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Abstract. The recent development of hybrid imaging scanners that
integrate fluorescence molecular tomography �FMT� and x-ray com-
puted tomography �XCT� allows the utilization of x-ray information as
image priors for improving optical tomography reconstruction. To
fully capitalize on this capacity, we consider a framework for the
automatic and fast detection of different anatomic structures in murine
XCT images. To accurately differentiate between different structures
such as bone, lung, and heart, a combination of image processing
steps including thresholding, seed growing, and signal detection are
found to offer optimal segmentation performance. The algorithm and
its utilization in an inverse FMT scheme that uses priors is demon-
strated on mouse images. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction

ptical tomography has drawn significant attention in recent
ears due to its operational simplicity and the rich contrast
ffered, especially when employing targeted fluorochromes.
luorescence molecular tomography �FMT� in particular has
een shown to be capable of resolving highly versatile cellu-
ar and subcellular contrast in whole animals1,2 in vivo and
oninvasively. There have been significant technological de-
elopments in FMT methods, especially associated with
60-deg projection free-space techniques that avoid the use of
atching fluids,3–6 the use of charge-coupled device �CCD�

ameras for high spatial sampling of data fields,7 and the de-
elopment of fast and tomographic algorithms to impart quan-
itative 3-D imaging.8–12 In addition, the use of early photons
as further shown imaging improvements over constant inten-
ity illumination data. These developments essentially bring
ut the full potential of stand-alone diffuse optical tomogra-
hy methods.

The use of image priors has been also considered for fur-
her improving the performance of the optical tomography

ddress all correspondence to: Marcus Freyer, Helmholtz Zentrum München,
nstitute for Biological and Medical Imaging, 1 Ingolstädter Landstraße, Neuher-
erg, 85764 Germany. Tel: 49-�0�-89-3187-3885; Fax: 49-�0�-3187-3017;
-mail: marcus.freyer@helmholtz-muenchen.de
ournal of Biomedical Optics 036006-
reconstruction over stand-alone systems.13–17 A common ap-
proach is the utilization of anatomical information for the
construction of a more accurate solution to the forward prob-
lem, or the regularization of the ill-posed inverse problem,
resulting in improved image fidelity and resolution. To capi-
talize on the improvements that are offered by the use of
image priors, there has been recent interest in the develop-
ment of hybrid imaging systems.18–24 Our group has recently
developed a fully integrated FMT x-ray computed tomogra-
phy �XCT� scanner, where all optical and CT components are
mounted on a common gantry.25 This modality provides accu-
rately registered CT data that can be used to improve FMT
image quality. A particular requirement that in consequence
arose is the segmentation of the CT data to identify different
organs or structures in the tissue imaged. This is important for
three main reasons. The identification of different structures
and their corresponding interfaces allows the generation of
more accurate numerical meshes for the optical tomography
problem. Importantly, they also allow for the assignment of
optical properties, based on the knowledge of the optical
properties of the organ or structure segmented, since there is
no direct relation between x-ray CT images and optical at-
tenuation. Finally, the resolved structures can then be used to

1083-3668/2010/15�3�/036006/8/$25.00 © 2010 SPIE
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uide the inversion scheme utilized, as further explained in
he methods.

We therefore considered an automatic segmentation
cheme for streamlining the FMT-XCT inversion. Several ap-
roaches have been suggested in the past for automated seg-
entation of medical CT images.26–30 However, the segmen-

ation and subsequent utilization of the results into the FMT-
CT code required different image processing approaches

ompared to published methods for medical CT data. The
ifferences can be attributed related to the use of �CT data,
.e., data of varying noise levels and reduced image contrast
etween organs compared to clinical CT data.

In addition, the work here considers an automatic integra-
ion scheme of segmented data into the FMT inversion
cheme. Particular attention has been given to obtaining effi-
ient computation to reach fast inversion times. For this rea-
on, attention was given to the use of low dimensional spaces
nd adaptive parameter definition that can be solved using
inimum computing requirements in terms of memory and
PU time.

