were focused into a target mito-
hondrion to alter the fluorescence from green to red. Figures
�a� and 8�b� show stacked 3-D confocal fluorescence images
btained before and after femtosecond laser irradiation. We
sed living BY-2 cells whose mitochondria were labeled with
aede. Three different mitochondria were sequentially irradi-

ted. After photoconversion by the femtosecond laser irradia-
ion, the red fluorescent signal at laser-irradiated mitochondria
ncreased in intensity. The results demonstrate that mitochon-
ria at specific positions were marked by photoconversion
rom green to red. The cross sectional spatial resolution and
epth resolution of the photoconversion were approximately
�m.
We tracked the movement of the photoconverted mito-

hondria using the red photoconversion of Kaede. Figures
�a� and 9�b� show confocal images obtained after photocon-
ersion and the trajectories of individual mitochondria after
230 s. Four mitochondria were marked by photoconversion.
he trajectories were plotted based on time-lapse images at

(a)(a) (b)(b)

ig. 8 Site-specific photoconversion of Kaede within mitochondria in
living BY-2 cell. Stacked 3-D confocal images �a� before and �b�

fter femtosecond laser pulse irradiation. Individual mitochondria
ere photoconverted from green to red by 775-nm femtosecond laser
ulses. Laser pulses with an energy of 0.079 nJ/pulse were focused at

he mitochondria indicated by the arrows, and the shutter was opened
or an exposure time of 1 s. Scale bar indicates 10 �m.

(a)(a) (b)(b)

ig. 9 �a� Starting position of four mitochondria after photoconver-
ion. �b�Tracking of particular mitochondria after 7230 s. The lines of
our different colors indicate the tracking of each mitochondrion. The
rajectories of the mitochondrion are shown by the lines. Scale bar
ndicates 10 �m.
ournal of Biomedical Optics 031213-
intervals of 300 s. The velocities of the photoconverted mito-
chondria were calculated to be 0.15, 0.38, 0.23, and
0.11 �ms−1, respectively.

Site-specific organelle marking enabled us to track the dy-
namics of individual organelles at different sites in a living
cell. The results demonstrated the ability to track the dynam-
ics of individual mitochondra and to reveal detailed spatial
information in a living cell, such as position and velocity. The
ability to label selective organelles is a potentially promising
method for analysis of intracellular structures by tracking the
dynamics of individual organelles in a living cell, thus reveal-
ing the mechanisms involved in organelle dynamics.

5 Discussion
To date, the mobility properties of some types of proteins
have been reported by using conventional single-photon
FRAP. However, these data reflect only the 2-D mobility of
target proteins; the z-axis mobility cannot be monitored di-
rectly. Brown et al. previously showed that the diffusion con-
stant could not be exactly calculated by single-photon FRAP.7

Moreover, if the target proteins have only z-axis mobility, the
results obtained from conventional single-photon FRAP might
cause misunderstanding, not only quantitatively but also
qualitatively. In contrast, using two-photon FRAP, we can
monitor the mobility of the target proteins not only in the x
and y directions but also in the z direction.9 We attempted to
compare the properties of single- and two-photon FRAP theo-
retically in terms of kinetics of the molecules. According to
Fick’s law, the diffusion rate of molecules in a solution de-
pends on their concentration and the square of the interfacial
surface area. When the concentration of GFP-histone H1 in
the nucleus is constant, the recovery rate depends on the vol-
ume and square of the interface of the bleached area. Our
results indicate that, using two-photon FRAP with core his-
tone H2A, the recovery rate can be reduced to approximately
one-half. This clearly indicates that two-photon FRAP is suit-
able for detecting molecules with low mobility.

Another advantage of two-photon excitation is less photo-
damage in living cells. The viability of the Drosophila em-
bryo was dramatically improved by two-photon excitation
compared with the case of single-photon excitation.26 Thus,
our study clearly shows that two-photon FRAP is a superior
method for obtaining accurate data. For example, this method
allows analyzing the molecule mobility in the spherical nu-
clei.

The laser power for two-photon excitation was stronger
than that for single-photon excitation in bleaching the fluores-
cence of EGFP-histone H1.2, although the same square region
was bleached at the focal plane. This was due to the differ-
ences in the cross section between single-photon absorption
and two-photon absorption.46 Following two-photon excita-
tion using a laser with such high power, we confirmed the
viability of the target cells by Hoechst 33342/PI staining. All
cells were found to be viable after the two-photon excitation
�data not shown�.

