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Abstract. The extraction of 3-D morphological information about
thick objects is explored in this work. We extract this information from
3-D differential interference contrast �DIC� images by applying a tex-
ture detection method. Texture extraction methods have been success-
fully used in different applications to study biological samples. A 3-D
texture image is obtained by applying a local entropy-based texture
extraction method. The use of this method to detect regions of blas-
tocyst mouse embryos that are used in assisted reproduction tech-
niques such as in vitro fertilization is presented as an example. Results
demonstrate the potential of using texture detection methods to im-
prove morphological analysis of thick samples, which is relevant to
many biomedical and biological studies. Fluorescence and optical
quadrature microscope phase images are used for validation. © 2010
Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3475961�
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Introduction

ne of the most common noninvasive techniques to acquire
nformation about transparent biological samples is differen-
ial interference contrast �DIC� microscopy. DIC microscopy
s effective to study biomedical samples because it accentu-
tes contrast on the edges of the structure in the sample and
roduces high-resolution images from samples such as tissue
ells, eggs, and embryos.1

Thin live cells, essentially 2-D specimens, can be observed
nd studied with a single 2-D image. However, when imaging
hick biological objects, whose complex structures have thick-
ess values larger than the depth of field of the microscope,1

he use of 2-D images does not provide enough information
bout the morphology of the sample. For this type of objects,
he use of 3-D images can provide important information.

Information about thick samples is acquired in 3-D DIC
maging in the form of a stack of images focused at different
epths along the optical axis. Each image in the stack contains
nformation from both in-focus and out-of-focus planes.
herefore, even if a stack of images is acquired through fo-
using, the image at a given focal plane is not simply a rep-
esentation of a 2-D slice of the object.2,3 The identification of
ifferent regions within the three-dimensional structure of the
bject consequently becomes a challenge, and further process-
ng of the images may be required for this task.

Examples of such thick transparent samples are mouse and
uman embryos—both have a complex structure and thick-
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ournal of Biomedical Optics 046021-
ness values that range from 70 to 100 �m. Their study relies
mostly on 2-D images from conventional microscopy
modalities.4 In this paper, we will image mouse embryos us-
ing 3-D DIC microscopy and apply image processing algo-
rithms to extract 3-D information that could be useful for
embryo development studies.

An advantage of DIC microscopy as opposed to other
wide-field microscopy modalities is its applicability at high
numerical apertures. Larger apertures result in higher lateral
resolution and better depth discrimination. Additionally, DIC
provides high contrast in transparent objects and is sensitive
to phase changes. High contrast offers clear edges, and phase
changes produce variations in irradiance that appear as differ-
ent textures in the image. These characteristics allow DIC
imaging to be a suitable candidate for the application of tex-
ture extraction methods that are based on intensity changes.

Texture extraction methods have been successfully applied
to wide-field microscope images of biological samples to both
delineate and segment regions of interest. The detection of
such regions has been the target of several automatic or itera-
tive algorithmic methods.5–10 The use of these algorithms var-
ies with respect to the targeted application and microscope
modality.

1.1 Related Work
Previous texture detection methods in DIC microscopy im-
ages of biological samples have generally focused on the de-
tection of cells or nuclei. Hamahashi et al.5 present a method
for detection of nuclei in the process of cell division using a

1083-3668/2010/15�4�/046021/7/$25.00 © 2010 SPIE
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et of temporal 3-D DIC images of C. elegans embryos. The
ethod combines local entropy and object tracking algo-

ithms. The nuclei are successfully detected by the use of
oundary and texture characteristics. Although these embryos
re considered thick �thickness is about 23 �m�; cell nuclei
an be easily detected by simply looking at the image. How-
ver, in the case of more complex thicker objects such as
ouse embryos �thickness is about 100 to 120 �m�, nuclear

ppearance is not as detectable as in C. elegans embryos, and
n many cases, it is undetectable by looking at the image.

Other contributions have focused on addressing both de-
onvolution and texture detection algorithms for cell detec-
ion. Kuijper and Heise’s method7 is able to detect cells prop-
rly as long as the cells are distinguishable by the human eye.
s the authors pointed out, the method needs to be enhanced

o address situations where the cells are not evidently visible.
solution to the cell detection problem that combines DIC

nd quantitative phase images from optical quadrature mi-
roscopy �OQM�11–13 has been used to develop a cell-counting
ethod in live mouse embryos.14 �OQM noninvasively recon-

tructs the amplitude and phase of an optically transparent
ample.� In that work, a 2-D DIC image was used to extract
ell boundaries. Based on the detected boundaries, the method
as capable of counting cell numbers ranging from 8 to 26.

