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Abstract. Vector optical vortices exhibit complex polarization patterns due to the interplay between spin and
orbital angular momenta. Here we demonstrate, both analytically and with simulations, that certain polarization
features of optical vortex beams maintain constant transverse spatial dimensions independently of beam
divergence due to diffraction. These polarization features appear in the vicinity of the phase singularity and
are associated with the presence of longitudinal electric fields. The predicted effect may prove important in
metrology and high-resolution imaging applications.
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1 Introduction
The interplay between spin and orbital angular momenta of light
beams results in complex polarization textures of light fields with
optical properties important in imaging, metrology, and quantum
technologies.1 For example, polarization variations appear in the
structure of two-dimensional photonic spin-skyrmions at length-
scales much smaller than the wavelength of light because, in con-
trast to the field and intensity variations, the polarization structure
is not influenced by the diffraction of electromagnetic waves.2

Such polarization features often appear due to the spin–orbit
interactions involving vector vortex beams and, in the case of
evanescent fields, may be topologically protected by the optical
spin-Hall effect.3 For three-dimensional (3D) free-space beams,
such topological protection is not ensured and the polarization
features may vary significantly upon beam propagation. In con-
trast, observations of robustness of polarization inhomogeneities
in 3D structured light have been reported.4 Polarization singular-
ities of optical fields and their relation to phase singularities5 has
become an active field of research.6

In this paper, we show that the transverse size of certain
polarization features of optical vortex beams is preserved inde-
pendently of the diffraction of the beam. The effect is governed
by the phase singularity in the cross section of the beam and
arises due to the interplay of the longitudinal and transverse

electromagnetic fields in the vector vortex. The important role
of the longitudinal fields was previously emphasized in the
context of absorption of twisted photons by atoms7,8 and optical
vortex dichroism.9,10

While the studies of vortex beams are typically concerned
with the properties of the light in the high-intensity ring, this
work deals with the region within this ring around the center
of the beam. The demonstrated effect can be attributed to the
spin–orbit interaction and only appears in the case of antialigned
spin and orbital angular momenta.

The paper is organized as follows. In Sec. 2, we derive ana-
lytic expressions for the longitudinal-to-transverse field ratio
near the beam phase singularity and demonstrate its independ-
ence on the beam waist in a paraxial limit. In Sec. 3, we intro-
duce a formalism for 3D optical field polarization and show, in
an analytic model, that the transverse spatial profiles of the
polarization features are independent of beam divergence due to
diffraction and the beam focusing conditions but depend on the
topological charge of the beam. Finally, in Sec. 4, we use
full-wave numerical simulations beyond the paraxial limit to
reveal the diffraction-independent polarization features and
confirm the analytic results.

2 Optical Vortex Fields near the Phase
Singularity

We initially consider a paraxial monochromatic Laguerre–
Gauss beam with a topological charge l and zero radial index,*Address all correspondence to Andrei Afanasev, afanas@gwu.edu
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propagating in the z-direction (see the Appendix C for a general
case). The electric field components in the transverse (xy) plane,
with the position vector r ¼ ðρ cos ϕ; ρ sin ϕ; zÞ in cylindrical
coordinates, are given as

E⊥ðrÞ¼η⊥A⊥
w0

wðzÞ
�

ρ

wðzÞ
�jlj

e
− ρ2

w2ðzÞei½lϕþkzþk ρ2

2RðzÞ−ðlþ1ÞψðzÞ�; (1)

where the vector η⊥ ¼ ηxx̂þ ηyŷ defines the polarization of the
beam in the (xy) plane (ηx and ηy are complex dimensionless
scalars normalized such that jη⊥j ¼ 1), A⊥ is a normalization
constant, w0 is the beam waist at z ¼ 0, RðzÞ is the beam
curvature radius, ψðzÞ is the Gouy phase factor, and wðzÞ ¼
w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð z

zR
Þ2

q
with zR ¼ kw2

0

2
being the Rayleigh length.11 The

longitudinal component Ez can be found from Maxwell’s equa-
tion∇ · E ¼ 0. Using the paraxial condition ∂Ez∂z ¼ ikEz results
in the relation

∇⊥ · E⊥ ¼ −ikEz: (2)

For a conventional Gaussian beam [Eq. (1)] with l ¼ 0,
it follows that for the transverse field linearly polarized along
the x axis

Ez

Ex
¼ iρ cos ϕ

zR þ z2
zR

. (3)

Similarly, for a circularly polarized transverse field

RLT ≡
jEzj
jE⊥j

¼ ρ

zR þ z2
zR

; (4)

where we introduced a longitudinal-to-transverse field magni-
tude ratio RLT. In this case, for a vortex-free beam with l ¼ 0,
RLT is inversely proportional to zR and hence to the square of
the beam waist in the focal plane and falls off as z−2 at large
propagation distances z.

