
A
h
i

X
U
S
C
N

B
U
D
P

S
U
D
O

R
U
D
O

J
U
D
O

W
U
D
E

H
U
S
C
N

1
C
w
s
1
p
u
i
c
P
n

A
m

Journal of Biomedical Optics 14�2�, 021002 �March/April 2009�

J

utomated detection and analysis of fluorescent in situ
ybridization spots depicted in digital microscopic
mages of Pap-smear specimens

ingwei Wang
niversity of Oklahoma

chool of Electrical and Computer Engineering
enter for Bioengineering
orman, Oklahma 73019

in Zheng
niversity of Pittsburgh
epartment of Radiology
ittsburgh, Pennsylvania 15213

hibo Li
niversity of Oklahoma Health Science Center
epartment of Pediatrics
klahoma City, Oklahoma 73104

oy Zhang
niversity of Oklahoma Health Science Center
epartment of Pathology
klahoma City, Oklahoma 73104

ohn J. Mulvihill
niversity of Oklahoma Health Science Center
epartment of Pediatrics
klahoma City, Oklahoma 73104

ei R. Chen
niversity of Central Oklahoma
epartment of Physics and Engineering

dmond, Oklahoma 73034

ong Liu
niversity of Oklahoma

chool of Electrical and Computer Engineering
enter for Bioengineering

Abstract. Fluorescence in situ hybridization �FISH� technology has
been widely recognized as a promising molecular and biomedical
optical imaging tool to screen and diagnose cervical cancer. However,
manual FISH analysis is time-consuming and may introduce large
inter-reader variability. In this study, a computerized scheme is devel-
oped and tested. It automatically detects and analyzes FISH spots de-
picted on microscopic fluorescence images. The scheme includes two
stages: �1� a feature-based classification rule to detect useful inter-
phase cells, and �2� a knowledge-based expert classifier to identify
splitting FISH spots and improve the accuracy of counting indepen-
dent FISH spots. The scheme then classifies detected analyzable cells
as normal or abnormal. In this study, 150 FISH images were acquired
from Pap-smear specimens and examined by both an experienced
cytogeneticist and the scheme. The results showed that �1� the agree-
ment between the cytogeneticist and the scheme was 96.9% in clas-
sifying between analyzable and unanalyzable cells �Kappa=0.917�,
and �2� agreements in detecting normal and abnormal cells based on
FISH spots were 90.5% and 95.8% with Kappa=0.867. This study
demonstrated the feasibility of automated FISH analysis, which may
potentially improve detection efficiency and produce more accurate
and consistent results than manual FISH analysis. © 2009 Society of Photo-
Optical Instrumentation Engineers. �DOI: 10.1117/1.3081545�
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Introduction
ervical cancer is one of the most common causes of death in
omen. It accounts for 273,000 deaths per year and repre-

ents 9% of all deaths from cancer in women worldwide.1 In
948, Dr. George Papanicolaou described a test that was ca-
able of detecting the early stages of cervical cancer.2 This
ltimately led the American Cancer Society to suggest the
mplementation of cervical cancer screening for precancerous
hanges.3 The clinical studies and data have supported that the
ap-smear test, which is based solely on morphologic exami-
ation of exfoliated cells from the cervix, has substantially

ddress all correspondence to: Hong Liu, PhD, 101 David L Boren Blvd, Nor-

an, OK 73019. Tel: 405-325-4286; Fax: 405-325-7066; E-mail: liu@ou.edu

ournal of Biomedical Optics 021002-
reduced the death rate due to cervical cancer in countries
where it is widely used.4–6 The screening program imple-
mented in the United States screens over 50 million Pap-
smear samples each year.7 Due to the high volume of routine
screening examinations and the large number of stained cells
depicted on each slide, the process of visually searching for
abnormal cells by subtle differences in cell morphology �i.e.,
the enlargement, irregularity, and hyperchromasia of nuclei� is
tedious and time-consuming. In addition, because of the sub-
jective or random selection of a limited number of analyzable
cells, the manual detection method reduces the diagnosis ac-
curacy �i.e., higher false-positive and false-negative detection
1083-3668/2009/14�2�/021002/10/$25.00 © 2009 SPIE
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ates� and introduces potential bias and inter-reader variability
nto the clinical practice.

