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Abstract. Synthetic dimensions (SDs) opened the door for exploring previously inaccessible phenomena in
high-dimensional space. However, construction of synthetic lattices with desired coupling properties is
a challenging and unintuitive task. Here, we use deep learning artificial neural networks (ANNs) to construct
lattices in real space with a predesigned spectrum of mode eigenvalues, and thus to validly design the
dynamics in synthetic mode dimensions. By employing judiciously chosen perturbations (wiggling of
waveguides at desired frequencies), we show resonant mode coupling and tailored dynamics in SDs. Two
distinct examples are illustrated: one features uniform synthetic mode coupling, and the other showcases
the edge defects that allow for tailored light transport and confinement. Furthermore, we demonstrate
morphing of light into a topologically protected edge mode with modified Su–Schrieffer–Heeger photonic
lattices. Such an ANN-assisted construction of SDs may advance toward “utopian networks,” opening new
avenues for fundamental research beyond geometric limitations as well as for applications in mode lasing,
optical switching, and communication technologies.
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1 Introduction
Synthetic dimensions (SDs) are drawing a great deal of interest
in topological photonics and other branches of physics for ex-
ploiting fundamental phenomena in high-dimensional spaces.1,2

Several theoretical proposals have been put forward for the
study and implementation of synthetic gauge fields, quantum
Hall physics, discrete solitons, Weyl semimetals, and topologi-
cal phase transitions in four dimensions and beyond, predicting
rich physics inaccessible in a conventional three-dimensional
real space.3–8 In particular, it is quite challenging to realize

experimentally a complex lattice structure or network of reso-
nators with anisotropic, long-range or dissipative couplings in
real space, but that is particularly amenable using SDs.
Examples include demonstrations of non-Hermitian topological
winding,9,10 skin effect,11 parity-time symmetry,12,13 topological
“triple” phase transition,14 and nontrivial topology arising from
a system’s dissipation.15 Thus far, SDs have been constructed
using a variety of parameters or degrees of freedom in a given
system, such as frequency modes, spatial modes, orbital angular
momenta, and time-delayed pulses,11,14–22 along with many pro-
posed applications in, for example, optical communications and
topological insulator lasers.23,24

One highly desirable goal of these studies is to construct
a “utopian” network of resonators or coupled modes, where
any pair of modes could be coupled in a controlled fashion.25

*Address all correspondence to Hrvoje Buljan, hbuljan.phy@pmf.hr; Zhigang Chen,
zgchen@nankai.edu.cn
†These authors contributed equally to this work.

Research Article

Advanced Photonics 026005-1 Mar∕Apr 2024 • Vol. 6(2)

https://orcid.org/0000-0003-0107-2738
https://orcid.org/0000-0002-2509-0175
https://orcid.org/0000-0002-9808-6628
https://doi.org/10.1117/1.AP.6.2.026005
https://doi.org/10.1117/1.AP.6.2.026005
https://doi.org/10.1117/1.AP.6.2.026005
https://doi.org/10.1117/1.AP.6.2.026005
https://doi.org/10.1117/1.AP.6.2.026005
https://doi.org/10.1117/1.AP.6.2.026005
mailto:hbuljan.phy@pmf.hr
mailto:hbuljan.phy@pmf.hr
mailto:hbuljan.phy@pmf.hr
mailto:zgchen@nankai.edu.cn


However, in most systems, the possibilities depend on their
natural properties. For example, the realization of resonant cou-
pling strongly depends on a given spectrum of eigenvalues.
Moreover, mode manipulation has emerged as an active research
subject in many photonic systems,26 as it brings about new pos-
sibilities for improving the design and functionality of devices.
For instance, appropriate mode manipulation can increase the
capacities of data transmission,27,28 enhance the efficiency of
energy harvesting,11 and enlarge the radiance of laser arrays.29

Recently, mode manipulation using the concepts of non-
Hermiticity, nonlinear topological photonics, as well as optical
thermalization has been proposed and demonstrated,30,31 which
rely in large part on the gain-loss feature, nonreciprocal cou-
plings, and light–matter interactions.