Intracellular ablation of organelles has been demonstrated
using both low-repetition-rate amplified laser systems and
high-repetition-rate oscillators. At low repetition rate, ampli-
fied laser systems can provide high pulse energy, which
causes less thermal damage. At low repetition rate �1 kHz�,
May/June 2008 � Vol. 13�3�5
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aterial modification is produced by a single pulse due to the
ormation of a high-density plasma. In this regime, the pulse
nergy is slightly above the threshold for optical breakdown.
ntracellular ablation relies on the thermoelastic-induced for-
ation of cavitation bubbles.11 We performed intracellular ab-

ation of mitochondria using 250 pulses at an energy of
nJ/pulse from a 1-kHz Ti:sapphire amplifier.13,14 In con-

rast, in a high-repetition-rate femtosecond laser system �typi-
ally megahertz order�, focusing femtosecond laser pulses in a
ell results in an increase in temperature in a localized region
urrounding the focal spot through heat accumulation, and
aterial modification occurs due to the formation of a low-

ensity plasma and a cumulative effect.11 In this regime, pulse
nergy is below the optical breakdown threshold for a single
ulse. Intracellular ablation is caused by free-electron-induced
hemical decomposition.11 In our experiments using a Ti:sap-
hire oscillator at a repetiton rate of 76 MHz, intracellular
blation of mitochondria was performed using 2.4�106

ulses at an energy of 0.39 nJ/pulse. The energy was lower
han that achieved by the amplified laser, and therefore, many
ulses were necessary.

After intracellular ablation of a mitochondrion in both high
nd low repetition rate regimes, the viability of the cells after
emtosecond laser irradiation was verified by the observation
f cell division and by the presence of cytoplasmic streaming.
he results demonstrate that the intracellular ablation of an
rganelle can be performed without compromising cell viabil-
ty.

We have demonstrated tracking the movement of mito-
hondria by monitoring the photoconverted fluorescence of
aede. By photoconversion of the fluorescence properties at
ifferent specific points by moving the focal position of
ightly focused femtosecond laser pulses, the movement of a
pecific organelle at different sites in a living cell could be
racked. Selective marking techniques of intracellular objects
rovide spatial and temporal information about intracellular
bjects and their dynamics within a living cell.

Methods and Materials
.1 Optical Setup
igure 10 shows a schematic diagram of the setup used for

maging of fluorescence-labeled organelles in living cells us-
ng continuous wave �cw� lasers and manipulation of or-
anelles using a femtosecond laser oscillator. We used a con-
ocal microscope to image the fluorescence. The laser
canning microscope was adapted from an Olympus FV300
canning unit �Olympus Corp., Tokyo, Japan� combined with
n Olympus IX71 inverted microscope. The cw beams from a
e-Ne laser �wavelength 543 nm� and an Ar+ laser �wave-

ength 488 nm� were reflected by dichroic mirrors DM2 and
M3 and then focused into a BY-2 cell through an oil-

mmersion objective lens �OB, Olympus, PlanApo60�O2,
A 1.4�. Fluorescence was excited by the cw laser light, and

he backpropagating fluorescence was collected using the
ame objective lens and detected with photomultiplier tubes,
fter passing through a bandpass filter. 2-D confocal crosssec-
ional images were obtained by scanning the focused laser
eams in the xy plane with a pair of high-speed galvanometer
irrors �GM� inside the laser-scanning microscope. Scanning

n the depth direction �z direction� was achieved by moving
ournal of Biomedical Optics 031213-
the objective lens with a stepping motor to obtain 3-D confo-
cal fluorescence images. To construct the stacked 3-D images,
we obtained 13 confocal crosssectional images by translating
the objective lens by 2.4 �m in the depth �z� direction in
steps of 0.5 �m. Imaging and marking by laser irradiation
were performed using Fluoview software.

6.2 Tobacco BY-2 Cells
Histone H1-sGFP-expressing tobacco BY-2 cells were pre-
pared according to the previously reported procedure.47

Kaede-expressing tobacco BY-2 cells were prepared by a pre-
viously described method,37 and the cells were maintained as
previously described by Nagata, Nenoto, and Hasezawa.48

The cells were cultured in modified Linsmaier and Skoog me-
dium in a rotary shaker at 25°C in the dark. Two-day-old
BY-2 cells, after subculturing, were used for our analyses.

6.3 HeLa Cells
HeLa human carcinoma cells were cultured and maintained as
previously reported.49 For visualization of the chromosomes,
the HeLa cells were transfected by pEGFP-C1/histone H1.2
using LipofectAMINE plus reagent �Invitrogen Corp., Cals-
bad, California�.44

Fusion constructs containing a gene encoding enhanced
yellow fluorescent protein EYFP and the mitochondrial target-
ing sequence from human cytochrome c oxidase �pEYFP-
Mito, Clonetech� were transfected into HeLa cells using the
calcium phosphate method. In the restaining experiments, mi-
tochondria of the HeLa cells were stained with 2.5-ng /ml
MitoTracker Red CMH2XRos�chloramethyl-X-rosamine, Mo-
lecular Probes�, which is a mitochondria-selective dye, for
30 min at 37 °C.