Because it is difficult to read Pap-smear images and to
isually detect abnormal or carcinoma cervical cells based on
ell morphology, a new technology called interphase fluores-
ent in situ hybridization �FISH� has been investigated and
sed as an adjunct method to the conventional cytology.8 In
athology laboratories, pathologists apply FISH-labeled deox-
ribonucleic acid �DNA� probes to detect interphase cells
ith numerical and/or structural abnormalities that indicate
alignancy. Previous studies identified significant differences

n ploidy patterns, i.e., the amount of DNA between negative
nd cervical cancer cells.9–11 FISH technology has a number
f advantages that improve the efficiency and accuracy of
creening for cervical cancer by targeting specific chromo-
ome changes based on different DNA probes, because count-
ng the number of FISH spots inside each identified interphase
ell is much more reliable �less ambiguous� than interpreting
ubtle morphological features of other cytology specimens.12

n addition, since the culturing of metaphase cells is not re-
uired and the number of analyzable cells can be substantially
ncreased, interphase FISH analysis is a more efficient detec-
ion and diagnostic approach and has a higher statistical clas-
ification accuracy than conventional karyotyping.13 After de-
ermining that the trisomy in particular chromosome types
e.g., chromosomes 3, 7, and X� had a significant impact on
ervical cancer development and prognosis,8,9,14,15 a number
f research groups reported that interphase FISH testing using
hese three chromosomes achieved a higher sensitivity and
pecificity in detecting early cervical diseases, and it could
lso predict the progression of uterine cervical dysplasia to
nvasive cancer with a higher accuracy.16–18

Although FISH imaging technology is more reliable and
fficient than conventional cytology methods, the manual
ISH analysis method requires genetic laboratory technolo-
ists to subjectively select a limited number of analyzable
ells �i.e., 50 to 100 cells� and manually count the number of
ultispectrum FISH spots within each cell. This is a labor-

ntensive and time-consuming task with large inter-reader
ariability. As a result, the accuracy of FISH imaging technol-
gy is limited, especially when detecting subtle or early can-
er with low concentrations of positive or malignant cells
i.e., screening for cervical cancer at the early stage�. Devel-
ping automated schemes for FISH spot detection to improve
he efficiency of detecting FISH spots, has attracted much
nterest from researcher. Early studies applied computer
chemes to detect and count FISH spots after manual selec-
ion of analyzable cell nuclei or regions of interest. These
tudies indicated a strong correlation of detection results be-
ween the manual methods and the semiautomated computer
chemes.19,20 Because the semiautomated methods require
serintervention to exclude poorly segmented, overlapped,
lustered, or nonepithelial cells and therefore are impractical
n the clinical practice, some fully automated schemes have
ecently been developed and tested. These schemes usually
nclude two processing and detection steps.21 The first step
etects and segments analyzable interphase cell nuclei. All
nanalyzable “cells” are removed, such as nuclear debris,
arge clusters of overlapped or touched nuclei, and nonspecific
ackground stains. The second step aims to correctly detect

ISH spots by distinguishing spots from artifacts, background

ournal of Biomedical Optics 021002-
noise, and splitting and partially overlapping spots.22 Previous
studies have suggested that an automated interphase FISH de-
tection method could be used as a rapid approach or a poten-
tial future screening tool for cervical cancer by identifying
aneuploidy in premalignant stages of cervical cancer.15,23

The development of fully automated schemes for FISH
image analysis and signal detection faces a number of techni-
cal challenges.24,25 First, there are large variations in shape,
size, and intensity between different cell nuclei, and these
variations make it difficult to correctly detect and segment
analyzable interphase cell nuclei. Second, FISH image tech-
nology detects normal and abnormal or carcinoma cells based
solely on the counted number of FISH spots inside the cell.
However, the initially detected and counted FISH spots are
not all independent. Netten et al. reported that, due to the
centromeric probes and other image noise, the splitting, over-
lapping, and missing FISH spots inside identified interphase
cells substantially influenced the accuracy rate of FISH spots
detection.26 To solve these problems, Kozubek et al.,22 Gué et
al.,27 and Kajtar et al.24 reported and tested several new auto-
matic FISH signal analysis systems. However, there are no
commonly accepted rules or standards for deciding how to
merge or separate the detected FISH spots. For example,
Lukasova28 and Kozubek et al.22 reported using 0.5 �m as the
cutoff threshold to merge nearby FISH spots, while Kajtar et
al.24 suggested using 0.84 �m as the cutoff threshold. Instead
of using the distance as a merging or splitting criterion, Gué et
al.27 defined the following two rules: �1� close spots may be
merged into one big spot with a volume roughly twice the
average volume of one of the spots; and �2� if the distance
between the centers of the two spots is longer than the diam-
eter of one bigger spot, these two FISH spots represent two
independent chromosomes and should be counted as two
spots.