In this work, we implement on-demand waveguide arrays
with desired features in SDs, so as to achieve tailored mode
manipulation in a linear system without the need to introduce
non-Hermiticity or nonlinearity. Such manipulation of the
modal spectrum brings us one step further toward the utopian
networks.25 The mode manipulation is achieved by introducing
perturbations with a particular frequency (or frequencies) that
corresponds to the spacing between mode eigenvalues. We
use pre-trained artificial neural networks (ANNs) to design a
waveguide array (i.e., a photonic lattice) in real space, which

has a predetermined spectrum of eigenvalues (see Fig. 1). We
experimentally implement two mode arrays in SDs: one with
uniform synthetic mode coupling strengths, and the other with
edge defect weakly coupled to the bulk in the SD, showing cor-
respondingly light transport and confinement in the SD. Finally,
we utilize ANNs to design a modified type of Su–Schrieffer–
Heeger (SSH) topological lattice32 that has a linear dispersion
in bulk bands, and thereby to demonstrate controlled coupling
in the SD and morphing of light from a given bulk mode into
a topological edge state.

2 Principles and Methods

2.1 Deep-Learning-Empowered Eigenvalue Design

The eigenmodes and eigenvalues of any Hamiltonian H can in
principle be found by diagonalization, which produces a trans-
formation matrix Φ comprising eigenmodes of H. The diagonal
matrix E ¼ Φ†HΦ contains the eigenvalues, conveniently written
as an array B ¼ diagðEÞ. Previous analytical methods, such as
the Lanczos method and Householder transformations, have
offered approaches to solve or modify the spectrum based on
a Hamiltonian provided beforehand.29,33 However, the inverse
problem is far more complicated: given a preassigned eigenvalue

Fig. 1 Scheme for the mode manipulation in SD assisted with ANNs. A probe beam at input rep-
resenting one mode (edge in SD) is launched into different synthetic mode arrays, through which
light is either transported laterally (left) or confined in SD but as a complex profile in real space
(right), depending on the ANN design of the arrays. The input and output data of the ANNs are
based on the preassigned eigenvalues and couplings of the arrays. Waveguides are curved along
the z direction in real space. Vertical planes show the mode evolution in SD, where orange/purple
profiles lined up vertically are the eigenmode distributions, forming the lattices in SD. The yellow
bars denote the mode distribution of the probe beam, and the shaded zone (in right panel)
represents a coupling blockade in SD. The curved lines depicted at the input and output facets
of the arrays represent the complex beam profile in real space, which is well maintained during
propagation in the right panel due to the proper design of the coupling blockade.
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array B ¼ diagðEÞ, what is the Hamiltonian H with such eigen-
values? Moreover, this task is here constrained with physical
implementation: we demand that only the coupling between the
nearest neighbor waveguides is present in the Hamiltonian,
which is consistent with experimental conditions employing
evanescently coupled waveguides. In this work, we employ deep
learning34,35 to find the Hamiltonian that yields a desired eigen-
value array B.

The deep-learning method, a subset of machine learning that
uses ANNs, has been applied in many physical systems, includ-
ing photonics, image recognition, data analysis, and inverse
design.36–39 This is in contrast to previous work of all-optically
implemented ANNs, in which researchers explored the realm of
all-optical computation,40,41 and the algorithm was utilized to
address the inverse design problem.38 A general description of
the ANN paradigm we used can be found in the Supplementary
Material. Here, we use a preassigned eigenvalue array B as the
input layer data of the ANNs [Fig. 2(a1)]. The number of modes
is chosen to be N ¼ 8, but our method can be readily applied for
larger systems (see the Supplementary Material). The couplings
between nearest neighbor sites, which define the Hamiltonian H,
are assigned as the output layer. To determine the values of
weights in all hidden layers, 800 sets of eigenvalue-Hamiltonian
data (obtained numerically with the tight-binding model) are
sent to the ANNs to train the networks (see the Supplementary
Material).

