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Abstract. We propose and experimentally demonstrate a noniterative diffractive imaging method for
reconstructing the complex-valued transmission function of an object illuminated by spatially partially
coherent light from the far-field diffraction pattern. Our method is based on a pinhole array mask, which is
specially designed such that the correlation function in the mask plane can be obtained directly by inverse
Fourier transforming the diffraction pattern. Compared to the traditional iterative diffractive imaging methods
using spatially partially coherent illumination, our method is noniterative and robust to the degradation of the
spatial coherence of the illumination. In addition to diffractive imaging, the proposed method can also be
applied to spatial coherence property characterization, e.g., free-space optical communication and optical
coherence singularity measurement.
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1 Introduction
Coherent diffractive imaging (CDI) is an important tool for re-
constructing the complex-valued transmission function of an
object from the far-field diffraction pattern and has been widely
applied in material and biological sciences.1,2 Miao et al.3 first
experimentally realized imaging of submicrometer sized non-
crystalline specimen using CDI. Many CDI approaches have
been developed in the past decades; they can be divided into
two types: the iterative methods4–9 and the noniterative
methods.10–14 However, most of the traditional CDI methods
cannot be directly applied to using spatially partially coherent
illumination without a proper modification, which hence have
limited applications at short wavelengths, e.g., in the x-ray
and electron regime, or in the unstable experimental environ-
ment. For example, the degradation of the spatial coherence
may also be caused by the mechanical movement of the sample
and the experimental setup, or by the fluctuation of the ambient
medium, e.g., atmospheric turbulence.15–17

Iterative algorithms retrieve the complex-valued transmission
function of an object by propagating the field back-and-forth
between the object plane and the far-field diffraction plane,
and imposing constraints on the field in both planes.
Gerchberg and Saxton pioneered the iterative algorithms in
1972 by proposing a straightforward method using two inten-
sities measured in the object plane and in the far-field,
respectively.4 Iterative algorithms using only one intensity mea-
surement of the far-field diffraction pattern, as proposed by
Fienup,5,6 require prior knowledge of the support of the object
for imposing the support constraint in the object plane.
Recently, ptychographic algorithms have become an essential
technique for imaging nanoscale objects using short-wavelength
sources.8 The key feature is that illumination areas at the
neighboring shift positions must overlap, and this overlap im-
proves the convergence of the ptychographic algorithms.7,8

Recent developments in ptychography allow for simultaneous
reconstruction of the probe. This significantly reduces the com-
plexity of experimental setup compared to other CDI methods.9

For spatially partially coherent illumination, the propagation
of light is described using the mutual coherence function (MCF)
instead of the field. Many efforts have been spent to adapt CDI
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methods to spatially partially coherent illumination.15–24 The
modification of the iterative algorithms was first reported by
Whitehead et al.15 using mode decomposition of the MCF.16

Later, ptychographic algorithms have also been modified to
work for spatially partially coherent illumination by decompos-
ing the MCF into orthogonal modes.17–21 Thibault and Menzel17

proposed a mixed state model from the quantum perspective,
which effectively deals with a series of multistate mixing prob-
lems including partially coherent illumination and enables
more applications of ptychography, such as continuous-scan
ptychography18 and dynamic imaging of a vibrating sample.19

Furthermore, ptychographic imaging with the simultaneous
presence of both multiple probe and multiple object states
was also demonstrated.21 However, the accuracy of mode de-
composition relies on the number of modes for accurately rep-
resenting the MCF, and it increases as the spatial coherence of
the illumination decreases.