Entropy is a characteristic of an image.15 The local entropy
f a pixel in the image depends on information from its sur-
ounding neighbors. Neighbor information can be extracted
rom a 3-D DIC image and used to generate a 3-D local en-
ropy texture image that provides morphological information
bout the thick sample. Rapid changes of local entropy with
ocus in dense z-stacks provide detailed information about the
ample. This information is directly related to levels of texture
oughness. Using the variation of texture roughness along the
axis provides information about the morphological charac-

eristics of the sample. Moreover, regions with different tex-
ures within the object can be detected based on the local
ntropy.

.2 Our Approach
he current work is focused on extracting information from a
ense z-stack of DIC images using a local entropy-based tex-
ure detection method. Local entropy texture methods have
een used as an alternative to classical segmentation
ethods,5 in part because of their low sensitivity to out-of-

ocus effects. We use this sensitivity with variation of focus to
ollow changes in texture within the 3-D positions of the dif-
erent sample regions, rather than trying to delineate or extract
specific region shape. The extracted information may con-

ribute to understanding the natural processes occurring in
uch samples. For example, in embryo development studies,
here the morphological details are valuable information,16–18

wide range of questions can be answered by using an accu-
ate morphology recognition mechanism.

In this work, we focus on embryo development studies,
articularly the selection of the most viable embryos for as-
isted reproduction techniques such as in vitro fertilization
IVF�. Recent studies in IVF have shown high pregnancy
ates when the transfer of embryos to the mother’s womb
ccur at the blastocyst stage.19,20 The blastocyst is one of the
ater stages of preimplantation embryo development, and its
ournal of Biomedical Optics 046021-
structure is so complex that it defies available image process-
ing algorithms. In this paper, we process a set of 3-D DIC
images of blastocyst mouse embryos. Blastocysts are com-
posed of a spherical encasement known as the zona pellucida
that surrounds and contains the inner structure �see Fig. 1�.
The inner structure of the blastocyst consists of three primary
regions: inner cell, trophectoderm, and blastocoele cavity.
Characteristics of the inner regions such as size, expansion,
and distribution are used by clinicians to evaluate how well
developed the embryo is at a particular time
post-fertilization.4,21,22

We extract DIC image textures using local entropy con-
cepts to segment the inner cell, trophectoderm, and blastoco-
ele cavity regions in the embryo. The obtained results are
validated in two distinct ways, leveraging both fluorescence
images and OQM phase images.11–13 In a direct approach, we
compare our results to nuclei locations obtained through fluo-
rescent staining. All nuclei should be clustered together in the
inner cell and trophectoderm regions of the embryo. We also
use a model-based validation approach computing 2-D quan-
titative phase images from the reconstructed embryo 3-D
structure. We assign previously published indices of
refraction23,24 to the regions obtained from the texture analy-
sis. Then, a forward model25 is applied to estimate phase im-
ages. The computed phase images are compared to measured
OQM phase images. The texture detection procedure and the
two validations methods are applied to DIC images of five
different blastocyst embryos.

The rest of the paper is structured as follows: A description
of the local entropy texture detection method and its applica-
tion to 3-D DIC images is presented in Sec. 2. Experiments to
validate the obtained information from local entropy images
are presented in Sec. 2 as well. Sections 3 and 4 present the
results and conclusions.

2 Methods
2.1 Image Collection
The DIC images consist of 26 slices collected in 5-�m incre-
ments along the optical axis �z� from five blastocyst mouse
embryos. The resulting z-stack covers 125 �m along the z
axis, which is enough to cover the complete volume of the
embryo. Each slice is 640�480 pixels, with a pixel reso-

Fig. 1 DIC image of a live mouse embryo at blastocyst stage.
July/August 2010 � Vol. 15�4�2
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ution of 0.3 �m. Figure 2�a� shows DIC images of five dif-
erent blastocyst embryos, and Fig. 2�b� shows slices at three
epresentative focal planes �z=−25 �m, z=0 �m, z
25 �m� of a single embryo. DIC image stacks are processed
ith the local entropy method �see Sec. 2.2� to differentiate

egions that contain cells �inner cell and trophectoderm� from
hose that do not contain cells �blastocoele cavity and spaces
etween cells�.

