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Abstract. The Abbe diffraction limit, which relates the maximum optical resolution to the numerical aperture of
the lenses involved and the optical wavelength, is generally considered a practical limit that cannot be
overcome with conventional imaging systems. However, it does not represent a fundamental limit to
optical resolution, as demonstrated by several new imaging techniques that prove the possibility of finding the
subwavelength information from the far field of an optical image. These include super-resolution fluorescence
microscopy, imaging systems that use new data processing algorithms to obtain dramatically improved
resolution, and the use of super-oscillating metamaterial lenses. This raises the key question of whether
there is in fact a fundamental limit to the optical resolution, as opposed to practical limitations due to
noise and imperfections, and if so then what it is. We derive the fundamental limit to the resolution of
optical imaging and demonstrate that while a limit to the resolution of a fundamental nature does exist,
contrary to the conventional wisdom it is neither exactly equal to nor necessarily close to Abbe’s estimate.
Furthermore, our approach to imaging resolution, which combines the tools from the physics of wave
phenomena and the methods of information theory, is general and can be extended beyond optical
microscopy, e.g., to geophysical and ultrasound imaging.
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1 Introduction
High-resolution optical imaging holds the key to the under-
standing of fundamental microscopic processes both in nature
and in artificial systems—from the charge carrier dynamics
in electronic nanocircuits1 to the biological activity in cellular
structures.2 However, optical diffraction prevents the “squeez-
ing” of light into dimensions much smaller than its wavelength,3

leading to the celebrated Abbe diffraction limit.4–7 This does not
allow a straightforward extension of the conventional optical
microscopy to the direct imaging of such subwavelength struc-
tures as cell membranes, individual viruses, or large protein
molecules. As a result, recent decades have seen an increasing
interest in developing “super-resolution” optical methods that
allow to overcome this diffraction barrier—i.e., near-field opti-
cal microscopy,8 structured illumination imaging,9 metamateri-
als-based super-resolution,10 two-photon luminescence and
stimulated emission-depletion microscopy,11 stochastic optical
reconstruction imaging,12 and photoactivated localization
microscopy.13

In particular, there is an increasing demand for the approach
to optical imaging that is inherently label-free and does not rely
on fluorescence, operates on the sample that is in the far field of
all elements of the imaging system, and offers resolution com-
parable to that of fluorescent microscopy. Although seemingly a
tall order, this task has recently found two possible solutions that
approach the problem from the “hardware” and “algorithmic”
sides, respectively. The former approach relies on the phenome-
non of “super-oscillations”—where the band-limited function
can and—when properly designed—does oscillate faster than
its fastest Fourier component. The super-oscillatory lenses that
implement this behavior have been designed and fabricated,14,15

and optical resolution exceeding the conventional Abbe limit
has been demonstrated in experiment.14 The second approach
relies on methods of processing the “diffraction-limited” data,
taking full advantage of the fact that actual targets (and espe-
cially biological samples) are often inherently sparse.3 The re-
sulting resolution improvement beyond the Abbe limit, due to
this improved data processing, has been demonstrated both in
numerical simulations and in experiment.16–18

Far-field optical resolution beyond the Abbe limit in a scat-
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Refs. 14–19, clearly demonstrates that Abbe’s bound of half-
wavelength (and its quarter-wavelength counterpart for struc-
tured illumination) is not a fundamental limit for optical imag-
ing. This raises the key question of whether there is in fact a
fundamental bound to the optical resolution—as opposed to
practical limitations due to detector noise, imaging system im-
perfections, data processing time limits in the case when image
reconstruction corresponds to an NP-complete problem, etc.
Furthermore, the knowledge of the corresponding fundamental
limit, if such exists, and the physical mechanism behind it would
help find the way to the system that offers the optimal perfor-
mance—just as deeper understanding of thermodynamics and
Carnot’s limit helped the design of practical heat engines.