Despite the progress and encouraging results reported in a
number of previous studies, the performance of FISH signal
detection schemes is still limited due to the difficulty in de-
tecting analyzable interphase cells and correctly recognizing
splitting FISH spots. Kajtar et al. reported that approximately
11% of analyzable interphase cells were not detected by the
automated scheme.24 However, missing a fraction of analyz-
able interphase cells may not affect the final diagnostic
results.13 Kajtar et al. reported that automated schemes
achieved both a higher false-positive rate �FPR=7.0% � and a
higher false-negative rate �FNR=5.5% � than manual detec-
tion with FPR=5.8% and FNR=2.7%, respectively.24 Truong
et al. reported that since FISH spots demonstrate large varia-
tions in shape, size, and intensity, the automated scheme cor-
rectly detected and counted FISH spots in approximately 69%
of identified interphase cells.25 This clearly indicates that fur-
ther development and evaluation studies are required to im-
prove the performance of automated schemes for FISH spot
detection.

The goal of this study was to develop and test a new com-
puter scheme that aimed to more reliably and robustly detect
analyzable interphase cells and to analyze related FISH spots.
Specifically, this new automated scheme includes a set of im-
age processing algorithms and knowledge-based multifeature
classification rules to: �1� search for and detect analyzable

interphase cells while deleting others including the clustered
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ells, stain debris, and auto-fluorescent artifacts, �2� detect
ndependent FISH spots on each identified interphase cell by

erging split spots because of centrometric probes, and �3�
lassify between abnormal and normal interphase cells. The
escriptions of our automated scheme and preliminary testing
esults are presented here.

Materials and Methods
.1 Image Dataset
e selected six Pap-smear specimens �slides� acquired from

ix patients who underwent annual routine cervical cancer
creening examinations at the University of Oklahoma Health
ciences Center. In our genetics laboratory, a centromeric
EP 3 �D3Z1� spectrum orange probe and a centromeric CEP

�DXZ1� spectrum green probe �Vysis, Abbott Molecular
nc., Downers Grove, IL� were applied to process the Pap-
mear specimens using a standard FISH procedure24 that
arked the chromosome 3 and X located inside the interphase

ell nuclei. Figure 1 shows a few examples of captured FISH
mages in which objects with blue color represent the poten-
ial interphase cells, the red color FISH spots represent chro-

osome 3, and the green color spots indicate chromosome X.
hese examples include both analyzable interphase cells and
nanalyzable clusters. The unanalyzable clusters can typically
ivided into three types, including �1� one isolated huge re-
ion with many fluorescence artifacts �Fig. 1�a��; �2� one
roup of the overlapped and twisted interphase cells �Fig.
�b��; and �3� clusters of many small regions without clearly
eparated boundaries �Fig. 1�c��. Figure 1�d� displays four
ormal cells among which two cells are not very compacted
nd the intensities of these cells are not uniform. An experi-
nced cytogeneticist visually examined these 150 FISH im-
ges displayed on a computer monitor screen and detected
48 analyzable interphase cell nuclei and 77 unanalyzable
lusters of cells. Among the 248 analyzable cells, the cytoge-
eticist detected 105 normal cells and 143 abnormal cells. In
ach of the normal cells, two independent red color FISH

ig. 1 �a� A large region with many fluorescence artifacts. �b� A cluster
f overlapped cells. �c� A huge cluster involving many small areas and
tain debris. �d� Examples of analyzable normal interphase cells.
pots and two independent green color FISH spots were

ournal of Biomedical Optics 021002-
counted, while in each abnormal cell, at least the FISH spots
in the red or green spectrum �color� are not equal to two.
Figure 2 displays the distribution of red and green FISH spots
among these 143 abnormal cells.