In the following, we introduce the framework developed,
xamined for segmentation in the torso, as it relates to the
tudy of lung disease. We present the segmentation tools em-
loyed, their performance with experimental mouse images,
nd the consequent integration of the results into a finite-
lement method �FEM�-based FMT inversion code.

Automatic Detection of Anatomical
Structures

utomatic detection of specific structures has been of great
nterest in medical imaging fields. Different approaches have
een developed in the last few decades for image segmenta-
ion. Typically, the solutions presented work optimally for a
articular set of problems and cannot be generalized for any
egmentation specification. We consider segmentation of three
ajor structures in the mouse torso, i.e., skeletal tissue, lung,

nd heart. The image data were taken using a commercial
icro-CT25 with a tube voltage of 80 kV and an electric cur-

ent of 450 �A. The selection of the torso was driven by an
levated interest to study lung cancer and lung inflammatory
iseases such as asthma and COPD associated with pharma-
ological studies. We found that each tissue required different
mage processing steps for optimal segmentation, as described
n the following.

.1 Bone Segmentation
ince bone structures exhibit high contrast on CT images,

hey can be easily identified with a conventional application
f a threshold, which conveniently is also a fast operation. To
utomatically assign a threshold, we examined the histogram
f the intensities of the CT volume data. When dealing with a
ormalized scale like the Hounsfield scale, it is straightfor-
ard to select a certain threshold that divides the image in
one and background. However, in this work we make no
ssumption on the CT data scaling so that the method can
ork seamlessly with different CT acquisition parameters and
atasets, since in small animal imaging there exists less stan-
ardization between the data obtained, compared to clinical
ata. The analysis of many histograms of our CT data had
hown that there are no significant features representing the
ournal of Biomedical Optics 036006-
intensity of bone tissue, like a local maxima or minima, which
could be traced. The intensity of the bones is usually widely
distributed throughout the histogram. Therefore we approxi-
mated our threshold Tb by finding other distinct intensities,
and assume that there is a linear relationship between those
intensities and the threshold we need. Mathematically, this
can be described by

Tb = I1 + w��I1 − I2�� , �1�

with I1 and I2 being the reference intensity points and w being
a factor for weighting the distance between those points.

When considering a typical histogram of a mouse CT, two
distinct peaks can be noticed that could be used as reference
points �Fig. 1�. The highest peak can be found at the left side
of the histogram and corresponds to voxels of very low den-
sity, in this case primarily the voxels corresponding to the air
in the field of view surrounding the animal. A second signifi-
cant peak, corresponding to water, can also be easily identi-
fied as a second maximum in the histogram. Soft tissue con-
tains high amounts of water, and the area around that peak
essentially indicates voxels corresponding to soft tissue.
These two peaks can be employed for approximating the op-
timal threshold in Eq. �1�. To determine the scaling factor w in
Eq. �1�, we considered the Hounsfield scale, since it is a com-
mon standard for CT images. In the Hounsfield scale, air has
an intensity of −1000 Hounsfield units �HU�, water has an
intensity of 0 HU, and bone structures start at 400 HU, i.e.,
0.4 of the water-air difference. Thus in the Hounsfield scale,
the threshold for bone structures Tb at 400 HU can be deter-
mined by rewriting Eq. �1� as

Tb = Iwater + 0.4�Iwater − Iair� , �2�

with Iair and Iwater being the intensities of air and water in HU.
This equation was utilized to compute the threshold in CT
volume data with arbitrary units. The respective peaks repre-
senting the intensities of air and water can be determined by
simple maxima detection in the according histogram. Using
this threshold, the CT images were converted to binary for
subsequent processing as described in the following.