For a vortex beam with l ≠ 0, choosing appropriate expres-
sions for η⊥ in Eq. (1) for left-hand or right-hand circular
(σ ¼ �1), linear, radial, or azimuthal polarization (see
Appendix A) and keeping only lowest-power terms in ρ—i.e.,
assuming ρ ≪ wðzÞ—we obtain the following longitudinal-to-
transverse field ratios:

RLTðζÞ ¼

8>>>>>><
>>>>>>:

ffiffiffi
2

p jζj; circularðσ · l < 0Þ polarization
0; circularðσ · l > 0Þ polarization
jζj; linear polarization

2jζj; radial polarization

0; azimuthal polarization

; (5)

where we define ζ ≡ l∕ðkρÞ, which is also a tangent of the skew
angle of the Poynting vector.12 Unlike the Gaussian beam results
in Eqs. (3) and (4), the field magnitude ratio RLT for vortex
beams is independent of the beam waist in the focal plane,
and, even more surprisingly, independent of the propagation dis-
tance z if the radial position is much smaller than the beam waist

ρ ≪ wðzÞ. The spatial distribution of the field ratio RLT is invari-
ant under beam diffraction: it is constant along the entire
unbounded axis of the beam. The geometrical surfaces where
the ratio RLT is constant are cylinders of fixed radius around
the infinite length of the beam optical vortex. This analytical
result obtained from the paraxial approximation is verified in
full-vectorial nonparaxial 3D field simulations in Sec. 4 and per-
sists even under strong focusing conditions. It should be noted
that Eqs. (1) and (2) in the case of antialigned spin and orbital
angular momenta ðσ · l < 0Þ result in Ez ∝ ρl−1, whereas E⊥ ∝
ρl and, hence, leading to the dominance of the longitudinal field
component in the vicinity of the optical vortex axis. We also
note a π∕2 phase shift between the longitudinal and transverse
field components for linear polarization, as follows from the
Maxwell’s equations combined with a paraxiality condition.

3 Polarization of 3D Vortex Fields
An arbitrary complex 3D vector field Eðx; y; zÞ can be expanded
in terms of unit vectors n̂ðn ¼ x; y; zÞ in a Cartesian basis as
E ¼ P

nEnn̂. The same field can be represented in a helical
basis as E ¼ P

�;zE
�;zê�;z, where E� ¼ 1ffiffi

2
p ð�Ex þ iEyÞ,

ê� ¼ 1ffiffi
2

p ð�x̂ − iŷÞ, and êz ¼ ẑ. The polarization coherence ma-

trix for electric optical fields, EmE�
n (an asterisk indicates a com-

plex conjugation), is fully defined in terms of standard Stokes
parameters S0−3 (see Appendix B) only if the longitudinal com-
ponent of the field Ez is neglected. However, as shown in the
previous section, the longitudinal field of optical vortices is not
negligible and may even be dominant at certain regions across
the wavefront. For this reason, a Stokes description becomes
incomplete, and the formalism for field polarization has to
include all three components of the field. The matrix ρmn ¼
EmE�

n∕jEj2 is Hermitian by construction and can be fully de-
fined by nine real parameters. Here, we will follow the conven-
tion previously adopted for description of polarization of spin-1
particles8,13

ρmn ¼
1

3

�
I þ 3

2

X
i¼x;y;z

piPi þ
X

i;j¼x;y;z

pijPij

�
mn

; (6)

where Imn is an identity matrix and ðPiÞmn and ðPijÞmn are the
matrices of the spin vector and the quadrupolar tensor. The
choice of normalization

P
mρmm ¼ 1 reduces the number of

independent parameters to eight. For a comprehensive treatise,
see also Ref. 14, noting that the definition of pnm used here have
an extra factor of 3 compared with Ref. 14.