When the ANN training is completed, two preassigned
eigenvalue arrays B illustrated in Figs. 2(a1) and 2(b1) are sent

back to the ANNs. The first array [Fig. 2(a1)] is an equally
spaced array, whereas the second one [Fig. 2(b1)] has two
outlying eigenvalues at the edges of the SD.42 For each of the
eigenvalue arrays, the ANNs [Fig. 2(a1)] yield a corresponding
tight-binding Hamiltonian of the form

HA ¼
XN−1

n¼1

tnc
†

nþ1cn þ H:c:; (1)

where c†n and cn are the creation and annihilation operators on
the nth site in real space, tn is the coupling coefficient between
the nth and ðnþ 1Þth sites, and H:c: stands for the Hermitian
conjugation. The eigenvalues ofHA are given byEA ¼ Φ†

AHAΦA.
To evaluate the effectiveness of our ANN method, we use the
following figure of merit:

γB ¼ 1

N

XN−1

m¼1

jΔβAm − Δβmj∕Δβm; (2)

where βm is the propagation constant of the mth mode, and
Δβm (ΔβAm) is the eigenvalue difference between the mth and
(mþ 1)th mode in the preassigned (ANN-calculated) eigenvalue
array. The figure of merit compares the difference between the
eigenvalues because it determines the coupling of modes in SD
driven by perturbations. We find that γB is ∼0.90% for the mode
array with equal spacing, and γB ¼ 3.15% for the array with out-
lying edges. The low deviations calculated for these two different
mode arrays show the high effectiveness of our ANN method.

T
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Fig. 2 Illustration of the mode evolution in different mode arrays designed by ANNs. (a1)–
(a4) Illustration of the mode arrays with equal spacing of eigenvalues βm . (a1) The sketch of the
eigenvalue array B and corresponding eigenmodes jφi i. The arrangement of the coupling array in
real space (labeled T ) is calculated by ANNs. (a2) The mode evolution dynamics in SD. Orange
circle in the left column indicates the excited mode. (a3) The corresponding beam propagation
dynamics in real space. (b1)–(b3) have the same layout as (a1)–(a3), except that they are for the
mode arrays with outlying edges, showing that the excited mode is well confined in SD. The shaded
zones in (b2) show the coupling blockades between the edge and bulk modes in SD. The propa-
gation distances at the vertical lines in (a) and (b) are for Z ¼ 40 mm and Z ¼ 80 mm, respectively.
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2.2 Construction of Synthetic Mode Dimension

By appropriately wiggling the waveguides along the propaga-
tion direction (Fig. 1), we engineer the coupling between
eigenmodes of the Hamiltonian HA; that is, we engineer the
dynamics in SD20 (see the Supplementary Material). Let Dn
denote the equilibrium distance between the first and nth wave-
guides. If the center of each waveguide wiggles along the propa-
gation direction as R sinðΩzþ θÞ in the ðx; zÞ plane, in analogy
with quantum mechanics, it is equivalent to introducing an os-
cillating scalar potential Vðx; zÞ ¼ V0 sinðΩzþ θÞðx −DN∕2Þ.
Here, we have for convenience set the zero point of the potential
VðDN∕2Þ ¼ 0 to be the central point of our lattice denoted with
DN∕2, where the DN is the distance between the first and last
(Nth) waveguides. The amplitude V0 ¼ k0Ω2R can be calcu-
lated for our system straightforwardly in a vector potential
gauge20 (see the Supplementary Material); here k0 ¼ 2πn0∕λ
is the wavenumber (n0 is the refractive index of the medium,
and λ is the wavelength). After applying the wiggling, the
discrete Hamiltonian becomes

HwðzÞ ¼ HA þH1ðzÞ;

H1ðzÞ ¼
XN

n¼1

ðDn −DN∕2Þk0Ω2R sinðΩzþ θÞc†ncn þ H:c: (3)

Here, z indicates the propagation distance along the pho-
tonic lattices, which is equivalent to the role of time in quantum
mechanics. The scalar potential Vðx; zÞ is applied to the onsite
terms. It is important to acknowledge that the mode coupling in
SDs is not an adiabatic process, as in Thouless pumping.43,44

In the language of quantum mechanics, we utilize appropriately
tailored time-dependent perturbations to transfer the energy
between eigenmodes in a controllable fashion, which is
enabled by the preassigned energies that enter the ANNs.
The on-site terms in the SD Hamiltonian are given by the
diagonal matrix Φ†