Fig. 1 From the CT volume data, a histogram of the intensities was
computed. In this example you can recognize the two distinct peaks
�arrows� that represent soft tissue, consisting mostly of water and air.
May/June 2010 � Vol. 15�3�2
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.2 Ribcage Detection
or segmentation of lung and heart, we considered first the

dentification of orientation points to serve as initial points for
ubsequent segmentation steps. In this role, the ribcage serves
s an easily identifiable structure that accurately delineates a
ig part of the outer surfaces of the lung and heart. To identify
he ribcage, we analyzed the result of the bone segmentation
y computing a histogram of the number of segmented bone
oxels per axial slice. We treated the histogram as a signal

a�t�, where t is the slice number. Within this signal the rib-
age creates a distinct harmonic frequency �Fig. 2�a��. To de-
ect the periodicity, we opted for the use of a Gabor filter;
ssentially a Gaussian function multiplied with a cosine, i.e.,

g�,��t� = exp�−
t2

2�2� · cos�2�
t

�
� , �3�

here the parameters � and � define the width and frequency
f the filter.

This approach is similar to template matching, where the
abor function describes the periodic oscillation of the rib-

age. Since the frequency of the Gabor filter needs to match
he frequency the ribcage produces in ha�t�, specific values
or � and � had to be defined. To determine those values, we
nalyzed the frequency produced by the ribcage in three train-
ng datasets and adjusted � and � so that the Gabor filter fitted
his frequency. When performing the ribcage detection on un-
nown test data, we used the differences of the voxel spacing
nd voxel size in the training and test data sets to compute a
caling factor for � and �. Thus the procedure is independent

ig. 2 �a� The histogram function ha�t� displays the number of segmen
he ribcage between the dotted lines. The lines mark the beginning an
eak close to the center of the ribcage. The solid line connecting all
ournal of Biomedical Optics 036006-
from scaled image data. Inherent in this procedure is the as-
sumption that the size of the imaged mice does not vary sig-
nificantly, and that the ribs have a distinct separation to each
other. To apply the filter, we convoluted the histogram signal
ha�t� with the Gabor filter g�,��t�. The result of the convolu-
tion ha�t�* g�,��t� is a filter response that usually had its glo-
bal maximum near the axial center of the ribcage �Fig. 2�b��.
Furthermore, we used just the local maxima of the filter re-
sponse to interpolate a new function �also Fig. 2�b��. In this
function, the next minima to the left and right sides of the
global maximum �the center of the ribcage� were selected as
landmark points that defined a bounding box in the axial di-
rection around the ribcage. Those landmarks do not necessar-
ily mark specific anatomical points, but usually they appear
near the top and bottom endings of the sternum.

To define the bounding box also in sagittal and coronal
directions, we computed the histograms hs�t� and hc�t� indica-
tive of the number of segmented bone voxels in these direc-
tions. Note that we only used the slices between the axial
landmark points to compute those histograms. In the histo-
grams, we searched for the global maxima and the first slices
left and right to them, where hs�t� and hc�t� respectively equal
zero, that is, were the ribcage ends. We confined our bounding
box only around the ribcage and excluded artifacts outside the
mouse that sometimes occur. If this detection scheme experi-
ences difficulties due to noise and artifacts, it is possible to
employ searches that define areas where hs�t� and hc�t� be-
come smaller than a predetermined value greater than zero to
get a bounding box tight around the ribcage. Overall, ribcage
determination is an essential step for further detection of ana-

e voxels per slice. Note the very harmonious frequency produced by
nd of the sternum. �b� The response of the Gabor filter has its highest
s the interpolation of all maxima of the filter response.
ted bon
d the e
peaks i
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omic structures, as described in the following.

.3 Lung Segmentation
o enable lung segmentation, we utilized a seed growing al-
orithm within the confines of the detected ribcage. For this
urpose, possible seed points inside the lungs had to be found
utomatically. The whole respiratory system can be naturally
ecognized on XCT images by means of its low density and
he corresponding high contrast to surrounding tissue. How-
ver, image intensity and contrast alone did not suffice for
ccurate detection. This was because the bounding box of the
eed growing algorithm was usually still wide enough to oc-
asionally contain regions of air outside the mouse or parts of
he digestive system that showed also a low intensity and
ontrast. Other challenges involved the blurring of borders
ue to possible moving artifacts. To refine the region of inter-
st and achieve a correct segmentation result, we created a
pherical region of interest �SROI� inside the bounding box.
he SROI was initialized as a sphere with a radius of zero at

he center of the bounding box �see Fig. 3�a��, and was al-
owed to grow so that the sphere radius measured 90% of the
istance between the center of the sphere and the boundary of
he mouse. In Fig. 3�a� a CT image is displayed with the
ccording bounding box �solid blue line� and the SROI �bright
ircle�.