The corresponding vector and quadrupole polarization
parameters, such as pi and pij, can be expressed in terms of
the field amplitudes En and E�;z as

jEj2pn ¼ i
X
jk

ϵnjkEjE�
k;

jEj2pnk ¼ − 3

2

�
EnE�

k þ EkE�
n − 2jEj2

3
δnk

�
; (7)

leading to the following independent polarization parameters
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jEj2px ¼
1ffiffiffi
2

p ½ðE− þ EþÞE�
z þ EzðE− þ EþÞ��;

jEj2py ¼
iffiffiffi
2

p ½EzðE− − EþÞ� − ðE− − EþÞE�
z �;

jEj2pz ¼ jEþj2 − jE−j2;
jEj2ðpxx − pyyÞ ¼ 3ðEþE−� þ E−Eþ�Þ;
jEj2pzz ¼ jEþj2 þ jE−j2 − 2jEzj2;

jEj2pxy ¼ i
3

2
ðEþE−� − E−Eþ�Þ;

jEj2pxz ¼
3

2
ffiffiffi
2

p ðEþE�
z þ EzEþ� − E−Ez � −EzE−�Þ;

jEj2pyz ¼ i
3

2
ffiffiffi
2

p ðEþE�
z − EzEþ� þ E−E�

z − EzE−�Þ: (8)

It follows from Eq. (8) that the polarization parameters have
the following bounds: −3 ≤ ðpxx − pyyÞ ≤ 3, −2 ≤ pnn ≤ 1,
− 3

2
≤ pnm ≤ 3

2
(n ≠ m), and −1 ≤ pn ≤ 1. The tensor of quad-

rupole polarization is symmetric and traceless: pnm ¼ pmn,P
npnn ¼ 0. In atomic and nuclear physics, these quantities

are commonly referred to as orientation (pn) and alignment
(pnm). Vector polarization pn is crucial for describing properties
of photonic skyrmions;2 its transverse components in evanescent
fields were recently studied in Ref. 15.

In a limiting case of plane waves propagating in the z direc-
tion, the polarization parameters defined above either become
zero or reduce to Stokes parameters (Ref. 16 and Appendix B)

pz →
S3
S0

; pxx − pyy → − 3S1
S0

; pxy ¼ − 3S2
2S0

; (9)

whereas pzz → 1, indicating that the electric field of plane
waves is transverse with respect to the z axis. Another conven-
tion for the description of optical polarization in 3D fields uses
an expansion in terms of Gell–Mann matrices17 and is equivalent
to the approach presented here.

The ratio RLT introduced in the previous section may be
probed experimentally by measuring the polarization parameter
pzz. The independence of RLT from the beam waist found in
the previous section has immediate implications for pzz which,
as a result, maintains constant transverse spatial dimensions
independently of beam divergence due to diffraction. Using
Eq. (5) and the definitions from Eq. (8), z-independent expres-
sions can be obtained for pzz for different beam polarizations

pzzðζÞ ¼

8>>>>>>><
>>>>>>>:

1−4ζ2
1þ2ζ2

; circular ðσ · l < 0Þ polarization
1; circular ðσ · l > 0Þ polarization
1−2ζ2
1þζ2

; linear polarization

1−8ζ2
1þ4ζ2

; radial polarization

1 azimuthal polarization

: (10)

For a circularly polarized beam with σ · l < 0, it follows from
Eq. (10) that pzz ¼ −2 in the vortex center and pzz approaches
unity with increasing radial distance to the singularity. Zero
crossing (pzz ¼ 0) takes place at ρ ¼ jljλ∕π and is independent
of both the beam waist and the propagation distance z [see
insets of Fig. 1(c)], while increasing linearly with l. Similar

propagation-independent expressions may be obtained for the
other polarization parameters in Eq. (8) with ζ playing the role
of a scaling variable (see Appendix A for details).

The above results were obtained in a simplified analytical
model for a paraxial optical vortex field. Next, we demonstrate
the nondiffractive behavior of these polarization features using
numerical simulations for a nonparaxial field.