AHAΦA, and the wiggling-induced coupling
coefficients are contained in the matrix Φ†

AH1ðzÞΦA
20 (see

the Supplementary Material); note that the oscillating term
sinðΩzþ θÞ can be extracted from the latter expression. It is
worth mentioning that the matrix elements (i.e., the strength
of the coupling) depend on the mode structure, which cannot
be fully controlled by the current method. Nevertheless, in our
cases, we can get the matrix elements after the transformation,
as shown and discussed in the Note 2 in the Supplementary
Material.

2.3 Mode Evolution in Different Synthetic Mode Arrays

For the mode array with equal spacing between the propagation
constants, the two nonzero off-diagonals indicate dominance of
the nearest neighbor coupling in SD (see the Supplementary
Material). The wiggling frequency is identical to the equal spac-
ing between the propagation constants (we use a dimensionless
tight-binding model here). By using the proper rotating-wave
approximation, which is here equivalent to interaction picture
in quantum mechanics, the linear on-site potential in Φ†

AH0ΦA
is eliminated (see the Supplementary Material), where H0 has
the same mathematical expression as HA; see more details in
the Supplementary Material.20 Therefore, the structure in Fig. 2(a)
can be regarded as a one-dimensional (1D) waveguide array
in SD. If the mode circled in Fig. 2(a2) is initially excited,

it undergoes discrete diffraction in SD, shown in the numerical
simulation.

For the mode array with outlying edges sketched in Fig. 2(b),
in the interaction picture, the on-site energies of the bulk modes
in SD are zero, but the on-site energies of the outlying modes
differ; see more details in the Supplementary Material. The
modes inside the coupling blockades are mutually well coupled
with nearest neighbor interactions [Fig. 2(b2)]. However, the
two outlying modes are only weakly coupled to the bulk. This
is the consequence of the ANN-engineered spectra of the propa-
gation constants. We find some minor long-range couplings
between modes; however, the percentage of the maximum of
long-range couplings over the minimum nearest neighbor
couplings is ∼8.64%; thus, they can be ignored. The mode
transport and confinement in SD are further simulated using
the continuous model (see the Supplementary Material).

3 Results

3.1 CW-Laser-Writing Technique and Cascade-Probing
Method

To experimentally demonstrate the aforementioned system de-
sign in SD, we apply the cw-laser-writing technique (with a
wavelength of 532 nm and a power of 100 mW for the writing
beam, as well as an applied field of 200 kV∕m in the biased
crystal) developed earlier for inducing photonic lattices laterally
from the top of a strontium barium niobate (SBN:61) nonlinear
crystal.45 The wiggling frequency and amplitude of the writing
beam are tuned by a spatial light modulator (SLM). To clearly
see the difference of mode evolution in the two different mode
arrays, a long propagation distance is needed. Due to the restric-
tion of the crystal length (L ¼ 20 mm) in the experiment, the
whole waveguide array is divided into several sections along
the propagation direction. Each section is laterally written into
the crystal in sequence, thus effectively lengthening the propa-
gation distance [Fig. 3(a)]. Meanwhile, we develop a cascade-
probing method to illustrate the mode coupling in SD. The
amplitude and phase of the output beam (with a wavelength
of 532 nm and a power of 2 μW) from one waveguide section
are recorded by a camera,46 digitally duplicated by the SLM, and
then launched into the next section of the waveguide arrays as an
input [Fig. 3(a)]. Since the duplicated beam carries all the am-
plitude and phase information from one section to another, such
cascade probing equivalently “glues” all parts of the waveguide
arrays together, therefore allowing us to examine mode evolu-
tion through long arrays (see the Supplementary Material).