2.2 Automated Scheme
An automated scheme was developed and tested to automati-
cally detect FISH spots using selected Pap-smear specimens.
The scheme included the following four steps: �1� detect ana-
lyzable interphase cell nuclei, �2� identify independent FISH
spots, �3� count the number of FISH spots to analyze the
number of particular chromosomes within a cell, and �4� de-
termine normal and abnormal cells by analyzing the number
of FISH spots.

2.2.1 Detection and segmentation of analyzable
interphase cells

The first step of the scheme was designed to detect potentially
analyzable interphase cells by deleting clusters, fluorescence
artifacts, and stain debris. A threshold was used to create a
binary image in the blue channel. To determine the threshold,
the histogram of the blue component was computed. Then the
scheme searched for the largest peak value of the histogram as
a threshold. All pixels with digital values larger than the
threshold were assigned “1” and others were assigned “0.”
Then a component-labeling algorithm29 and a raster scanning
method were applied to identify the initial regions of interest
�ROI�. A morphological opening filter followed to separate
any adjacent “touching” or connected areas and delete small
isolated areas.

After identifying and segmenting ROIs, the scheme classi-
fied the labeled ROIs into analyzable and unanalyzable cells.
For this purpose, the scheme first computed the following
three image features for each ROI: �1� size �S� was computed
by counting the number of pixels �N� inside a labeled region;
�2� circularity was defined as C=N�Nc /N, the number of
pixels located inside an intersection between a labeled region
�N� and an equivalent circle �Nc� that was in the center of the
labeled region, divided by the number of pixels located inside
the labeled region alone30; and �3� compactness was computed
as CP= P2 /S, where P and S are the perimeter and size of a
labeled region, respectively.

To define the classification rules based on these three fea-
tures, we applied a proven robust training method to define
and optimize this rule-based classifier.31 Specifically, we plot-

Fig. 2 Distribution of FISH spots in abnormal cells.
ted the scatter diagram of each feature and computed the cor-

March/April 2009 � Vol. 14�2�3



r
c
A
p
m
T
“
t
b
�
t
t
w
m
t
i

2
T
d
t
s
p
t
n
s
a
w
a
l
p
S
o
s

F
c
t
i
p
b

F
s
c

Wang et al.: Automated detection and analysis of fluorescent in situ hybridization spots…

J

esponding mean and standard deviation of the analyzable
ells and unanalyzable “cells” identified by the cytogeneticist.
threshold for each feature was decided by the boundary line

assing through y=m̄A�3��A, where m̄A and �A are the
ean and standard deviation of the group of analyzable cells.
hus, our scheme used three rules to delete unanalyzable
cells:” �1� when the size of a labeled region was larger than
he threshold �ST�23,000�; �2� when the circularity of a la-
eled region was smaller than the threshold �CT�0.6�; and
3� when the compactness of a labeled region was larger than
he threshold �CPT�400�. If any of the above three condi-
ions was satisfied, the detected and labeled object �region�
as classified as an unanalyzable cell and deleted. The re-
aining labeled regions were classified as analyzable cells so

he scheme would be applied to detect and count FISH spots
nside the cell in the next step.

.2.2 Detection of FISH spots
o detect FISH spots, the scheme used a threshold method to
efine two binary images. In RGB space, each pixel value has
hree components �R, G, and B�. To detect red FISH spots, the
cheme generated a red component-based binary image. If a
ixel value in the original image satisfied the condition that
he R component was larger than both the G and B compo-
ents, the scheme set this pixel value as 1; otherwise, it was
et as 0 in this R component image. The same method was
pplied to create a binary image for the green component,
hich was used to detect green FISH spots. In RGB space, if
pixel value satisfied the condition that the G component was

arger than both the R and B components, the scheme set this
ixel value as 1; otherwise, the pixel value was set as 0.
imilarly, the component labeling and raster scanning meth-
ds were implemented to detect and count potential FISH
pots.