4 Numerical Simulations and Discussion
We now outline a full-wave nonparaxial numerical approach.
Any monochromatic electromagnetic field can be decomposed
into a spectrum of plane-wave components with wave vectors
k ¼ kxx̂þ kyŷþ kzẑ lying on the k-sphere of radius k ¼ ω

c

and hence kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2x − k2y

q
, as follows:

EðrÞ ¼
ZZ

ðApêp þAsêsÞeiðk·rÞdkx dky; (11)

where Ap∕sðkx; kyÞ are the components of the angular spectrum
pertaining to each of the orthonormal polarization basis vectors,

Fig. 1 Polarization parameters for a focused Laguerre–Gaussian
vortex beam with l =1, linearly polarized along the x direction
and propagating along the z axis. The beam waist is w0 ¼ λ.
(a) The intensity distribution of the beam in the (xz) plane.
(b–d) Colormaps of the (a) py , (b) pzz , and (d) pxx -pyy polariza-
tion parameters with polarization ellipses overlaid on top, indicat-
ing the polarization state at each point in space. The polarization
structure around the phase singularity is nondiffractive and invari-
ant with respect to the beam waist. The inserts in (c) show the
cross-sections at different z positions. The insert in (d) shows the
zoom near the beam centre.
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which we take as ês ¼ 1ffiffiffiffiffiffiffiffiffi
k2xþk2y

p ð−kyx̂þ kxŷÞ and êp ¼ ês × k
k,

corresponding to the azimuthal and polar angle spherical basis
vectors tangential to the k-sphere.18–20 Equation (11) is an inte-
gration of plane waves and constitutes an exact solution to the
Maxwell’s equations, including all the field components. To
compute it, one only needs to find the spectral amplitudes
Ap∕sðkx; kyÞ corresponding to the desired illumination.

For these exact field calculations, we employ the Laguerre–
Gaussian vortex beam widely used in singular optics.11 The
angular spectrum of a Laguerre–Gaussian vortex beam can
be calculated by selecting the z ¼ 0 plane and performing a
Fourier transform ðx; yÞ → ðkx; kyÞ.20,21 The derivation of the
plane wave polarization amplitudes Ap∕sðkx; kyÞ from the
paraxial Laguerre–Gaussian beam field is described in detail
in Appendix C.

We can use Eq. (11) to calculate the full 3D electric field and
plot required polarization parameters without any approxima-
tions. The first example is a linearly polarized nonparaxial vor-
tex beam with l ¼ 1 and w0 ¼ λ propagating along the positive
z axis (Fig. 1). The tight focusing creates a highly divergent beam.
In this case, the py, pzz, and pxx-pyy parameters are required to
fully describe the polarization structure [please note that the only
remaining nonzero polarization parameter is pxz but its behavior
in the ðyzÞ plane is the same as that of py in the ðxzÞ plane;
see Fig. 1(b)]. In contrast to the electric field, which diffracts
naturally after a propagation distance of just a few wavelengths
[Fig. 1(a)], all three polarization parameters in Figs. 1(b)–1(d)
clearly show no divergence around the phase singularity that lies

on the z axis. The polarization structures remain invariant and
extend far beyond the focal plane, in agreement with the ana-
lytical paraxial predictions for RLT in Eq. (5), but numerically
observed here beyond the paraxial approximation.

We now demonstrate the equivalent polarization properties of
a circularly polarized vortex beam. Figure 2(a) shows the inten-
sity of a circularly polarized vortex beam, similar to the previous
case except with σ ¼ −1, so that the spin and orbital angular
momenta are antialigned. The polarization parameters again re-
veal a nondivergent polarization structure around the beam axis
[Figs. 2(b)–2(d)]. For a vortex beam with a beam waist of dou-
ble the size and, therefore, weaker focusing, the nondiffractive
polarization structure near the phase singularity remains unper-
turbed, with the pzz ¼ 0 (white) contour lying at ρ ¼ 0.32λ in
both Figs. 2(d) and 2(h), in good agreement with the analytical
result from Eq. (10): ρ ¼ jljλ∕π. This structural invariance has
been observed for all beam waists, independent of focusing.

The main challenge in detecting this nondiffractive polariza-
tion property is the requirement to perform measurements in a
region of space where the field intensity is weaker compared to
its maximum. The ability to detect it is determined by the sen-
sitivity of the detection apparatus, and can be mediated to some
degree by the choice of wavelength, beam waist, how far the
detection plane is from the focal plane, and what polarization
structure is being investigated. Figure 3(a) shows the cross-
sectional plots of the pzz parameter for the linearly polarized
l ¼ 1 vortex beam in Fig. 1 at different points along the z axis.
As before, we see nondiffractive behavior when pzz ¼ 0 near
the beam centre, indicated by a horizontal dotted black line.