Compared to iterative methods, noniterative methods10,11,14 do
not suffer from issues such as stagnation or nonuniqueness of
the solution to the diffractive imaging problem, especially when
the illumination becomes spatially partially coherent.21,24 In
holographic methods, the field transmitted by the object is
perturbed such that the object’s transmission function can be
directly extracted from the inverse Fourier transform of the
diffraction pattern.14 This perturbation can be achieved by intro-
ducing a pinhole, e.g., Fourier transform holography (FTH),25–27

or by changing the transmission function at a point of the
object, e.g., Zernike quantitative phase imaging.28 The
performance of applying holographic methods to spatially par-
tially coherent illumination has been discussed in Ref. 14.
Alternative methods extract the object information from
the three-dimensional autocorrelation functions obtained by
inverse Fourier transforming the three-dimensional data set
(e.g., the data set measured by varying focus12 or another optical
parameter13).

It has been demonstrated that using noniterative methods can
avoid errors due to truncating the number of the modes for rep-
resenting the MCF.12–14 However, the degree of the spatial co-
herence of the illumination limits the field of view (FOV) of
the reconstructed object. To be precise, what is reconstructed
is a product of the object’s transmission function and a corre-
lation function of the illumination. This correlation function has
a maximum at the perturbation point, and its value decreases at
a rate that depends on the degree of spatial coherence, as the
distance between the perturbation point and the observation
point increases. Therefore, the lower the illumination’s degree
of spatial coherence is, the smaller the region of the object that
can be reconstructed reliably.

In this paper, we propose a noniterative method based on
a pinhole array mask (PAM). We place the PAM between the
object and the detector, and we measure the far-field diffraction
pattern of the spatially partially coherent field transmitted by the
PAM. The PAM consists of a periodic array of measurement
pinholes and an extra reference pinhole, which is analogous
to the perturbation point in FTH.14 It forms an interference be-
tween fields transmitted by the reference pinhole and by the
measurement pinholes, and we can directly retrieve the corre-
lation function of the incident light with respect to the reference
pinhole at the locations of the measurement pinholes from the
interference pattern.

In FTH, since the reference pinhole is placed far from the
measurement window, the FOV is rather small due to the low

correlation. Our method is advantageous compared to FTH, be-
cause splitting the measurement window into a periodic array of
measurement pinholes keeps the reference pinhole close to all
measurement pinholes and thus maintains a high correlation that
results in a large FOV.

Our method places the object at a certain distance before the
PAM, instead of superposing the object with the PAM. In prac-
tice, this not only offers flexibility for arranging the experimen-
tal setup but also allows us to adjust the sampling of the
reconstructed object. When the propagation distance satisfies
the condition for Fresnel or Fraunhofer diffraction, an object
with finite support can be reconstructed from the retrieved cor-
relation function, and its sampling is related to the sampling of
the PAM by the Shannon–Nyquist sampling theorem.

Because our method reconstructs the product of the object’s
transmission function and the illumination’s correlation func-
tion and hence can be used not only for object reconstruc-
tion but also for characterization of the spatial coherence
structure, it is useful for a broad range of applications in coher-
ent optics, such as the measurement of optical coherence
singularity29,30 and free-space optical communication through
turbulent media.31,32

2 Methods
The schematic plot of the experimental setup of our method
is shown in Fig. 1, which shows that a transmissive object is
illuminated by spatially partially coherent light. In our method,
unlike traditional CDI algorithms, we place a PAM between the
object and the detector. The location of the PAM is chosen such
that light propagation from the object to the PAM and from the

Fig. 1 Schematic plot of the experimental setup and the concept
of the noniterative diffractive imaging method. (a) A PAM is placed
between the object and the camera. The PAM is specially de-
signed such that we can retrieve the correlation function of the in-
cident light by inverse Fourier transform of the measured
diffraction pattern. (b) The PAM consists of a reference pinhole
at the origin (gray square) and a periodic array of themeasurement
pinholes with certain offset (white squares). (c) In the inverse
Fourier transform of the diffraction pattern, the autocorrelation
terms (gray squares) and the two interference terms (red and blue
squares) are separated by the offset. Each interference term di-
rectly contains the correlation between the fields at the reference
pinhole and at the measurement pinholes.
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PAM to detector obeys either Fresnel or Fraunhofer propagation
and hence can be described using Fourier transforms. By doing
so, we can divide our method into two steps: (1) retrieving the
correlation function of incident light in the PAM plane using a
noniterative approach and (2) reconstructing the product of the
object’s transmission function and the illumination’s correlation
function using a differential method, which requires two diffrac-
tion patterns corresponding to the object with and without trans-
mission perturbation, respectively. It is worth noting that the use
of this differential method is not necessary for completely spa-
tially coherent illumination.