Based on the positions of identified interphase cells, red
ISH spots, and green FISH spots, the scheme identified and
lassified whether a red or green spot belonged to one of the
hree groups, namely, a FISH spot that was �1� fully located
nside an analyzable interphase cell, �2� outside the cell, or �3�
artially inside and partially outside the cell �crossing the cell

ig. 3 �a� Illustration of typical FISH signal spots. �b� Related features
tringy diffuse oval shape in a normal cell. �d� Example of a splitting re
ell. �color online only.�
oundary�. As long as more than 50% of a spot’s area was

ournal of Biomedical Optics 021002-
located inside the cell boundary, the FISH spot was classified
as belonging to the cell and would be further processed; oth-
erwise, it was deleted like other FISH spots located in the
image background area. Through this step, the scheme deleted
all initially detected red and green FISH spots located outside
the analyzable cells.

2.2.3 Knowledge-based classifier
The purpose of detecting and counting FISH spots is to detect
the number of targeted chromosomes within a cell. However,
FISH spots can be very noisy due to splitting or overlapping
FISH spots. For example, a splitting FISH spot indicates that
a specific targeted chromosome may be represented by mul-
tiple FISH spots. The biggest challenge in automatically de-
tecting and counting FISH spots is how to identify splitting
FISH spots and that avoid repeatedly counting FISH spots,
that represent the same targeted chromosomes. In this scheme,
we built a knowledge-based expert classifier to identify split-
ting FISH spots. For this purpose, after identifying FISH spots
inside the analyzable interphase cells, the scheme first com-
puted the following six features: �1� the total number of la-
beled red spots �NRed� and green spots �NGreen�; �2� the size of
each labeled spot; �3� the circularity of each labeled FISH
spot; �4� the average intensity of each labeled spot; �4� the
gravity center of each FISH spot; �5� the effective radius of
each red or green spot computed as the radius of a circle that
had the same size as the labeled spot; and �6� the distances
between the same color spots. These features are illustrated in
Fig. 3�a�.

To use these features to build a knowledge-based classifier,
we discussed them with an experienced cytogeneticist and
observed how he visually detected and counted independent
FISH spots. We found that the effective FISH spots should
have either bright and compact oval shapes or stringy and
diffuse oval shapes. Because of the centromeric probe, the
splitting spots should be counted as one spot instead of two.
Figure 3�a� summarizes related features of spots in interphase
cells. Figure 3�b� shows the criteria or rules that we summa-
rized to identify effective FISH spots. Figure 3�c� shows that
a normal interphase cell contains two red and two green FISH

spots. �c� Example of red/green spots with compact oval shape and
spot in a normal cell. �e� Example of splitting red spots in an abnormal
of FISH
d FISH
spots, and one of the green spots is oval and compact while

March/April 2009 � Vol. 14�2�4
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he other green spot and two red spots are all stringy and
iffuse. Figure 3�d� displays another example of a normal cell
n which one red spot splits and the actual number of inde-
endent red FISH spots would be counted as two instead of
hree. Figure 3�e� shows an example of an abnormal cell com-
rised of three red spots and three green spots. In this abnor-
al cell, two red spots are split; therefore, the total number of

ed spots is three instead of five.
Based on our observations and the discussed examples, we

esigned and implemented a knowledge-based multifeature
lassifier in our computer scheme to identify and count the
ndependent number of FISH spots. Figure 4 is a flow dia-
ram of the classifier used to recognize the splitting, stringy,
nd diffuse FISH spots depicted inside the identified inter-
hase cells. These classification rules are listed as follows:

1. If the objects are red or green spots and their radii are
maller than the threshold �R1=1 pixel�, the spots are consid-
red image noise. These spots are deleted by assigning the
alue of corresponding pixels to zero.

2. A bubbling method is utilized to calculate the distances
etween two red or two green spots. If two spots belong to the
ame interphase cell, the distance between them is calculated;
therwise, the scheme continues to identify whether the red or
reen spots are located in the same cell. For M-identified
ISH spots in one cell, the sum of the computed distances
etween one spot and any of the other spots is CM

2 =M
�M −1� /2. The scheme analyzes each distance between two

ISH spots.
3. If the distance DAB between two FISH spots �A and B�

atisfies DAB�Th1=3� �RA+RB�, the scheme identifies
hem as two independent FISH spots.