To find seed points inside the SROI, we computed an in-
ensity histogram from all the voxels inside the SROI �Fig.
�b��. Here, the voxels with the lowest intensity Ilow mark the
ark bronchial tubes, and the high peak Ipeak marks soft tissue.
e took these easy to detect points as references to compute

n interval �I1 , I2�, where

I1 =
2

3
Ilow +

1

3
Ipeak, �4�

nd

ig. 3 �a� The image shows a CT slice including the SROI �brighter sp
oints �white spots�. The dotted line marks the middle of the bound
ntensity distribution within the region of interest. The peak represent
ournal of Biomedical Optics 036006-
I2 = I1 + 0.5�Ipeak − I1� , �5�

which represents the intensity of voxels that by consequence
belong to lung tissue. The parameters of Eqs. �4� and �5� were
roughly determined empirically using about five datasets. All
voxels of the SROI that possessed this intensity were consid-
ered possible seed points for the seed growing algorithm. In
Fig. 3�a�, these seed point possibilities are marked green.

For the seed growing algorithm itself, a mean intensity Īa
was defined using the chosen seed point s and its neighboring
voxels. Also, a confidence interval was defined by

�Īa − m�, Īa + m�� , �6�

with � representing the intensity’s standard deviation of the
seed point and its neighboring voxels, and m serving as a
multiplier to manually control the width of the interval. The
algorithm iteratively searched for all voxels that had intensi-
ties within the confidence interval and that were connected to
the seed point or an already segmented voxel. To avoid over-
segmentation, we chose m to be very small. To compensate
the resulting undersegmentation, we used multiple, randomly
chosen seed points, thereby computing multiple segmenta-
tions and combining them. Since the algorithm is sensitive to
noise, we smoothed the result by using a Gaussian filter,
thereby interpolating small gaps and holes. Finally, we rebi-
narized the image using a threshold filter.

Because we also wanted to be sure that both the right and
left lobes of lung are segmented, we chose an equal number of
seed points from both. We distinguished between the right and
left lobe by simply dividing our bounding box in the middle.

2.4 Heart Position Approximation and
Segmentation

The last procedure of our framework is the approximation of
the heart position and its segmentation. For this purpose we
propose the use of a shape model of the heart generated from

l region�, the computed bounding box �solid line�, and possible seed
, dividing right and left lobes of the lung. �b� The graph shows the
in the soft tissue.
herica
ing box
s water
May/June 2010 � Vol. 15�3�4
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anually segmented training data. In this work we used one
anually segmented volume dataset to gain this model. The
odel is a closed mesh that consists of a number of vertices

onnected through edges. To yield a rough initial position and
caling factor for the model, we used the bounding box from
he ribcage detection as reference. Using the training dataset,
e examined the heart position relative to the borders of the
ounding box by considering the box as a normalized cube
ith a side length of 1. We initialized the heart model at the

ame position in bounding boxes of other CT volume images.
scaling factor for controlling the size of the heart model

as approximated using the sizes of the bounding boxes
round the ribcages of training and test datasets as references.
caling factors were computed for all three directions and
veraged to get the main scaling factor. This averaging results
n a more robust scaling, for our experiments had shown that
he sizes of the bounding boxes varied enough to receive un-
sual heart shapes.