In this work, we show that there is in fact a fundamental limit
on the resolution of far-field optical imaging, which is however
much less stringent than Abbe’s criterion. The presence of any
finite amount of noise in the system, regardless of how small its
intensity, leads to a fundamental limit on the optical resolution,
which can be expressed in the form of an effective uncertainty
relation. This limit has an essential information-theoretical
nature and can be connected to the Shannon’s theory of infor-
mation transmission in linear systems.20

2 Definition of the Resolution Limit
We define the diffraction limit Δ as the shortest spatial scale of
the object whose geometry can still be reconstructed, error-free,
from the far-field optical measurements in the presence of noise.
(Although the concept of error-free information recovery in the
presence of noise may sound surprising, it lies in the heart of
modern computer networks where terabytes of data are trans-
ferred error-free over noisy transmission lines.) Without loss
of generality, one can then assume that the object is composed
of an arbitrary number of point scatterers of arbitrary amplitudes
located at the nodes of the grid with the period Δ, as any addi-
tional structure in the sources (or scatterers) or variations in po-
sition will add to the information that needs to be recovered
from far-field measurement for the successful reconstruction
of the geometry of the object. (For a given illumination field,
each point scatterer can be treated as an effective point source.)

Furthermore, the essential “lower bound” nature of Δ further
allows to reduce the problem to that of an effectively one-dimen-
sional target (formed by line, rather than point, sources)—since,
as was already known to André21 and Rayleigh,22 line sources
are more easily resolvable than point sources.

To calculate the fundamental resolution limit, it is therefore
sufficient to consider the model system of an array of line
“sources” of arbitrary (including zero) amplitudes, located at
the node points of the grid with the period Δ [see Fig. 1(a)].
Note that in terms of the information that is detected in the far
field and the information that is necessary and sufficient for the
target reconstruction, this problem is identical to that of a step
mask where thickness and/or permittivity changes at the nodes
of the same grid by the amounts proportional to the amplitudes
of the corresponding line sources (as the point source distribu-
tion corresponds to the spatial derivative of the mask “profile”)
[see Fig. 1(b)].

Note that the reduction of the original problem to that of an
effectively one-dimensional profile is not a simplification for the
sake of convenience or reduction of the mathematical complex-
ity. It is exactly this “digitized” one-dimensional profile that cor-
responds to the smallest “resolvable” spatial scale among all
objects with a low bound on their spatial variations and therefore

defines the fundamental resolution limit. Furthermore, in many
cases, the actual object is formed by two (or more) materials that
form sharp interfaces. In this case, the step mask that is equiv-
alent to our point source model offers an adequate representa-
tion of the actual target.

However, even within the original framework of “resolving”
two point sources,22 the result clearly depends on the difference
of their amplitudes—with increasing disparity between the two
leading to progressively worse “resolution.” The “ultimate” res-
olution limit Δ, therefore, corresponds to the case of identical
point sources (or subwavelength scatterers), which are present
only in an (unknown) fraction of the grid nodes. Note that such a
digital mask corresponds to the common case of a pattern
formed by a single material (e.g., the surrounding air) [see
Fig. 1(b)].

When the distance to the detector R is much larger than the
aperture L, R ≫ L (see Fig. 1), for the far-field signal detected
in the given polarization and in the direction defined by the
wavevector k (see Fig. 1 and Sec. 7):

sðkÞ ¼
X
i

αiE0ðρiÞ expðik · ρiÞ þ nðkÞ; (1)

where E0 is the incident field “illuminating” the target, i is the
(integer) index that labels the (point) scatterers with the corre-
sponding polarizabilities αi, ρi ≡ ðxi; yiÞ, k ≡ ðkx; kyÞ is the
wavevector with the magnitude jkj ¼ ω∕c ≡ k0, ω is the light
frequency, and c is the speed of light (in the medium surround-
ing the target). Here nðkÞ corresponds to the effective noise,
which includes the contributions from all origins (detector dark
currents, illumination field fluctuations, etc.). Using data for im-
aging with different electromagnetic field polarizations, the ef-
fective noise can be correspondingly reduced.

Equivalently, for the case of the object in the form of a (di-
electric) mask [see Fig. 1(b)], we obtain

sðkÞ ¼
Z

d2ρΔϵðρÞE0ðρiÞ expðik · ρiÞ þ nðkÞ; (2)

where Δϵ is the difference between the dielectric permittivities
of the object and the background.