4. If the distance DAB between two spots �A and B� satis-
es DAB�Th1=3� �RA+RB�, these two spots are selected as
andidates to represent a split FISH signal �spot�. The scheme

ig. 4 Flow diagram of a knowledge-based classifier to recognize spli
y our experiment: R1=1, Th1=3� �RA+RB�, Th2=2� �RA+RB�, Rt=
ompares their sizes SA and SB. If both of them are larger than

ournal of Biomedical Optics 021002-
the size threshold St �e.g., St=40, which is calculated by the
average size of spots in all analyzable cells in our available
dataset�, the scheme identifies these two spots as two indepen-
dent spots; otherwise, the scheme compares their average in-
tensities IA and IB. If their intensity difference is larger than It
�e.g., It=50, which is decided by our experiments�, the
scheme continues to identify these two spots as independent
FISH spots. If all of the above conditions fail, the scheme
determines that these two FISH spots are split spots and
counts them as one FISH spot.

5. If the distance DAB between two spots �A and B� satis-
fies the equation 2� �RA+RB�=Th2�DAB�Th1=3� �RA
+RB�, these two FISH spots are also selected as candidates for
the splitting FISH spots. The scheme then compares their
sizes SA and SB. If the ratio between the two sizes is larger
than Rt �Rt=5�, it identifies them as split spots and assigns
these two spots to one independent FISH spot. After identify-
ing the splitting FISH spots, the scheme reassigns two FISH
spots as the same labeling number recorded in the image
buffer. This process iteratively performs until all identified
and labeled FISH spots are analyzed.

One unique characteristic of our classification scheme is
that unlike previous studies in which the cutoff threshold to
merge the split FISH spots was empirically selected and fixed
�i.e., �10 pixels24�, the detected FISH spot merging threshold
in our scheme was automatically and adaptively determined
based on the computed features of FISH spots. The potential
advantage of this approach was tested in this study.

2.2.4 Classification between normal and abnormal
cells

Each normal interphase cell extracted from Pap-smear exami-
nation specimens should include only two chromosome 3 and

8

y, and diffuse cells. Note: The following thresholds were determined
0, It=50 �the unit is pixel�.
t, string
two chromosome X, which are represented in this study by
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he red and green spots, respectively, according to the number
f detected and counted red and green FISH spots inside each
ell. Thus, our scheme detects and classifies between normal
nd abnormal interphase cells. A normal interphase cell con-
ains two counted FISH spots for chromosome 3 and two
reen spots for chromosome X. If the number of either red or
reen spots in a cell is not equal to two, this cell is classified
s an abnormal cell.

.3 Scheme Evaluation
e applied this new computerized scheme to 150 selected

ISH images in our dataset. The performance of the scheme
as visually evaluated and quantitatively compared with the
etection and classification results reported by the cytogeneti-
ist. The comparison results were tabulated, and the Kappa
oefficients for agreements between automated and manual
visual� analysis results were computed for detecting analyz-
ble cell nuclei and classification between normal and abnor-
al cells.

Results
e first plotted and visually examined the results of the au-

omated scheme on cell detection, including the detection er-
or or difference between the analyzable and unanalyzable �or
luster� cells. Figure 5 displays the distribution differences of
hree features: size, compactness, and circularity between ana-

ig. 5 Comparisons of different feature distributions for analyzable
nterphase cells and unanalyzable cell clusters, including the size dis-
ribution of all �a� analyzable and �b� unanalyzable cells; the com-
actness distribution of all �c� analyzable and �d� unanalyzable cells;
nd the circularity distribution of all �e� analyzable and �f� unanalyz-
ble cells.
yzable interphase cells and unanalyzable clusters. These

ournal of Biomedical Optics 021002-
comparisons show that most of the unanalyzable “cells” or
clusters were huge and nonuniform regions with irregular
shapes, while the analyzable cells were typically small, com-
pact, round regions. The circularities of all analyzable cells
were larger than 0.6 and their compactnesses were smaller
than 400 pixels. The size of all cells ranged from 2,000 to
22,500 pixels.