2.1 Retrieving the Correlation Function in the PAM
Plane

Let the coordinate of the PAM plane be denoted by r ¼ ðx; yÞ.
The PAM consists of a reference pinhole at the origin shown by
the gray square in Fig. 1(b), and a periodic array of measurement
pinholes around the reference pinhole is shown by the white
squares in Fig. 1(b). The center of the periodic array is shifted
relative to the reference pinhole by certain offset and is depicted
by the white spot at the corner of the reference pinhole. We as-
sume that the reference pinhole and the measurement pinholes
are identical and are so small that each pinhole can be approxi-
mated by a delta function. This assumption allows us to write
the transmission function of the PAM by

MðrÞ ¼ δðr − 0Þ þ
X
m;n

δðr − rm;nÞ; (1)

where 0 ¼ ð0; 0Þ denotes the location of the origin, rm;n ¼
ðΔxþmpx;Δyþ npyÞ denotes the location of the measure-
ment pinhole in the periodic array, where ðm; nÞ is the index
of the measurement pinhole, ðpx; pyÞ is the pitch of the periodic
array, and ðΔx;ΔyÞ is the offset of the periodic array relative to
the reference pinhole.

The incident light transmitted by the PAM generates a dif-
fraction pattern in the detector plane. We denote the MCF of
the incident light in the PAM plane by Wðr1; r2Þ, which de-
scribes the correlation between the fields at r1 and r2.
Because the light propagation from the PAM to the detector sat-
isfies the condition for either Fresnel or Fraunhofer propagation,
we can express the diffraction pattern measured by the detector
using the Fourier transform as follows:

IðkÞ¼
ZZ

Mðr1ÞMðr2Þ�Wðr1;r2Þexp½−i2πk ·ðr1−r2Þ�d2r1d2r2
¼Wð0;0Þ
þ

X
m1;n1

X
m2;n2

Wðrm1;n1 ;rm2;n2Þexp½−i2πk ·ðrm1;n1 −rm2;n2Þ�

þ
X
m1;n1

Wðrm1;n1 ;0Þexpð−i2πk ·rm1;n1Þ

þ
X
m2;n2

Wð0;rm2;n2Þexpðþi2πk ·rm2;n2Þ; (2)

where k denotes the detector plane coordinate. Denoting the
original sampling grid of the detector plane by k0, we have
k ¼ k0∕ðλzÞ, where λ is the wavelength of illumination and z
is the propagation distance, and k is conjugated with the coor-
dinate of the PAM plane r. By taking the inverse Fourier trans-
form of the diffraction pattern [Eq. (2)], we obtain

F−1½IðkÞ�ðrÞ¼Wð0;0Þδðr−0Þ
þ
X
m1;n1

X
m2;n2

Wðrm1;n1 ;rm2;n2Þδ½r−ðrm1;n1−rm2;n2Þ�

þ
X
m1;n1

Wðrm1;n1 ;0Þδðr−rm1;n1Þ

þ
X
m2;n2

Wð0;rm2;n2Þδðrþrm2;n2Þ; (3)

where F−1 denotes the operation of the inverse Fourier trans-
form. We can observe that Eq. (3) consists of four terms:

1. The first term is Wð0; 0Þ, which is a constant multiplied
by a delta function that appears only at the origin of the
coordinate system rð0; 0Þ.