To determine the effects on cell viability after
femtosecond-laser irradiation, 1-�g /ml PI �Sigma, St. Louis,
Missouri� was added to the medium 30 min after the irradia-
tion.

OB

M
NDND

Ti:sapphire
oscillator

DM3

DM2

GM
L1

Aperture

Cell

PMT2
DM4

BP1
BP2

+z

PMT1

L2

Shutter

Confocal laser-scanning
microscope

Ar laser
(488 nm)

+

He-Ne laser
(543 nm)

DM1

Fig. 10 Schematic diagram of the experimental setup. M, mirror; L,
lens; DM, dichroic mirror; OB, objective lens; GM, pair of galvanom-
eter mirrors; and PMT, photomultiplier tube.
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.4 Single-Photon and Two-Photon Fluorescence
Recovery after Photobleaching

eLa cells were transfected with the constructed vectors us-
ng Lipofectamine �Invitrogen� or FuGENE6 �Roche Diag-
ostics, Basel, Switzerland� following the corresponding
anufacturer’s protocols. Transfectants were selected with
00 �g /ml of G418 �Sigma� and cloned by the limiting dilu-
ion method as described previously.7

HeLa cells were inoculated onto 35-mm glass-bottomed
ishes �Matsunami Glass, Inc., Kishiwada, Japan�, maintained
n Dulbecco’s modified Eagle’s medium �DMEM� without
henol-red �Invitrogen� with 10-mM 2-�4-�2-hydroxyethyl�-
-piperadinyl� ethansulfonic acid �HEPES, pH 7.2� in a hu-
idified atmosphere on a heated stage, and were imaged us-

ng an inverted fluorescence microscope �IX-71, Olympus�
ith a 60� objective lens. Single-photon FRAP was per-

ormed using an FV300 confocal microscopic system
10-mW Ar+ laser, wavelength 488 nm�. To carry out single-
hoton FRAP, the entire image was taken using illumination
rom the Ar+ laser at a mean power of 0.1 mW �5 nW at the
ample� before the microscope, and then a nuclear region of
.3�2.3 �m2 was bleached, while scanning with the galva-
ometer mirrors, by increasing the power of the Ar+ laser to
to 4 mW �110 to 220 nW at the sample�. After 20 s, sub-

equent single-photon fluorescence images were captured
ith the original settings.

Two-photon FRAP with femtosecond laser pulses was per-
ormed using a mode-locked Ti:sapphire laser oscillator with

wavelength of 928 nm and a repetition rate of 76 MHz
Coherent, Mira, Santa Clara, California�. The laser pulses
assed through a series of SF10 prisms to compensate for the
ispersion of the optical components in the light path and the
icroscope. The entire imaging was performed using two-

hoton excitation at a wavelength of 928 nm with a mean
ower of 20 to 30 mW �2 to 3 mW at the sample�. A nuclear
egion of 2.3�2.3 �m2 was bleached at a power of
0 to 80 mW �7 to 8 mW at the sample� by scanning with
he galvanometer mirrors. After bleaching, subsequent images
ere captured with the original settings.

.5 Intracellular Ablation
ntracellular ablation of mitochondria was performed using a
ode-locked Ti:sapphire laser oscillator with a wavelength of
00 nm and a repetition rate of 76 MHz �Coherent, Mira�. To
erform ablation in the nuclear region, an EGFP-labeled
uclear region in a living HeLa cell was irradiated at a wave-
ength of 930 nm. To obtain fluorescence images of GFP and
FP, bandpass filters BP1 �transmission wavelength:
10 to 540 nm� and BP2 �transmission wavelength:
60 to 600 nm� were placed before photomultiplier tubes
MT1 and PMT2, respectively. The number of pulses sup-
lied was selected by an electromagnetic shutter �Sigma Koki,
-65L, Tokyo, Japan�.

.6 Photoconversion of Kaede
hotoconversion of Kaede was performed using near-infrared
emtosecond laser pulses from a mode-locked Ti:sapphire la-
er oscillator with a wavelength of 750 nm. The green fluo-
escence was obtained using a single-photon fluorescence mi-
roscope. Ar+ laser light passed through a bandpass filter BP1
ournal of Biomedical Optics 031213-
�transmission wavelength: 510 to 540 nm� and the green
fluorescence was detected with a photomultiplier tube
�PMT1�. Red fluorescence after photoconversion of Kaede
was excited by the He-Ne laser light �wavelength 543 nm�
and detected with a photomultiplier tube �PMT2�, after pass-
ing through a bandpass filter BP2 �transmission wavelength:
560 to 600 nm�.

7 Conclusions
In summary, we describe site-specific photoconversion, FRAP
analysis, and ablation of intracellular organelles by two-
photon excitation. Intracellular imaging of a specific organelle
in combination with optical manipulation, such as intracellu-
lar ablation and FRAP, will help in understanding the mecha-
nisms and interactions of intracellular organelles.
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