Note that Eqs. (1) and (2) are linear in Δϵ and α (see Sec. 7),
which physically correspond to the limit when multiple scatter-
ing is weak. Although this is generally the case in optical
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Fig. 1 The schematic representation of the imaging set-up, for
the object formed by (a) an array of small particles/lines and
(b) a (binary) mask. D labels the position of a (coherent) detector,
L is the size of the object (and equivalently the imaging aperture),
and R is the distance from the object to the detector; in the far
field R ≫ L.
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imaging of low-contrast media, secondary waves due to multi-
ple light scattering can be intentionally induced by an a priori
known high-contrast grating placed in the near field of the
object.23–25 Such grating-assisted microscopy offers a substantial
improvement of imaging resolution well beyond what is ex-
pected for conventional far-field imaging.23–25

The model of Eq. (1) or its equivalent Eq. (2) assumes co-
herent detection of the electromagnetic field in the far zone. This
is essential for the definition of the fundamental resolution limit,
as the phase information is in fact available in the far field and
can be measured even with an intensity only sensitive detector
using optical heterodyne approach26 so that any failure to obtain
the corresponding information in a given experimental setup
cannot be attributed to the fundamental resolution limit of op-
tical imaging.

Finally, for the calculation of the fundamental resolution
limit Δ, we must assume the large aperture limit k0L ≫ 1.
Although the case of a small aperture k0L ≤ 1 can be easily
implemented in the actual experimental setup (albeit at the cost
of dramatic reduction in the field of view), the aperture in a close
proximity to the object represents an example of a near-field
probe, and this setup cannot be treated as a true far-field
imaging.

3 Information-Theoretical Framework
To derive the fundamental limit on the resolution of optical im-
aging, we calculate the total amount of information about the
object that can be recovered in the far field. As Eq. (1) can
be interpreted as the input (E0)–output ðsÞ relation of a linear
information channel, the amount of the actual information car-
ried from the object to the far-field detector, can be calculated
using the standard methods of the information theory.20 The res-
olution limit then follows from the requirement of the recovered
information T being sufficient to reconstruct the target:

Δ ¼ L
T
: (3)

When the object is composed of M different materials (or
is formed by an array of point sources with M different levels
of amplitude), additional information is needed for its
reconstruction, which leads to a more stringent bound on the
spatial resolution:

ΔM ¼ L log2 M
T

¼ Δ · log2 M ≥ Δ: (4)

The actual transmitted information T can be obtained from
the mutual information functional20

T ¼ H½fsg� −H½fsgjE0; α�: (5)

Here the entropy H½fsg� is the measure of the information
received at the detector array:

H½fsg� ¼ −
Z

DsðkÞ · P½sðkÞ� · log2 P½sðkÞ�; (6)

where P½sðkÞ� is the distribution function of the output signal
sðkÞ, and the functional integral

R
DsðkÞ is defined in the stan-

dard way [see Eq. (22) in Sec. 9].

However, as the system is noisy, for any output signal, there
is some uncertainty of what was the originating field scattered
by the mask. The conditional entropy H½fsgjE0� at the detector
array for a given E0 represents this uncertainty:

H½fsgjE0� ¼−
Z

DsðkÞ ·P½sðkÞjE0ðρÞ�× log2P½sðkÞjE0ðρÞ;α�:
(7)

Substituting the resulting analytical expressions for H½fsg�
and H½fsgjE0� (see Sec. 9) into the mutual information T in
Eq. (5), for the resolution limit in the case of uniform illumina-
tion (see Sec. 10 for resolution limit in the regime of structured
illumination), we obtain

Δ ¼ λ

2

1

log2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2SNRþ ηSNR2

p
þOð1∕k0LÞ

; (8)

which in the appropriate limits is consistent with the results of
the earlier information-theoretical studies of Refs. 27–30. Here
SNR is the effective signal-to-noise ratio measured at the detec-
tor array:

SNR ¼ hjsðkÞ − hsðkÞij2i
hjnðkÞj2i ; (9)

and

η ¼ h½Reðα − hαiÞ�2ih½Imðα − hαiÞ�2i
hjα − hαij2i

− hReðα − hαiÞImðα − hαiÞi2
hjα − hαij2i (10)

represents the relative contribution of the absorption in the tar-
get; for a transparent object [ImðαÞ ¼ 0], we have η ¼ 0. The
correction Oð1∕k0LÞ accounts for the finite size of the imaging
aperture and can be neglected for k0L ≫ 1.