3.2 Observation of the Synthetic Dynamics in Different
Mode Arrays

The coupling strength in SD is controlled by the distance be-
tween the nearest waveguides and a proper wiggling frequency
of the writing beam Ω ¼ 58.70 m−1, which is determined ac-
cording to the corresponding simulation (see the Supplementary
Material). The selected eigenmode of the lattice is generated by
the SLM in the experiment and is used as the probe beam. With
the cascade probing method, the output intensity and phase dis-
tributions of the probe beam at z ¼ 20 mm and 40 mm in real
space are extracted and plotted in Figs. 3(b1) and 3(b2) together
with results of numerical simulations from the continuous
model (see the Supplementary Material). The deviation in the
phase distributions at some sites has very minor effect on the
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output mode distributions, since the intensity at those sites is
negligible. The complex amplitude of the output beam
ψðzÞ ¼ ffiffiffiffiffiffiffiffi

IðzÞp
expðiαðzÞÞ, where IðzÞ and αðzÞ are the mea-

sured intensity and phase, is projected onto the eigenmodes,

ηiðzÞ ¼ hφijψðzÞi: (4)

The overlap values jηiðzÞj2 for every mode at z ¼ 20 mm and
40 mm are plotted in Fig. 3(b3). The main components reside on
the initially excited mode at z ¼ 20 mm. However, at a longer
propagation distance (z ¼ 40 mm), the probe beam spreads into
the neighboring modes [Fig. 3(b3)], in the mode array with
equal spacing. The experimental results and simulations agree
well.

On the other hand, in the mode array with outlying edges, the
wiggling frequency of the waveguide is set to Ω ¼ 30.55 m−1
(see the Supplementary Material). The total propagation length
is set to L ¼ 40 mm in the mode array of equal spacing and
L ¼ 80 mm in the mode array with outlying edges to roughly
have the same ΩL as for the array with equal spacing. Under the
same initial excitation, the intensity and phase distributions at
z ¼ 40 and 80 mm are plotted in Figs. 3(c1) and 3(c2), which
again agree well with simulations. Most importantly, the dynam-
ics in SD [Fig. 3(c3)] indicates the confinement of the initially
excited mode in the mode array with outlying edges, which
corresponds to the effective guidance of a complex beam profile
observed in the experiment [Figs. 3(c1) and 3(c2)].

3.3 Morphing of Light into Topological Modes

To illustrate the power of our ANN-designed dynamics in SD,
we modify the 1D SSH lattice by ANNs to obtain bands with
linear dependence of energy on the mode number and use these
structures to obtain morphing of the initially excited bulk mode
into a topological edge mode residing in the gap (see Fig. 4). It is
important to note that our intent is not just to construct an SSH
model in the framework of SD18 or real space,47–49 but rather to
utilize SD to realize nontrivial mode couplings. In Figs. 4(a1)
and 4(b1), we plot the eigenvalues of a trivial and nontrivial
SSH lattice, respectively, with N ¼ 12 sites; note that the eigen-
value separations between the modes in the bands are identical,
i.e., we have linear dependence of βn on the mode number n (see
the Supplementary Material). The nontrivial lattice [Fig. 4(b1)]
in addition possesses two topological modes in the gap; they are
topological because the conventional SSH lattice can be contin-
uously deformed in our ANN-designed lattice without closing
the gap, showing its robustness against disorders (see the
Supplementary Material). First, we excite the mode in the trivial
SSH lattice, which is adjacent to the gap [Fig. 4(a2)], and wiggle
the lattice with frequency identical to the eigenvalue spacing
between adjacent modes in the bands (Δβ ¼ Ω). Due to the
presence of the gap and the chosen wiggling frequency, the ini-
tially excited mode can couple only to the adjacent mode in its
own band (it cannot cross the gap). Thus, dynamics in SD cor-
responds to discrete transport of light restricted to one band
[Fig. 4(a2)]. The corresponding dynamics in real space is shown