2. The second term is Wðrm1;n1 ; rm2;n2Þ located on the
periodic array defined by r ¼ rm1;n1 − rm2;n2 ¼½ðm1 −m2Þpx; ðn1 − n2Þpy�, which is depicted by the
gray squares in Fig. 1(c). This periodic array has the
same pitch as the periodic array of the measurement pin-
holes ðpx; pyÞ but zero offset relative to the origin.

3. The third term isWðrm;n; 0Þ located on the periodic array
defined by r ¼ rm;n, which is depicted by the blue
squares in Fig. 1(c).

4. The fourth term is Wð0; rm;nÞ ¼ Wðrm;n; 0Þ� located on
the periodic array defined by r ¼ −rm;n, which is de-
picted by the red squares in Fig. 1(c).

The role of the reference pinhole of the PAM is analogous to
the perturbation point in FTH,14 namely to create interference
between the incident light transmitted by the reference pinhole
and by the measurement pinholes. The interference induces the
third term and the fourth term in Eq. (3), which are referred to as
the “interference terms.” The first term and the second term in
Eq. (3) are the autocorrelation of the reference pinhole and of the
measurement pinholes, respectively, and hence are referred to as
the “autocorrelation terms.”

The layout of the four terms of Eq. (3) is illustrated by the
schematic plot in Fig. 1(c). Figure 1(c) shows that the periodic
arrays of the autocorrelation term (the gray squares) and the two
interference terms (the blue squares and the red squares) have
the same pitch but different offset. This allows us to separate the
two interference terms and the autocorrelation term by multiply-
ing a spatial filter to the inverse Fourier transform of the diffrac-
tion pattern. The expression for this spatial filter is given by

M0ðrÞ ¼
X
m;n

δðr − rm;nÞ: (4)

We can multiply F−1½IðkÞ�ðrÞ either by M0ðrÞ to obtain
Wðrm;n; 0Þ or by M0ð−rÞ to obtain Wðrm;n; 0Þ�. As a conse-
quence, we can retrieve the correlation function Wðrm;n; 0Þ of
the incident light in the PAM plane with respect to the location
of the reference pinhole r ¼ 0 at the locations of the measure-
ment pinholes r ¼ rm;n.

Note thatWðrm;n; 0Þ is a function of the locations of the mea-
surement pinholes on the periodic array defined by r ¼ rm;n.
The sampling interval of rm;n is given by the pitch of the
PAM ðpx; pyÞ. For rectangular pinholes with size ðwx; wyÞ,
the sampling interval should be ðpx ≥ 3wx; py ≥ 3wyÞ such that
the autocorrelation term and the two interference terms do not
overlap as shown in Fig. 1(c). However, this sampling interval
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ðpx; pyÞ is usually larger than the diffraction-limited sampling
interval according to the Shannon–Nyquist criterion: (px;0 ¼
λz∕lx, py;0 ¼ λz∕ly), where ðlx; lyÞ is the size of the detector.

2.2 Reconstructing the Transmission Function of the
Object and the Correlation Function of the
Illumination

The sampling interval of the reconstructed object will be higher
in the plane at distance z0 before the PAM plane than exactly in
the PAM plane. We denote the coordinate of the object plane by
ρ, which is original sampling grid ρ0 normalized by λz0, and the
complex-valued transmission function of the object by OðρÞ.
In our method, the MCF in the object plane and the MCF in
the PAM plane are related to the Fourier transform in the case
of either Fresnel or Fraunhofer propagation. Here we give the
example of Fraunhofer propagation as follows:

Wðr1; r2Þ ¼
ZZ

Oðρ1ÞOðρ2Þ�W0ðρ1; ρ2Þ

× exp½−i2πðρ1 · r1 − ρ2 · r2Þ�d2ρ1d2ρ2; (5)

where W0ðρ1; ρ2Þ is the MCF of the incident beam that de-
scribes the correlation between fields at ρ1 and ρ2. According
to the Shannon–Nyquist criterion, the pitch of the PAM ðpx; pyÞ
determines the size of the object: (lx ≤ λz0∕px, ly ≤ λz0∕py).
Therefore, we need to find the propagation distance z0 such
that the size of the reconstructed object matches the pitch of
the PAM.