4 Discussion
Although Eq. (8) allows for an unlimited resolution in a noise-
free environment, even a relatively low noise dramatically alters
this picture. With the weak logarithmic dependence of the res-
olution limit on the SNR, to reduce the resolution limit by a
factor of ten, the SNR needs to be increased by nearly five or-
ders of magnitude.

At the same time, the spatial resolution limit ΔM depends on
the effective “uncertainty” in the range of permittivity variations
in the object that is being imaged—the simpler is the structure of
the target, the easier is the task of finding its geometry. The ul-
timate value Δ is then achieved in the case of a binary mask (i.e.,
the object that is formed by only two materials) and represents
the fundamental bound to the resolution. In the case of a higher
complexity in the composition of the target, the actual resolution
limit ΔM is well above Δ. When the number of materials (with
their corresponding permittivities) that the object is composed
of,M, is known a priori, the corresponding resolution limit ΔM
is defined by Eq. (4). However, when no a priori information
whatsoever is available, the limit to the resolution can be ex-
pressed as the effective uncertainty relation, which offers the
lower bound on the product of the scaled spatial resolution
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δx and the amplitude resolution δϵ. In the case when the object is
composed of transparent materials ½ImðϵÞ ¼ 0�, we obtain

δx · FðδϵÞ ≥
1

log2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2SNR

p ; (11)

where FðtÞ ≡ 1∕ log2ð1∕tÞ, the scaled spatial resolution δx is de-
fined as the ratio of Δ to the Abbe limit, and the scaled ampli-
tude resolution corresponds to the uncertainty in the permittivity
δϵ that is normalized to the difference between the smallest
(ϵmin) and largest (ϵmax) permittivities in the object, δϵ≡
δϵ∕ðϵmax − ϵminÞ. For a binary mask, δϵ ¼ ðϵmax − ϵminÞ∕2 so
that the scaled amplitude resolution δϵ ¼ 1∕2 and FðδϵÞ ¼ 1,
which reduces the uncertainty relation, Eq. (11), to the funda-
mental limit Δ of Eq. (8).

For imaging with no a priori information, with the optimal
data reconstruction algorithm, Eq. (11) represents a trade-off be-
tween the uncertainties in position and the amplitude of the re-
covered image. Note that, as follows from Eq. (11), spatial
resolution at the Abbe limit corresponds to the relative ampli-
tude uncertainty of at least 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2SNR

p
.

In the case of imaging a binary mask or a pattern of identical
subwavelength particles, the actual resolution can reach the
value of Δ, which for a high SNR can be substantially below
the Abbe limit. For example, in the structured illumination setup
with SNR ∼ 10−6, we findΔ ∼ λ∕100. Although reaching all the
way to this limit with the data obtained in the standard imaging
setup may be highly nontrivial, a straightforward algorithm de-
scribed below that implements the amplitude constraint, offers
spatial resolution well below the Abbe limit (see Fig. 2).

In the algorithm whose performance is shown in Fig. 2, the
subwavelength binary mask (see the inset in Fig. 2) is recovered
from its (band-limited) Fourier spectrum measured in the far
field, together with the constraint that limits its profile to only
two values. Although a finite amount of noise in the far-field

measurements inevitably leads to errors, with the increase of
the effective SNR, the corresponding error probability Perr rap-
idly goes to zero. In particular, for the resolution of λ∕16 in the
example of Fig. 2, for the SNR beyond the value indicated by
the red arrow, the numerical calculation with an ensemble of
10,000 different realizations showed no errors.

The light-red and light-green color backgrounds in Fig. 2
correspond to the parameter range that, respectively, violates
and satisfies the fundamental resolution limit of Eq. (8). Note
that the boundary separating these regimes corresponds to the
SNR that is substantially less than the smallest value (shown
by red arrow in Fig. 2) for the error-free performance in the data
recovery—indicating that the reconstruction algorithm is far
from optimal. Still, even with this performance, the example
of Fig. 2 indicates that even a straightforward implementation
of an a priori constraint on the object geometry (binary mask
rather than an arbitrary profile) offers object reconstruction from
diffraction-limited data with deep subwavelength resolution
(four times below the Abbe limit in the example of Fig. 2).