Fig. 3 Experimental demonstration of mode manipulation in SD and corresponding simulations.
(a) Illustration of the cw-laser writing and cascade probing method in the experiment. Curved
waveguide arrays are written section by section (from the top of a nonlinear crystal), and the output
of the probe beam (propagating through the arrays along the z direction) from one section is taken
as the input for the subsequent section assisted with the SLM, thus effectively increasing the
propagation distance. (b) Results from the mode array with equal spacing, where (b1) and
(b2) show the output amplitude and phase distribution from the experiment and simulation at
z ¼ 20 and 40 mm. (b3) The corresponding output distribution in SD. (c1)–(c3) Results from
the mode array with outlying edges, with the same layout as (b1)–(b3) but at even longer
propagation distances, showing confinement of the excited mode in both real space and SD.
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in Fig. 4(a3). Next, in order to couple light into a topological
mode, we need to adjust the wiggling frequency, as illustrated
in the following example. We excite the mode in the top band of
the nontrivial ANN-designed SSH lattice, with the largest eigen-
value, and wiggle the lattice at the frequency that enables
discrete transport in the upper band in SD [Fig. 4(b2)]. When
the mode adjacent to the gap becomes sufficiently populated,
we switch the wiggling frequency to half of the gap width
(Ω0

2 ¼ Δβ02), which enables light to couple into the topological
mode [Fig. 4(b2)]. After that, we turn off the wiggling, and light
remains propagating in this mode. In Fig. 4(b3), we plot the
corresponding dynamics in real space, which can be interpreted
as morphing of light from a bulk mode into a topological
edge mode merely via properly tailored control of the system
(wiggling frequency).

4 Discussion and Conclusion
In summary, the new findings of this paper are mainly twofold.
First, we have presented a new scheme based on ANNs for
tailoring SDs by means of deep-learning neural networks. Our
scheme involves designing a real-space lattice with predeter-
mined mode eigenvalue spectra, enabling controlled coupling

through time-dependent perturbations. Then, to benchmark
the scheme, we have implemented it to demonstrate uniform
synthetic mode coupling. Second, we have shown the potential
of our approach by morphing light into a topologically protected
edge mode. We envision that this ANN method will be useful in
designing SDs in 2D and 3D real-space lattices, although the
inverse problem of calculating the Hamiltonian from the spec-
trum is a challenging task in higher dimensional systems. More
specifically, mode arrays designed by ANNs allow for flexible
mode control and the possibility of constructing third-order
topological insulators (an achievement not possible with equally
spaced mode arrays50). We believe that the ANN approach could
also be developed to design the mode structure (and therefore
the matrix elements of the couplings in synthetic space) in ad-
dition to the eigenvalue structure. The potential of this work
extends beyond photonics, with the possibility of uncovering
geometrically inaccessible physics within various parametric
spaces.19,44 From an application standpoint, the implications
are broad, including mode manipulation for enhanced mode
lasing, optical switching, quantum optics, and mode-division-
multiplexing data transmission.27,28,51–55 Given that our technique
primarily involves tuning the distance between waveguides
and the frequency of waveguide wiggling, it holds promise for

Fig. 4 Mode switching and morphing into topological modes by tuning the array in SD. (a) Mode
switching between bulk modes in a topologically trivial lattice designed by ANNs. (a1) The lattice
illustration in real space (far left column) and corresponding eigenvalue distribution (right panel).
Bulk modes above or below the gap couple to each other without a coupling blockade under an
array wiggling frequency Ω1 ¼ 1 and the eigenvalue difference Δβ1 ¼ 1. (a2) Mode evolution
during propagation in SD, where the orange circle indicates the initially excited mode. The second
region distinguished by the vertical lines is straight waveguides. The shaded zones indicate the
coupling blockades in SDs in different regions. (a3) The light evolves in real space, where L1 ¼
36.3 is the propagation length in the first region. The plot on the right shows the average intensity
distribution in the straight waveguide region. (b) Same layout as (a), but in a topologically nontrivial
lattice showing the morphing of bulk modes into a zero-energy topological mode under an eigen-
value difference Δβ01 ¼ Δβ1, Δβ02 ¼ 3Δβ1 and the wiggling frequency Ω0

1 ¼ Ω1, Ω0
2 ¼ 3Ω1. The

propagation length L01 ¼ 38.3 and L02 ¼ 4.22 in the first and second regions in (b3), respectively.
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optimal design and fabrication of integrated photonic devices.
The synergy between ANN-empowered topological and SD
photonics may offer a promising avenue for future photonic
material and device applications.36–38,56

Code and Data Availability
The data and code supporting this study are available from the
corresponding authors upon reasonable request.
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