We then plotted and visually examined the automated
FISH spot detection and counting results. Figure 6 shows the
distribution of the distances between splitting FISH spots in
normal cells. It demonstrates that the largest distance between
splitting FISH spots was around 10 pixels. Figure 7 displays
examples when this scheme was applied to two FISH images
acquired from Pap-smear specimens in our dataset. In the first
example �Fig. 7�a��, our scheme detected and segmented the
mixed interphase cells into a single analyzable cell �Fig. 7�b��
and an unanalyzable cell �cluster�; while in the second ex-
ample �Fig. 7�d��, the scheme detected three analyzable cells
and one unanalyzable cell �Fig. 7�e��. The FISH signal spots
detected and counted by the automated scheme within each
cell are also tabulated in Fig. 7. Figure 8 shows FISH spot
counting results among a set of analyzable cells. Figures
8�a�–8�h� show eight normal cells, and Figs. 8�i�–8�p� display
eight abnormal cells. Both the cytogeneticist and our auto-
mated scheme obtained the same classification results for
these 16 cells. Figures 8�q�, 8�s�, and 8�t� display examples of
the interphase cells in which there was disagreement in the
number of counted FISH spots between the cytogeneticist and
our scheme. Specifically, the number of red FISH spots in
Figs. 8�q� and 8�s� were counted by the cytogeneticist as two,
three, and two, respectively. Because these red spots were
very close together, the scheme identified them as splitting
spots from one FISH spot and combined them. As a result, the
number of red spots in Figs. 8�q� and 8�s� was counted as one
by our scheme. Figure 8�t� displays another example of a
normal cell. Because the intensity of one green FISH spot was

Fig. 6 �a� Distance distribution between red FISH spots in normal
cells. �b� Distance distribution between green spots in normal cells.
�color online only.�
quite low, it was missed by the scheme. Thus, the number of

March/April 2009 � Vol. 14�2�6
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reen spots was counted as one by the scheme instead of two
s visually counted.

The results of manual and automated segmentation and
lassification between analyzable and unanalyzable interphase
ell nuclei are summarized in Table 1. The results indicate
hat 98.7% �76 out of 77� and 96.4% �239 out of 248� of
etected and segmented cell regions in the dataset were as-
igned to unanalyzable cell clusters and analyzable interphase
ells by both the cytogeneticist and our automated scheme
sing a set of knowledge-based classification rules. The cor-
esponding Kappa coefficient for agreement was 0.917. The
lassification performance to distinguish between normal and
bnormal interphase cells by counting the number of red and
reen FISH spots is also summarized in Table 2. The agree-
ent of FISH spot counting and classification results between

Fig. 7 Automated det
he cytogeneticist and our scheme was 90.5% �95 out of 105�

ournal of Biomedical Optics 021002-
for normal cells and 95.8% �137 out of 143� for abnormal
cells. The corresponding Kappa coefficient was 0.867. These
agreement results �Kappa coefficients� indicate the high
agreement level between a cytogeneticist and our computer
scheme in both detecting analyzable interphase cell nuclei and
counting the independent FISH spots.

4 Discussion
In this study, an automated scheme was developed and tested
to detect analyzable interphase cells and count two sets of
FISH spots that targeted chromosomes 3 and X using Pap-
smear testing specimens. To improve the scheme perfor-
mance, we implemented several unique approaches. First, in-
stead of using a set of thresholds determined by the

24

result by the scheme.
ection
separations on the scatter-plot diagrams, we computed a set

March/April 2009 � Vol. 14�2�7
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f image features and developed a knowledge-based classifier
o identify analyzable interphase cells by deleting unanalyz-
ble cells and debris. Second, identifying splitting FISH spots
s the most difficult and important task in developing auto-

ated schemes, because this identification it determines not

Fig. 8 Examples of a

able 1 Comparison results of analyzable interphase cells between a
ytogeneticist and the computerized scheme.

Data classified
by a

cytogeneticist

Automated scheme
Agreement

rateAgreed Disagreed

Un-analyzable
cells

77 76 1 98.7%

Analyzable
cells

248 239 9 96.4%

Total 325 315 10 96.9%
ournal of Biomedical Optics 021002-
only the true number of FISH spots, but ultimately the diag-
nostic results of the FISH image examinations. Unlike previ-
ous schemes that were implemented with a fixed cutoff
threshold to merge splitting FISH spots,24,28 we first observed
and discussed with a cytogeneticist how clinicians visually
identify splitting FISH spots before we implemented the clas-

ble interphase cells.