This operation generally placed the heart model close to its
upposed position. However, it also attained regions where the
eart model was overlapping the other segmentations of the
ung and bone structures. This is because of the rough initial
osition and scale approximation. To adjust the model posi-
ion, we searched for all of the overlapping voxels and created
or each one a unit vector that points to the center of gravity
f the heart model. Thus a vector field was created. The field
epresents forces that push the model away from overlapping
ections. After the heart model was translated by the vector
eld, the procedure was repeated iteratively. A decreasing
eighting factor thereby ensures the convergence of the pro-

edure. The iterative process was stopped when either no
ore voxels with segmentation overlap were detected, or the

ranslational improvement was beneath a specified threshold.
he latter usually occurs when there is a balance between

orces from opposite sides, i.e., lung and ribcage/sternum,
hich means that the heart model is too large to fit. We then

caled down the heart model to 95% of its size and restarted
he iterative position adjustment until finally no more regions
ith overlapping segmentations remained.

We note that this algorithm does not provide a segmenta-
ion of the heart that fully incorporates wide shape variations.
ince the heart model is static, it cannot fully fit the actual

mage data. Nevertheless, it still can be used as an approxi-
ation of a segmentation result and as a new initial position

or further, more advanced segmentation algorithms like ac-
ive contour models that have yet to be implemented.

.5 Validation of Segmentation Results
s a reference for evaluation of segmentation results, we used
old-standard manual segmentation revised by an expert spe-
ialized in mouse anatomy. We segmented the whole skeleton,
oth lobes of the lung, and the heart of a CT volume image
ith a size of 267�242�452 voxels on a 64-bit PC with a
uad core CPU �2.67 GHz� and 4 GB of RAM. Notice that
esults of the bone segmentation will always be constant. The
ung segmentation algorithm, on the other hand, picks ran-
omly only a few of many possible seed points, thus produc-
ng different results. Since the heart position approximation
epends on the lung segmentation result, these results vary
oo. To compensate for this fact, we performed the segmenta-
ournal of Biomedical Optics 036006-
tion process several times to yield the mean performance.
As a main criterion for the evaluation, we used the Dice

coefficient 0�s�1 with

s =
2�X � Y�
�X� + �Y�

, �7�

which measures the similarity of two sets X and Y, i.e., the
manually and automatically segmented data volumes. Other
criteria were the false rejection rate �FRR� and the false ac-
ceptance rate �FAR�

FRR =
�X� − �X � Y�

�X�
= 1 −

�X � Y�
�X�

, �8�

FAR =
�Y� − �X � Y�

�Y�
= 1 −

�X � Y�
�Y�

. �9�

The Dice coefficient is a more general measure for accuracy
of the segmentation that the FRR and FAR can also show, if
segmentation errors are due to over- or undersegmentation.
The FRR measures the amount of voxels of the manually
segmented data that were not segmented by the automatic
framework �undersegmentation�, while the FAR measures the
number of voxels of the segmented data that do not belong to
the respective tissue �oversegmentation�.

3 Fluorescence Molecular Tomography
Reconstruction

For fluorescence tomography, the propagation of photons in
the tissue was modeled by using the diffusion approximation
to the radiative transport equation

�− �D � + �a�Um�r� = − n�r�Ux�r� , �10�

where D and �a are the spatially varying diffusion and ab-
sorption coefficients, n�c is a function proportional to the
fluorochrome concentration c, and Ux and Um describe the
photon density at the excitation and emission wavelength. If
D and �a are known Green’s functions G�r ,r��, a solution is
given by

�− �D � + �a�G�r,r�� = − ��r − r�� , �11�

leading to

Um�r� = −�
r��V

G�r,r��n�r��Ux�r��dr�. �12�

In addition, to eliminate the influence of varying source inten-
sities and detector sensitivities and to correct for heteroge-
neous optical coefficients, we used the normalized ratio be-
tween fluorescence and transmittance Um /Ux, as presented by
Refs. 31 and 32.

Equation �12� can be inverted by standard methods to yield
the concentration measurement n for each voxel r� of the
volume data V. Successful inversion requires knowledge of
the photon density x, which we modeled by using the same
Green’s functions as Um. Green function computations were
based on a finite element solution of the diffusion equation.33
May/June 2010 � Vol. 15�3�5
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he finite element mesh was created based on the CT volume
ata, where the surface of the mouse itself defines the bound-
ry of the mesh. After segmentation, average optical proper-
ies representative of the tissue type represented by each node
ere assigned to the node.