Next, OQM phase images were collected before staining.
QM is a noninvasive technique that provides amplitude and
hase of an optically transparent sample.12,14 These phase im-
ges were unwrapped with a 2-D Lp-norm algorithm.26 Mea-
ured OQM phase images were used to validate the detected
mbryo structure from DIC images.

Last, a stack of 26 fluorescence images was collected after
pplying to the five blastocyst samples a Hoechst nucleus
tain. The fluorescent dye �Hoechst 33342� binds fluorophores
o the nucleus of a cell, giving more contrast to the nuclei in
he embryo image. In fluorescence images, bright regions pro-
ide information about the shape and location of the cell nu-
lei. Fluorescence images are normalized using a histogram
hresholding method, such that intensity values greater than
ero �brighter regions� indicate the presence of the cell nuclei.
n practice, this modality is not feasible for live embryo ap-
lications such as IVF, because the Hoechst stain permanently
odifies the DNA of the nuclei. Therefore, this stack is used

or validation purposes only.

.2 Detection of Regions Using Local Entropy Image
ur region detection scheme is based on differentiating

moothness levels of image textures. The smoothness levels in
3-D DIC image are quantified using local entropy.15 Local

ntropy is defined by the entropy of a pixel window surround-
ng a point of interest within the image.27 For a rough texture,
he local entropy values are high, while lower values corre-
pond to smooth texture regions. Because a smooth texture in
lastocyst DIC images is characteristic of the blastocoele, we
xpect its local entropy to be lower than that in cellular re-
ions, in which a rough texture is indicative of the organelles
n the cytoplasm. Our analysis is focused on the distribution
f the cells and blastocoele regions in the embryo. Thus, we
ave removed the zona pellucida from the images by applying
n edge detector27 before computing the local entropy images.

(a)

(b)

ig. 2 Collected DIC images of blastocyst mouse embryos: �a� five
lastocyst mouse embryos �1–5 from left to right�, and �b� DIC images
t three different focal planes of a single blastocyst mouse embryo.
ournal of Biomedical Optics 046021-
We define texture using local entropy in the image as fol-
lows: Let X represent the input image and W an m�n� p
pixel window. The resulting local entropy image Y is given by

Yi,j,k = − �
l=0

N−1

P�l�log2 P�l� , �1�

where N is the number of gray levels in X, and P�l� is the
frequency of occurrence of gray-level l in window W. Each
output pixel Yi,j,k contains the entropy value of the W neigh-
borhood around the corresponding pixel Xi,j,k in the input im-
age.

A stack of DIC images is segmented by using a window of
7�7�3 pixel size. In other words, for a 2-D image located
at zk, the window covers from zk−�z to zk+�z images along the
z axis. The top and bottom images of the stack were processed
with a 7�7 pixel size window. As a result of this process, a
3-D local entropy image is obtained.

2.3 Validation
Two validation approaches were used to test the predicted
blastocyst embryo structure. In the first approach, we com-
pared the local entropy image with a fluorescence image of
Hoechst-stained nuclei. The images were overlapped to iden-
tify common regions. In the second validation method, we
used the local entropy images to create an embryo model and
compute a quantitative 2-D phase image. Then, the 2-D phase
image was compared to a measured OQM phase image. Re-
sults of these validation methods provide information about
the accuracy of the local entropy texture method to predict
embryo structure from 3-D DIC images.

2.3.1 Local entropy and fluorescence images
A histogram of the local entropy images was calculated to
analyze the distribution of the local entropy values. Figure 3
shows a histogram of the 3-D local entropy images for all five
embryos. We observe that the local entropy values follow a
multimodal distribution. We apply thresholds to the histogram

Fig. 3 Histogram of the 3-D local entropy image of all five embryos.
We have selected the threshold based on the distribution shapes.
These thresholds �th1 and th2� divide the local entropy values into
three groups. These groups are used to define high, medium �cells
regions�, and low �blastocoele region� local entropy regions for vali-
dation purposes.
July/August 2010 � Vol. 15�4�3
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o divide the data in three different groups. These groups are
abeled regions with high, medium, and low local entropy
alues. High entropy contains values greater than or equal to
.2, medium values are between 0.8 and 1.1, and low values
re those less than or equal to 0.8. Figure 4 shows an overlay
f the local entropy �after thresholding� and DIC images.