In Eq. (5), by setting r1 ¼ rm;n and r2 ¼ 0, we can obtain an
expression for computing the retrieved correlation function in
the PAM plane as follows:

Wðrm;n; 0Þ ¼
ZZ

Oðρ1ÞOðρ2Þ�W0ðρ1; ρ2Þ

× expð−i2πρ1 · rm;nÞd2ρ1d2ρ2: (6)

By integrating Eq. (6) first over variable ρ2 and then over var-
iable ρ1, we obtain

Wðrm;n; 0Þ ¼
Z

Tðρ1ÞOðρ1Þ expð−i2πρ1 · rm;nÞd2ρ1; (7)

where

Tðρ1Þ ¼
Z

Oðρ2Þ�W0ðρ1; ρ2Þd2ρ2: (8)

Equation (7) indicates that by inverse Fourier transforming the
retrieved correlation function in the PAM plane, which is equiv-
alent to propagating the retrieved correlation function from
the PAM plane to the object plane as shown in Fig. 1(a), we
can reconstruct the modulated object’s transmission function
TðρÞOðρÞ.

We shall note that the modulation TðρÞ depends on not only
the MCF of the illumination W0ðρ1; ρ2Þ but also the transmis-
sion function of the object OðρÞ. To eliminate this modulation,
we use the differential approach. This approach requires two
measurements: one with a point perturbation to the transmission
function of the object at ρ ¼ ρ0 and the other without perturbing
the object. The perturbation is achieved by the change of either

the amplitude or the phase of the transmission for ρ0 inside the
object or by introducing an extra spot that lets light pass through
for ρ0 outside the object. It is worth mentioning that for com-
pletely spatially coherent illumination, the MCF of the illumi-
nation,W0ðρ1; ρ2Þ, becomes a constant, and there is no need for
using the differential approach to eliminate the modula-
tion TðρÞ.

Substituting the transmission function of the perturbed object
OðρÞ þ Cδðρ − ρ0Þ, where C is a complex-valued constant rep-
resenting the perturbation, into Eq. (6), we obtain

Wδðrm;n;0Þ ¼
ZZ

½Oðρ1ÞþCδðρ1−ρ0Þ�½Oðρ2ÞþCδðρ2−ρ0Þ��

×W0ðρ1;ρ2Þexpð−i2πρ1 · rm;nÞd2ρ1d2ρ2: (9)

Expanding the brackets in this expression leads to

Wδðrm;n; 0Þ ¼ Wðrm;n; 0Þ þ jCj2W0ðρ0; ρ0Þ

þ
ZZ

Cδðρ1 − ρ0ÞOðρ2Þ�W0ðρ1; ρ2Þ

× expð−i2πρ1 · rm;nÞd2ρ1d2ρ2
þ
ZZ

Oðρ1ÞC�δðρ2 − ρ0ÞW0ðρ1; ρ2Þ

× expð−i2πρ1 · rm;nÞd2ρ1d2ρ2: (10)

Using the property of the delta function, we can derive the ex-
pression of the retrieved correlation function in the PAM plane
for the perturbed object as follows:

Wδðrm;n;0Þ¼Wðrm;n;0ÞþjCj2W0ðρ0;ρ0Þ

þ
�Z

C ·Oðρ2Þ�W0ðρ0;ρ2Þd2ρ2
�
expð−i2πρ0 ·rm;nÞ

þ
Z

Oðρ1ÞC�W0ðρ1;ρ0Þexpð−i2πρ1 ·rm;nÞd2ρ1:

(11)