Additional a priori information about the object further re-
duces the resolution limit of optical imaging. For different cases
of a priori available information about the target, the case of
sparse objects is particularly important, as this property is
widespread in both natural and artificial systems.3 If the target
is a priori known to be sparse, with the effective sparsity param-
eter β (which can be defined as the fraction of empty “slots” in
the grid superimposed on the target), we find

ΔðβÞ ¼ Δ
jβ log2 β þ ð1 − βÞlog2ð1 − βÞj : (12)

For the numerical example studied in Ref. 16, with β ≃ 0.03
and SNR ∼ 102, the resolution limit ΔðβÞ ≃ 0.025λ. Accurate
numerical reconstruction of the features on the scale of
∼λ∕10 demonstrated in Ref. 16 is, therefore, fully consistent
with the fundamental limit ΔðβÞ.

5 Imaging with a Small Aperture
The explicit expression for the resolution limit in Eq. (8) is pre-
sented in the large amplitude limit k0L ≫ 1. Although this cor-
responds to the most common regime of actual optical
microscopy, using a small aperture that is comparable to the free
space wavelength can offer its own advantages. The resulting
effect on the resolution limit is accounted for by the (positive
definite) term Oð1∕k0LÞ in Eq. (8), which further reduces Δ.

Note that this was precisely the regime where super-oscilla-
tion-based imaging was demonstrated in experiment, as the use
of small aperture was essential to block the (exponentially)
strong power side lobes. Although the resulting improvement
of the resolution is consistent with the fundamental limit estab-
lished in this work, our expressions Eqs. (4), (8), and (12) do not
explicitly indicate the advantage of super-oscillation approach.
This should be contrasted to the case of sparsity-based imaging
where its key parameter β explicitly enters the resolution limit
in Eq. (12).

Indeed, while the super-oscillation imaging does offer sub-
wavelength resolution, this improvement is the general feature
of all structured illumination methods optimized for small aper-
ture (or equivalently for imaging small isolated objects) and is
not limited to the super-oscillation approach. This behavior is
illustrated in Fig. 3, where a subwavelength target [red pattern
in the center of Fig. 3(a)] is illuminated by the Bessel beam

10 100 1000 104 105 106
0.0

0.1

0.2

0.3

0.4

0.5

SNR

Perr

16

Fig. 2 Super-resolution object reconstruction for a binary mask,
from its coherently detected diffraction pattern in the far field. The
inset shows the schematics of the object profile. The main panel
plots the error probability in the recovered profile, as a function of
the effective SNR. The data shown were obtained for 10,000 dif-
ferent realizations. The boundary separating the light-red and
light-green background corresponds to the value of the SNR cor-
responding to Δ sufficient to resolve the λ∕16 spacing (see the
inset). The red arrow indicates the minimum value of SNR when
the numerical reconstruction produces no errors.
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propagating in the direction normal to the plane of the picture.
The beam axis is “focused” to the center of the target [see
Fig. 3(a)] so that the illuminating field within the aperture
not only shows no super-oscillations but in fact does not oscil-
late at all—see the field profiles for different orders m of the
illuminating Bessel beams in Fig. 3(b). Nevertheless, the stan-
dard data recovery algorithm clearly shows deep subwavelength
resolution of ∼λ∕10 [see Fig. 3(c)], despite having no a priori
information about the structure of the target.

It should, however, be noted that the super-oscillation-based
approach, when implemented to form a subwavelength focus
spot that is used to scan the object,14,15 is naturally suitable for
optical imaging limited to incoherent detection, which offers
substantial practical advantages in the actual implementation
of the system.

6 Conclusions
In conclusion, we have derived the fundamental resolution limit
for far-field optical imaging and demonstrated that it is generally
well below the standard half-the-wavelength estimate. Our re-
sults also apply to other methods that rely on wave propagation
and scattering, e.g., geophysical and ultrasound imaging.