Equation �12� can be transformed into the linear system
x=y through discretization. Here, W contains the contribu-

ion of the integral over G, x is the discretized vector of the
oncentration values n, and y is the vector of measurements.
his equation is usually ill-conditioned and thus a stable so-

ution can be found by minimization of a regularized residual

	Wx − y	2 + �	Lx	2 → min. �13�

he anatomical priors from the segmentation procedure were
ntegrated in the regularization term by using Laplace regu-
arization as proposed in Refs. 13 and 15. Here, matrix L is
efined by

L = 

l1,1 l2,1 . . . lw,1

l1,2 l2,2 � ]

] � � lw,w−1

l1,w . . . lw−1,w lw,w

� , �14�

here w is the number of voxels in the CT date volume and l
s thus given by

li,j = �
1 if i = j

−
1

ws
if voxels i, j are part of the same region s

0 otherwise

 ,

�15�

ith ws being the number of voxels in region s. The regions
re defined by the segmentations, thus utilizing spatial infor-
ation in the reconstruction.
The Laplace prior employed here smoothes estimated fluo-

ochrome distributions within a region while it allows for
trong differences across the boundaries of the regions. For
omparison to reconstructions without anatomical a-priori
nowledge, we also used the common Thikonov regulariza-
ion, with L=Id, which does not include structural priors.

Results
.1 Segmentation
igure 4 shows the empiric results of the bone segmentation.
otice that very thin bone structures like the blade bones

xhibit holes. In our CT images, these structures show lower
ntensities than bone usually does due to blurring artifacts.
verall, the results yielded Dice coefficients of 0.8721. FRR

0.1062� and FAR �0.1485�, which show that these operations
esulted in oversegmentation. When we visually evaluated the
esult, we recognized that nearly all segmentation errors oc-
urred along the borders. This is mainly due to blurring arti-
acts at the borders between different tissues. Thus we con-
idered these errors to be within normal uncertainty bounds.
he segmentation of the bones took 3.3 sec, and the recogni-

ion of the ribcage took 1.2 sec, which is very fast for data
olumes of such large size.
ournal of Biomedical Optics 036006-
For the lung segmentation, we analyzed 30 segmentations
of our reference image data. We experienced that five seed
points per lobe of the lung usually were enough to achieve an
accurate and robust segmentation result while still being time
efficient. The results are displayed in Fig. 5. The framework
achieved a mean Dice coefficient of 0.766 with a variance of
0.007. Nonsegmented voxels �FRR 0.3096� had the greatest
influence on this result, while oversegmentation was much
smaller �FAR 0.1091�. Falsely accepted voxels were usually
part of the bronchial tubes outside the lung. The falsely re-
jected voxels were mostly voxels with a considerably higher
intensity, where the lung tissue showed pathologies. The
speed of the lung segmentation differs, since the number of
iterations of the seed growing algorithm depends on the initial
seed point. Usually the segmentation was done in less than
30 sec, including the search for appropriate seed points.

The heart segmentation was also done 30 times. In Fig. 6
you can see the adapted heart model inside the ribcage. The
mean Dice coefficient was 0.7647 and had a variance of only
0.0004. Considering that we only used a static model build
from one single training dataset, we consider this a very good
result. Most notably, this result was due to the quite high FRR

Fig. 4 The result of typical bone segmentation: �a� the original CT
slice, �b� the corresponding slice of the segmented data, and �c� sur-
face model of the skeleton computed from the segmentation result.

Fig. 5 Result of the lung segmentation: �a� the original CT slice, �b�
the corresponding slice of the segmented data, and �c� surface model
of the skeleton and the lung computed from the segmentation results.
May/June 2010 � Vol. 15�3�6
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f 0.3378, while only 0.0936 of the segmented voxels were
alsely accepted. The time needed for the approximation of
he heart also depends on the initial position. On our test data
t took less than 45 sec to adjust the heart model.