Table 2 Comparison results of normal and abnormal cells between a
cytogeneticist and the computerized scheme.

Data classified
by a

cytogeneticist

Automated scheme
Agreement

rateAgreed Disagreed

Normal cells 105 95 10 90.5%

Abnormal cells 143 137 6 95.8%

Total cells 248 232 16 93.5%
nalyza
March/April 2009 � Vol. 14�2�8
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ification rules in our scheme. We then developed a
nowledge-based classifier using a set of floating or adaptive
hresholds that depend on the actual shape, size, and intensity
f the detected FISH spots to merge the split FISH signal
pots. Our scheme was applied to an image dataset involving
50 FISH images randomly acquired from six Pap-smear
pecimens.

The capability and performance level of our scheme have
een assessed and compared with manual results evaluated by
n experienced cytogeneticist for both identifying analyzable
nterphase cells and detecting FISH spots. Similar to many
ther previously reported studies, we used the manual classi-
cation results provided by an experienced cytogeneticist as

he “ground-truth” �reference�, and our scheme achieved a
igh performance level by correctly detecting 96.4% of ana-
yzable interphase cells as well as 90.5% of normal cells and
5.8% of abnormal cells. These performance results are en-
ouraging compared with previous studies. For example, a
ecent study reported a 0.8 true-positive rate �TPR� and a 0.4
PR in detecting analyzable cell nuclei, as well as sensitivities
f about 92% and 80% for detecting red and green spots,
espectively, at a FPR rate of about 25%.21 Although different
mage datasets were used in different studies so the perfor-

ance of these schemes cannot be directly compared, we be-
ieve that the performance of our scheme is very comparable
r higher than those achieved by the available automated
chemes.

Despite the encouraging results, we also recognize that this
reliminary study has a number of limitations. First, our
cheme generates disagreement in a number of cells with the
ytogeneticist in counting FISH spots, as shown in Figs.
�q�–8�s�. The major reasons for the disagreement or detec-
ion error are: �1� the error of our adaptive threshold to merge
ISH spots that are not visually considered splitting by the
ytogeneticist, and �2� the relatively low sensitivity of the
cheme in detecting low-intensity or low contrast FISH spots.
econd, while human eyes can segment a fraction of analyz-
ble cells from some clustered or overlapped cells to count
ISH spots, our scheme fails to segment these analyzable
ells from the “cluster.” Third, due to the limitation in the size
f our current image dataset, the robustness of our scheme has
ot been fully tested and evaluated. Finally, since these 150
ISH images were randomly acquired from six Pap-smear
pecimen slides, it is not possible to use this automated
cheme to generate a diagnostic result index of the testing
ase at the current stage. To overcome these limitations, we
re currently developing at our laboratory a fluorescence mi-
roscopic digital image scanning system, which aims to ac-
uire all interphase cells �analyzable and unanalyzable� de-
icted on one FISH image slide. Thus, we will be able to
ystematically acquire more FISH images from a testing Pap-
mear specimen and apply our scheme to generate a likeli-
ood score of a testing case being positive for cervical cancer.

Conclusion
n conclusion, automatic interphase FISH image analysis
echnology provides a promising biomedical optical imaging
ool to screen and detect cervical cancer and other diseases.
espite the significant progress made and reported by a num-

er of research groups, many issues and difficulties remain in

ournal of Biomedical Optics 021002-
developing automated schemes for FISH image analysis. In
this study, we proposed and implemented several new image
feature analysis and classification approaches to improve the
accuracy of identifying analyzable interphase cells and detect-
ing FISH spots. The preliminary testing results are encourag-
ing. In order to assist clinicians to quickly scan and diagnose
FISH images acquired from Pap-smear samples in a busy
clinical practice, the performance and robustness of our
scheme needs to be further tested by using a much larger and
more diverse image dataset before the scheme can be applied
in clinical practice for assisting cervical cancer screening and
diagnosis.
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