Since each cell contains organelles with different optical
roperties, texture variation occurs in each cell. Then, me-
ium and high local entropy values are assumed to be located
n the inner cell region, while low values are in the blastoco-
le cavity. Nevertheless, since regions with high and medium
ocal entropy values represent those occupied by the volume
f the cells with their subcellular components, they are ex-
ected to be larger than the brighter regions identified as nu-
lei of the cells in the fluorescence images. Figure 5 shows an
verlay of the local entropy �high and medium local entropy
egions, after thresholding� and fluorescence images.

To validate the accuracy of the segmented regions, we cal-
ulate the percentage of the fluorescent areas that are outside
he high and medium local entropy regions. We expect that
ince the high and medium local entropy areas contain the
uorescent areas, a highly accurate method should yield a low
ercentage value.

.3.2 2-D quantitative phase image estimation
he obtained 3-D local entropy image is used in conjunction
ith our image formation forward model to estimate phase

mages.25 The calculated image is compared to a measured

ig. 4 Visualization of detected regions using local entropy method in
IC images. Figure shows an overlay of the local entropy �after

hresholding� and DIC images. Each slice was collected with an inter-
al of 5 microns along the z axis. In the figure, the z position in-
reases row-wise from top-left to bottom-right. The figure at the top-
eft corresponds to the slice taken at z=−60 �m, and the figure at the
ottom-left corresponds to the slice at z=60 �m.
ournal of Biomedical Optics 046021-
OQM phase image to validate the detected regions with the
local entropy method. The procedure is described in Fig. 6.

The embryo model is constructed using the regions with
high, medium, and low entropy �obtained from the local en-
tropy image histogram, Fig. 3�. These regions are each as-
signed an index of refraction as obtained from published cell
modeling work.23,24 The cytoplasm of the cell has a reported
index of refraction of 1.35. The average of the indices of
refraction of the nucleus and the cellular organelles is equal to
1.37. Since the presence of the nucleus and different or-
ganelles in each cell result in high entropy values, we have
assigned 1.37 to the high entropy region and 1.35 to the me-
dium entropy region. The low local entropy region is com-
posed of the blastocoele cavity. Prior embryo analysis has
shown us that the blastocoele has an index of refraction simi-
lar to the immersion medium, which is 1.33; thus, we use this

Fig. 5 Validation of detected regions using local entropy method in
DIC images using fluorescence images. Figure shows an overlay of the
local entropy �high and medium local entropy regions, after thresh-
olding, in red� and fluorescence images �green�. Brighter regions �yel-
low� are the common regions of the overlapped images. �Color online
only.�

Fig. 6 Block diagram of embryo model and phase reconstruction from
DIC images.
July/August 2010 � Vol. 15�4�4
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alue for the blastocoele region. Last, we add the zona pellu-
ida to the model, since it was removed from the DIC image
o calculate the local entropy image. The zona pellucida is
niform and thin, and its index of refraction can be estimated
rom a measured OQM phase image. The index of refraction
or this region has been estimated to be equal to 1.34.

We generate a phase image of the synthetic embryo de-
cribed earlier using a forward model25 for thick objects. The
alculated phase image is compared to a measured OQM
hase image. To evaluate the similarities between these im-
ges, we use the Dice metric.28 Let Tk denote a measured
mage set of pixels in a region k, and then the Dice metric for

egion k is defined as 2��Tk� T̃k� / �Tk�+ �T̃k��, where |.| denotes

et size, and T̃k is the set of pixels of the calculated image. For
he validation, we choose a region that contains phase values
reater than 15 rad. Since phase values greater than 15 rad do
ot belong to the blastocoele cavity region, the comparison is
erformed for a region that contains cells in both the simu-
ated and measured phase images.

Results
ocal entropy image stacks are computed from five DIC im-
ge stacks of the five blastocyst mouse embryos �see Fig.
�a��. The embryos’ volume morphology is identified from the
nformation contained in the local entropy images. This infor-

ation is assessed with the two validation methods: first, us-
ng fluorescence images, and second, computing a phase im-
ge from the extracted morphology and performing a
omparison between the computed image and a measured
QM image.