7 Appendix A: Imaging Model
In its most general setting, the problem of (optical) imaging is
essentially the reconstruction of the object profile from scatter-
ing data. The formation of the desired image of the target can
be achieved using “analog” or “digital” tools, with lenses and
projection screens in the former case and computational
reconstruction of the object pattern on a computer screen. If
the structure of the object is represented by its dielectric
permittivity profile ϵðrÞ, the scattered electric field at the given
frequency ω is defined by the vectorial Lippmann–Schwinger
equation:

EðrÞ ¼ E0ðrÞ þ k20

Z
dr0G0ðk0jr − r0jÞΔϵðr0ÞEðr0Þ; (13)

where G0ðk0jr − r0jÞ is the (dyadic) Green function for the
medium surrounding the object, ΔϵðrÞ ≡ ϵðrÞ − ϵ0 is the differ-
ence between the permittivities of the object and of the sur-
rounding medium, and k0 ≡

ffiffiffiffiffi
ϵ0

p
ω∕c.

Alternatively, the object may be represented as a collection of
small (subwavelength) particles, with the individual (tensor) po-
larizabilities αi, leading to

EðrÞ ¼ E0ðrÞ þ 4πk20
X
i

G0ðk0jr − rijÞαiEðriÞ: (14)

Note that these two formulations are essentially equivalent,
as arbitrary dielectric permittivity profile can be expressed in
terms of the electromagnetic response of a large group of small
particles.31

Although Eqs. (13) and (14) are linear in the electrical field,
when treated as inverse problems for the reconstruction of the
unknown profile ΔϵðrÞ and the distribution αi from the given
illumination field E0ðrÞ and the scattering data for EðrÞ, they
are essentially nonlinear in Δϵ and α.32 Physically, this nonlin-
earity originates from multiple scattering effects within the ob-
ject,33 when the actual field acting on the given object, EðrÞ, in
addition to the incident field E0, also includes the contributions
from the “secondary” waves scattered by the order parts of the
object. Although these multiple scattering corrections can be
substantial in acoustic and microwave scattering,33 for optical
imaging of low-contrast media, these are generally small.34

Note, however, that when substantially present these “secon-
dary”waves due to multiple light scattering can have a profound
effect on the imaging resolution33—as the subwavelength struc-
ture of the object now functions as a high-spatial frequency gra-
ting forming an effective structured illumination pattern.

In the language of scattering theory, the conventional optical
imaging and microscopy corresponds to the limit of weakly scat-
tering semitransparent objects, which neglects multiple scattering
contributions. The resulting first-order Born approximation34

reduces the acting field in the integral of Eq. (13) and the

Fig. 3 Super-resolution imaging of a subwavelength object, based on structured illumination with
Bessel beams. (a) The “incident” Bessel beam of the orderm ¼ 12 (shown in gray scale) focused
at the center of the subwavelength object (red). (b) The Bessel beam profiles in the object plane,
for different orders m ¼ 0 (red), 1 (orange), 2 (magenta), 3 (blue), 4 (cyan), and 5 (green). For a
small distance from the center, the Bessel function of orderm behaves as xm , so illumination with
the Bessel beams of different orders effectively “projects” the target on the set fxmg for different
values of m. As the latter form a complete basis set, this procedure allows high-resolution
reconstruction of the original object profile, without any use of super-oscillations or subwavelength
focusing. (c) The subwavelength object profile and its reconstruction with Bessel beam illumina-
tion. The object corresponds to the red line in (c). The reconstructed profiles are shown for the
effective SNRs of 106 [blue line in (c)] and 104 [green line in (c)].
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sum of Eq. (14) to the (a priori known) illumination field E0,
thus leading to a linear inverse problem.

The resulting expressions can be further simplified in the
radiation zone, when the detectors are placed in the far-field
(radiation zone) of the object, k0jr − rij ≫ 1, thus reducing
Eq. (14) to

EðrÞ ¼ k20
X
i

½ðr− riÞ× αiE0ðriÞ�× ðr− riÞ
jr− rij2

× expðik0jr− rijÞ:

(15)

When the distance to the detector r is much larger than the
aperture L, r ≫ L, for the far-field signal detected in the given
polarization and the wavevector k (see Fig. 1), we find

sðkÞ ¼
X
i

αiE0ðρiÞ expðik · ρiÞ þ nðkÞ; (16)

where ρi ≡ ðxi; yiÞ, k ≡ ðkx; kyÞ with the magnitude jkj ¼ k0,
and n is the noise in the corresponding detector (see Fig. 1).