Finally, we take the inverse Fourier transform of the difference
between the retrieved correlations in the PAM plane for the
unperturbed object and for the perturbed object, and the result
yields

F−1½Wδðrm;n; 0Þ −Wðrm;n; 0Þ�
¼ Oðρ1ÞC�W0ðρ1; ρ0Þ þ jCj2W0ðρ0; ρ0Þδðρ − 0Þ

þ
�Z

C ·Oðρ2Þ�W0ðρ0; ρ2Þd2ρ2
�
δðρ − ρ0Þ: (12)

Neglecting the delta functions in Eq. (12), we can obtain the
product of the transmission function of the object OðρÞ and
the correlation function W0ðρ; ρ0Þ, which describes the correla-
tion between the fields at the point of perturbation ρ0 and at
all other points W0ðρ; ρ0Þ. The correlation function is deter-
mined by the MCF of the illumination but also depends on
the location of the perturbation ρ ¼ ρ0. Usually, W0ðρ; ρ0Þ is
simply Gaussian distributed, e.g., when using the Gaussian–
Schell-model (GSM) beam for illumination. However, when
the MCF of the illumination is complicated and not known,
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we need to calibrate W0ðρ; ρ0Þ by performing a reconstruction
using an empty window as object and then divide the recon-
structed product OðρÞW0ðρ; ρ0Þ by W0ðρ; ρ0Þ.

3 Results and Discussions
In the experiment, we use the GSM beam and the Laguerre–
Gaussian–Schell-model (LGSM) beam as illumination to vali-
date our method. In the object plane, the MCF of the GSM beam
can be expressed as

W0ðρ1; ρ2Þ ¼ exp

�
− ρ21 þ ρ22

w2
0

�
exp

�
− ðρ1 − ρ2Þ2

2σ2

�
; (13)

where w0 and σ are the width of the Gaussian distribution of
the intensity distribution and the correlation function, respec-
tively. The experimental setup for generating the GSM beam
is shown in Fig. 2. We expand a coherent laser beam at wave-
length λ ¼ 532 nm using a beam expander (BE) and then focus
it on a rotating ground-glass disk (RGGD) using a lens L1.
Because the focal spot follows a Gaussian distribution, the spa-
tially partially coherent light generated due to the scattering
by the RGGD satisfies Gaussian statistics, namely, the correla-
tion between the fields in any pair of points follows a Gaussian
distribution. We then collimate the spatially partially coherent
light by lens L2. By passing the collimated beam through a
Gaussian amplitude filter (GAF), we can obtain the GSM beam
whose intensity distribution also follows the Gaussian distribu-
tion. The MCF of the LGSM beam in the object plane is de-
scribed by

W0ðρ1;ρ2Þ¼exp

�
−ρ21þρ22

w2
0

�
exp

�
−ðρ1−ρ2Þ2

2σ2

�
L0
n

�ðρ1−ρ2Þ2
2σ2

�
;

(14)

where Lm
n ½� is the Laguerre polynomial of order n and m ¼ 0.

The experimental generation of LGSM beam has been reported
in Refs. 33 and 34. In the experimental setup shown in Fig. 2, we
need to insert a spiral phase plate between the BE and the fo-
cusing lens L1, which produces a dark hollow focal spot on the
RGGD. The order n of the LGSM beam is determined by
the topological charge of the spiral phase plate. When n ¼ 0,
the spiral phase plate has a constant phase and the LGSM beam
becomes the GSM beam. However, when n ≠ 0, the MCFs of
the LGSM beam and the GSM beam have the same amplitude
but different phases.

In the experiment, the beam width w0 of the Gaussian dis-
tribution of the intensity distribution is determined by the GAF
and is set to be 0.85 mm, whereas the coherence width σ of the
Gaussian distribution of the correlation function, also known as
the degree of coherence, is determined by the size of the focal
spot on the RGGD. We can control σ by translating back-and-
forth the focusing lens L1, which determines the size of the focal
spot. The degree of spatial coherence σ is calibrated using the
method proposed in Refs. 35–37.