.2 Reconstruction
igure 7 shows the results of the utilization of XCT anatomi-
al information as priors in an FMT inversion scheme. The
MT images are laid over the corresponding CT slice. To
implify matters, only one slice out of a reconstructed volume
s presented for each approach. For the evaluation of the re-
onstruction improvement using anatomical priors, we simu-
ated a situation of inflamed lungs �Fig. 7�a��, modeled after
revious studies of lung inflammation,2,34 and used three dif-
erent reconstruction procedures, i.e., 1. no regularization, 2.
nversion using Thikonov regularization, and 3. the Laplace
egularization. However, segmentation of the in-vivo CT im-
ging data was done using our framework, and no simulated
egmentation was used. We note that the first two approaches
o not utilize the segmented information image priors, and
hat no noise was added in the simulation.

Figure 7�b� shows the inversion obtained without regular-
zation. In this case the inversion generates significant arti-
acts, especially on the borders leading to a highly inaccurate
econstruction. Figure 7�c� depicts high blurring of the fluo-
escent signal. The intensity of the signal is also too low, and

prominent spot can be recognized in one lobe of the lung
hile the intensity should be homogeneous. Finally, Fig. 7�d�

hows the best reconstruction results due to the priors. The

ig. 6 Result of the heart segmentation. The image shows surface
odels of all three segmented anatomical structures.

ig. 7 �a� Simulated fluorescence signal in the lung. �b� Result with
howing the best imaging performance in this case.
ournal of Biomedical Optics 036006-
fluorescence intensity was reconstructed accurately; it is dis-
tributed homogeneously in the lung and only small blurring
artifacts occur along the borders.

5 Discussion
We have introduced an automatic segmentation scheme for
bones, lungs, and the heart for streamlining FMT-XCT inver-
sion. The framework utilized several segmentation and signal
processing methods in an automatic manner. Another advan-
tage of the framework is its speed. The segmentation, even in
very large volume data, was done in less than 2 min. This
renders the approach very useful to integrate it subtly into the
FMT reconstruction of our hybrid FMT/XCT imaging system.
We proved the quality of the segmentation compared to a
gold-standard manual segmentation.

However, the framework still does not exploit its full po-
tential. Most of the parameters of the algorithms were chosen
by educated guess and were roughly adapted through exam-
ining the measured segmentation quality. We think that opti-
mizing these parameters could improve the segmentation re-
sults even more. Most notably there are three parts of the
framework that would, in our opinion, benefit from a closer
analysis of the parameter values. 1. The computation of a
threshold for bone segmentation. Here, the parameter w �Eq.
�1�� could be adapted to achieve better bone segmentation. 2.
The detection of seed points for lung segmentation. The inter-
val that is used to detect those points could be adapted to yield
seed points that are more feasible for the subsequent region
growing. 3. The parameters � and m for the seed growing
itself. They heavily influence the algorithm, and we do not
know the values to yield optimal results. It should also be
considered that the segmentation of the lung and heart de-
pends on the correct detection of the ribcage, and so far the
robustness of our approach could not be evaluated. Thus this
essential part of the framework should be investigated and
improved further. Also, the accuracy of the heart segmentation
could be improved significantly. Here, the static, undeform-
able model proves to be a disadvantage, since it cannot fully
adapt to the shape variances. Nevertheless, the approach could
be used to initialize more complex segmentation methods
such as deformable models that use flexible meshes to over-
come this handicap.

We have also shown how the gained anatomical informa-
tion can be used as a-priori knowledge for the reconstruction
of FMT images. We proved that this increases FMT image

gularization. �c� Tikhonov regularization. �d� Laplace regularization
out re
May/June 2010 � Vol. 15�3�7
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uality considerably in simulations. Further studies have to be
onducted to prove this behavior also for real FMT measure-
ents in in-vivo experiments. From our experience, we expect

otable FMT image quality improvements in those studies as
ell. Nevertheless, the conclusion is that we have to put focus
n the segmentation of more structures for even better, more
ccurate FMT reconstruction results. It also has to be dis-
ussed how accurate the segmentations need to be, and if
ore time-consuming and complex segmentation algorithms

re actually necessary and practical, because there will always
e a tradeoff between speed and accuracy.
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