Similarly, if the target is represented with the 2-D permittiv-
ity mask ϵðx; yÞ (corresponding to the Motti projection35 of the
actual 3-D permittivity of the object), we obtain

sðkÞ ¼
Z

d2ρΔϵðρÞE0ðρiÞ expðik · ρiÞ þ nðkÞ: (17)

8 Appendix B: Information Entropy
The entropy H½s� offers a measure of the information received
by the detector that returns the value of s and is a functional of
the statistical distribution of s:

H½s� ¼ −
Z

ds pðsÞlog2 pðsÞ: (18)

When s represents the scattered field detected in the imaging
system, it is defined by the object structure and the illumination
field profile. However, even in the absence of any stray light in
the system, all detectors are inherently noisy. As a result, for
a given detected signal, there will always be some uncertainty.
This uncertainty is represented by the conditional information
entropy H½sjo� of the detected signal for a given object, in terms
of the conditional distribution pðsjoÞ:

H½sjo� ¼ −
Z

ds pðsjoÞlog2 pðsjoÞ: (19)

According to the Shannon’s fundamental result,20 the result-
ing information about the object is then given by the mutual
information

T ¼ H½s� −H½sjo�: (20)

When the imaging system measures the continuous spectrum
sðkÞ, the relevant entropies are defined by the functional
integral:

H ¼ −
Z

DsðkÞp log2 p; (21)

where p ≡ p½sðkÞ� for the entropy H½s�, and p ≡ p½sðkÞ� for the
entropy H½sjo�, and the functional integral is defined in the stan-
dard way:

Z
DξðkÞ ≡ lim

M→∞
cM

�
ΠM

m¼1

Z
dξðkmÞ

�
; (22)

where cM is the normalization constant.

9 Appendix C: Mutual Information
The mutual information T is defined20 as the difference between
the information entropy at the “output” sðkÞ for the unconstraint
“input,” H½fsg�, and the information entropy H½fsgjE0α� of the
output for fixed input E0ðρÞαðρÞ [see Eq. (16)]. For additive
noise, the latter is simply equal to the noise entropy:

H½fsgjE0α� ¼ −
Z

DnðkÞPn½nðkÞ� × log2 Pn½nðkÞ�; (23)

where Pn½nðkÞ� is the noise distribution function and reduces to

H½fsgjE0α� ¼
Z

dk log2

�
πe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjnðkÞj2i

q �
(24)

for uncorrelated Gaussian noise.
The unconditional output distribution Pn½sðkÞ� is defined by

both the noise and the target profile distribution P½fαg�.
Although the latter does not necessarily reduce to a simple func-
tional form, every single output component sðkÞ corresponds to
a sum of many such random variables [see Eq. (16)]. The central
limit theorem then implies that the “output” statistics of sðkÞ is
described by the correlated multivariate normal distribution.
Changing the path integral variables in Eq. (23) using the
orthogonal transformation that diagonalizes the corresponding
covariance matrix, we obtain

H½fsg� ¼
X
λ

log2fπe½2λhjnðkÞj2ihjα − hαij2i

þλ2ηhjα − hαij2i2 þ hjnðkÞj2i2�1∕2g; (25)

where λ’s are the eigenvalues of the discrete prolate spheroidal
Slepian matrix36 Sk1k2 ¼ Sðk1 − k2Þ, with jkj ¼ k0, where for
a one-dimensional target, S1ðqÞ ¼ sin qL

2
∕ sin qΔ

2
, and for a

rectangular (square) aperture, S2ðqÞ¼ S1ðqxÞS1ðqyÞ. The eigen-
value spectrum of the Slepian matrix has a characteristic step
shape, showing k0L significant eigenvalues (λ ≈ L∕Δ) and
remaining insignificant eigenvalues (λ ≈ 0) separated by a nar-
row transition band.37,38 The eigenvalue sum in Eq. (25) can be,
therefore, calculated analytically, which together with Eqs. (5)
and (24) yields Eq. (8).

10 Appendix D: Resolution Limit for
Structured Illumination

In the case of structured illumination, for the resolution limit,
we obtain

δSE ¼ λ

4

1

log2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2SNRþ ηSNR2

p
þOð1∕k0LÞ

; (26)
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δSEM ¼ λ

4

log2 M

log2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2SNRþ ηSNR2

p
þOð1∕k0LÞ

: (27)
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