For the diffractive imaging experiment, we use a phase ob-
ject, whose amplitude is flat and phase has a binary distribution
(0.1π and 0.9π) in the shape of a panda, displayed on the phase
spatial light modulator (SLM) (Pluto, Holoeye Inc., with reso-
lution 1920 × 1080 pixel size 8 μm, and frame rate 60 Hz). The
pixels inside the support of the object reflect the incident beam
back to the beam splitter, whereas the pixels outside the support
direct the incident beam to other directions. The beam reflected
by the SLM propagates to the PAM. Finally, we measure the far-
field diffraction pattern of the light transmitted by the PAM us-
ing a charge-coupled device (CCD) (Eco445MVGe, SVS-
Vistek Inc. with resolution 1296 × 964 pixel size 3.75 μm,
and frame rate 30 fps) camera, which is placed at the focal plane
of the Fourier transform lens L3. In the experiment, we set the
pitch of the PAM and the size of the pinhole to be px ¼ py ¼
270 μm and wx ¼ wy ¼ 54 μm, respectively. The object size is
lu ¼ lv ¼ 1.92 mm, which requires the propagation distance
between the object and the PAM to be z0 ¼ 1170 mm.

3.1 Experimental Results Using GSM Beam Illumination

Equation (12) indicates that for spatially partially coherent illu-
mination, to reconstruct the product of the object’s transmission
function OðρÞ and the illumination’s correlation function
W0ðρ; ρ0Þ, our method needs two measurements of the diffrac-
tion pattern, one without the perturbation and the other with the
perturbation of the object’s transmission at ρ0. W0ðρ; ρ0Þ de-
scribes the correlation between the fields at the perturbation
point ρ0 and other points ρ, which decreases as the distance be-
tween ρ0 and ρ increases. As a consequence, the reconstructed
object’s transmission functionOðρÞ has a limited FOV since the
OðρÞ cannot be reconstructed at locations, where W0ðρ; ρ0Þ is
corrupted by the noise.

In the experiment, we place the perturbation point at the head
of the panda by −0.3π. We show the object’s transmission func-
tion with and without the perturbation point in Figs. 3(a) and
3(b), and the amplitude and the phase of the reconstructed prod-
uct for various degrees of spatial coherence in Figs. 3(c1)–3(c3)
and 3(d1)–3(d3). Because the MCF of the GSM beam has a uni-
form phase, the phase of the reconstructed product is only given
by the phase of the object. The amplitude of the reconstructed
product follows the Gaussian distribution of the MCF of the
GSM beam. The panda shape in the amplitude is due to the dis-
continuity of the phase and low-pass filtering. As mentioned in
Ref. 38, it is the phase jump between the inside and outside area
that enables destructive interference along the outline, therefore,
leading to the observation of the dark panda shape in a very
bright background. In addition, the finite boundaries of PAM,
Fourier transform lens (L3), and CCD constitute low-pass fil-
ters, which result in the disappearance of the panda contour that
corresponds to high spatial frequencies.21 We can observe in
Fig. 3 that for a lower degree of spatial coherence σ, the ampli-
tude of the correlation function W0ðρ; ρ0Þ decreases more

Fig. 2 The experimental setup for generating the GSM beam
and for diffractive imaging. BE, beam expander; RGGD, rotating
ground-glass disk; GAF, Gaussian amplitude filter; BS, beam
splitter; SLM, spatial light modulator; PAM, pinhole array mask;
L1, L2, and L3, thin lenses; and CCD, charge-coupled device.
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rapidly as the distance ρ0 − ρ increases, and hence the FOV of
object’s transmission function OðρÞ is smaller.