.1 Using Fluorescence Images
alidation results using fluorescence images for embryo 1 are
resented in Fig. 5. This figure shows an overlay of the fluo-
escence and the generated local entropy images. We can ob-
erve that the high entropy regions almost completely contain
he cell nuclei area. The percentage of the region identified as
uclei in the fluorescence images that is outside the area with
igh local entropy is equal to 3%. This error means that the
egmentation �local entropy-based� method failed when de-

able 1 Validation of local entropy segmentation of DIC versus fluo-
escence images. %Error is the fraction of fluorescence area outside
he inncer cell region segmented from the DIC image.

Error % Embryo

3 1

2 2

3 3

12 4

2 5
ournal of Biomedical Optics 046021-
tecting those regions as low entropy regions. Then, we con-
sider this percentage as an error of the method. Table 1 shows
the percentage results from all five embryos.

The reported error values are less than 5% for four of the
samples �embryos 1, 2, 3, and 5� and 12% for just one case
�embryo 4�. If we observe embryo 4 in particular �see Fig.
2�a��, this sample is reaching the blastocyst stage but still has
a very small and not well delineated blastocoele cavity with
most of the embryo’s area being composed of the inner cell
region. Thus, this case serves to show a near to worst case
performance of our approach. Even though posing a more
difficult case to extract the texture of the regions, our method
is able to report only a 12% of error for this case. We can
observe that most of the fluorescent areas �from fluorescent
images� are contained in the high local entropy region. These
results give us confidence that the method is highly accurate
when extracting the region textures of a blastocyst mouse em-
bryo.

3.2 Using an OQM Image
Estimated and measured phase images are compared quanti-
tatively. The comparison and validation is performed using
the Dice metric. The Dice metric is applied to a selected re-
gion in the image. Although the same criterion and threshold
�15 rad� is used for each image, the size and location of the
region varies for different embryo images. Computed and
measured phase images for all five embryos and their corre-
sponding selected region are presented in Fig. 7. We can ob-
serve from the images that the estimated phase closely re-
sembles the measured phase. Results of the Dice metric
values for the five embryos are shown in Table 2. Again,
embryo 4 being the most difficult case showed a Dice value of
0.71, while the rest provide values of 0.80 or more. These
results show that the 3-D object structure generated with the
information extracted from DIC images closely resembles the
true embryo structure.

4 Conclusion
This work has explored the extraction of 3-D morphological
information from DIC images of thick objects. The applica-
tion of a texture detection method based on local entropy has
been presented as a noninvasive technique to analyze the
structure of five blastocyst mouse embryos.

An important advantage of applying this method to DIC
images is its low sensitivity to image quality; this allows the
extraction of information about the morphology of a thick
object. In conclusion, detecting the blastocoele and cell re-
gions of mouse embryo at blastocyst stage using the local
entropy method contributes to the understanding of the overall
embryo morphology. This may positively improve the analy-
sis of embryo development for assisted reproduction tech-
niques such as IVF.

Additional work must be completed to provide a more gen-
eral criterion to select a window size that improves the ease of
interpretation of the results. The local entropy algorithm can
be enhanced by including a thresholding mechanism to have
more control in the tuning of the processed images. A detailed
analysis of the effectiveness of different texture extraction
methods could increase the accuracy of this approach as well.
July/August 2010 � Vol. 15�4�5
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Another area of future work is to include confocal micros-
opy images in the set of collected images to compare the
xtracted morphology from DIC images to the information
rovided by confocal images.

(a)

(e)

(c)

(d)

(b)

ig. 7 Visual comparison of estimated phase image from processed
IC images to a measured phase image of five mouse embryos and

elected regions with phase values larger than 15 rad for quantitative
omparison using a Dice metric. From left to right: measured OQM
mage, region from measured image, estimated phase image, and re-
ion from estimated image. �a� embryo 1 with Dice=0.8; �b� embryo
with Dice=0.93; �c� embryo 3 with Dice=0.92; �d� embryo 4 with
ice=0.71; and �e� embryo 5 with Dice=0.83. Bright values inside

he ellipse represent the selected region.

able 2 Results of Dice metric. The Dice metric is used to compare
alculated and measured phase images in a selected region. The re-
ion corresponds to phase values greater than 15 rad.

Dice Embryo

0.80 1

0.93 2

0.92 3

0.71 4

0.83 5
ournal of Biomedical Optics 046021-
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