Figure 3 shows that, to increase the FOV, we can either in-
crease the degree of spatial coherence σ or decrease the noise
level. In Fig. 4, we demonstrate that using more than only one
perturbation point, placed at different locations of the object, the
object’s transmission function can still be reconstructed in the
whole FOV in the case of the lowest degree of spatial coherence
(σ ¼ 0.21 mm). This requires us to repeat the measurement and
the reconstruction procedure for each perturbation point to re-
construct different parts of the object. By combining the differ-
ent parts reconstructed using low σ illumination together, we can
obtain the object’s transmission function as if using high σ il-
lumination.

3.2 Experimental Results Using LGSM Beam
Illumination

In Figs. 3 and 4, the phase of the reconstructed product is given
by only the object since the MCF of the GSM beam has a uni-
form phase. However, for illumination using LGSM beam, the
phase of its MCF is not uniform. Therefore, we need to calibrate
W0ðρ; ρ0Þ so that we can divide the reconstructed product by
W0ðρ; ρ0Þ to obtain the object’s transmission function OðρÞ
alone. We show the amplitude and the phase of the reconstructed
product using LGSM illumination beam in Fig. 5(a). Compared
to the reconstructed results using GSM illumination beam in
Figs. 3 and 4, we can see that now the phase of the object’s
transmission function OðρÞ is modulated by the phase of the

Fig. 3 The unperturbed and the perturbed object transmission function and the experimental re-
sults using GSM beam illumination with various degrees of spatial coherence. The phase of (a) the
unperturbed and (b) the perturbed objects. The perturbation is at the head of the panda. (c1)–
(c3) The amplitude and (d1)–(d3) the phase of the reconstructed product of the object’s transmis-
sion and the illumination’s correlation using GSM beam for illumination with various degrees of
spatial coherence.

Fig. 4 The experimental results under GSM beam illumination with low degree of spatial coher-
ence (σ ¼ 0.21 mm) using the perturbation point at different locations of the object. (a)–(f) The
experimental reconstruction results with the perturbation point at different locations. Each result
shows a reduced FoV in the vicinity of the location of the perturbation point. (g) The combination of
the results in (a)–(f), which shows a clear panda in the whole FoV.
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correlation functionW0ðρ; ρ0Þ of the LGSM beam, and we can-
not see the panda in the phase of the reconstructed product. We
show the amplitude and the phase of the correlation function
W0ðρ; ρ0Þ calibrated using an empty window as the object in
Fig. 5(b). In Fig. 5(c), we demonstrate the object’s transmission
function OðρÞ obtained by dividing the reconstructed product
OðρÞW0ðρ; ρ0Þ by the calibrated W0ðρ; ρ0Þ. The panda in the
phase of the reconstructed object can clearly be seen. This ex-
ample verifies that our method can be applied to object
reconstruction in cases using an illumination beam whose
MCF is not known prior.

4 Conclusion
In summary, we develop and validate a noniterative method to
reconstruct the complex-valued transmission function of an ob-
ject illuminated by spatially partially coherent beam using a
PAM placed between the object and the detector. Our method
overcomes several challenges of conventional iterative CDI al-
gorithms and holographic methods. In particular, our method
does not depend on the mode decomposition of the MCF of
the spatially partially coherent light and has the freedom to
choose the location of the point where the transmission function
of the object is perturbed, which is particularly beneficial for
achieving large FOV when using a low degree of spatial coher-
ence illumination. Moreover, we also demonstrate that our
method can be used to calibrate the MCF of an arbitrary spa-
tially partially coherent beam. This calibration allows us to re-
construct the object’s transmission function almost as accurately
as if using complete illumination. The calibration itself can also
be used for spatial coherence property characterization, which is
needed as an approach for applications like the measurement of
optical coherence singularity.29,30 Therefore, in addition to dif-
fractive imaging, our method also provides an approach. Finally,
our method is wavelength independent and can be applied to a
wide range of wavelengths, from x-rays to infrared light.
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