Fig. 2 Polarization parameters for a focused Laguerre–Gaussian vortex beam with l=1and σ ¼ −1
(left-hand circularly polarized), propagating along the positive z axis. The beam waist is (a–d) w0 ¼
λ and (e–h) w0 ¼ 2λ. (a) and (e) The intensity distribution of the beam in the (xz) plane. (b–d) and
(f–h) Colormaps of the (b,f) py , (c,g) pz , and (d,h) pzz polarization parameters with polarization
ellipses overlaid on top, indicating the polarization state at each point in space. The polarization
structure around the phase singularity is nondiffractive and invariant with respect to the beamwaist.
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Note how other features where pzz ¼ 0 at locations further away
from the beam center are subjected to diffraction. The intensity
of the normalized electric field in the same cross-sectional
planes at the location of the nondiffracting polarization features,
indicated by the vertical dotted black lines, is 37% of the peak
intensity at the focal plane, and 2.8% at z ¼ 5λ [Fig. 3(b)].
The pzz ¼ 0 polarization structure should, therefore, be easily
detectable in the focal plane of the beam and measurable away
from the focus. The intensity drop-off of a beam is dictated by
the Rayleigh range, which is proportional to the square of the
beam waist. However, increasing the beam waist reduces the
intensity of the longitudinal field. The resulting optimization
will depend on the measurement sensitivity and the desired
application.

To experimentally verify the propagation-invariant polariza-
tion structures, a vortex beam will likely need to be focused
using a lens with a defined numerical aperture (NA). The effect
of a restricted NA was simulated by limiting the integration
of the (kx; ky) plane in Eq. (11) from k2x þ k2y ≤ k2 to
k2x þ k2y ≤ ðNAÞ2k2. Figure 4(a) shows the nonzero component
of the angular spectrum for a linearly polarized vortex beam
with l ¼ 1 and w0 ¼ λ, obtained using Eq. (16), which is equiv-
alent to the back focal plane image of the beam. The phase

Fig. 3 Cross sections of the linearly polarized vortex beams with
w0 ¼ λ depicted in Fig. 1 showing (a) pzz and (b) jEj2 at the focal
plane and after propagating a distance of 5λ. The vertical dashed
lines show the points at which pzz ¼ 0 and the corresponding
field intensity for each cross-section plane.

Fig. 4 (a) The angular spectrum of a linearly polarized (x direction) vortex beamwith l=1. The green
line indicates the light line and the red dotted line indicates the inner limit of the cropped region
dictated by the objective with NA ¼ 0.5. (b) The intensity distribution of the corresponding vortex
beam with NA ¼ 0.5 generated by integrating the field distribution in (a). The beam waist is w0 ¼ λ.
(c) Colormap of the py polarization parameter with polarization ellipses overlaid on top, indicating
the polarization state at each point in space. The nondiffractive behavior near the phase singularity
is maintained and only peripheral fields are affected by the NA reduction. (d–f) The same quantities
as in (a–c) but with part of the angular spectrum removed and astigmatism applied along x direction.
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singularity is clearly visible at kx ¼ ky ¼ 0. In Figs. 1–3, all the
fields within the light line (indicated by a green line) are inte-
grated using Eq. (11) to create the real-space field distribution.
We now crop the angular spectrum down to a factor of NA · k
with NA ¼ 0.5, as indicated by the red dotted line. Figure 4(b)
shows the intensity profile of the beam after this NA restriction.
When compared with the ideal beam in Fig. 1(b), the polariza-
tion parameter of the restricted beam in Fig. 4(c) reveals the
same nondiffractive property near the phase singularity and only
disturbances in the peripheral fields are observed. As the NA is
reduced further (not shown), the beam waist widens but the
behavior around the phase singularity is maintained.

One can proceed to add more imperfections or aberrations to
the beam. A defect or a piece of dust on the focusing lens can
perturb the beam. This can be approximated by deleting part of
the angular spectrum. A lens can also introduce astigmatism to
the beam. The effect can be roughly modeled by scaling kx and
ky in the angular spectrum. Figure 4(d) shows the angular spec-
trum of the same vortex beam as Fig. 4(a) with a restricted
NA of 0.5 but with these two additional perturbations applied.
The angular spectrum is set to zero for −0.05 < kx < 0.05 and
0.2 < ky < 0.25, and kx is transformed by kx → 0.75kx, there-
fore, reciprocally stretching the beam in the x direction. The
nondiffractive nature of the py polarization parameter near
the phase singularity is preserved for such scattered focused
beams with astigmatism [Fig. 4(f)]. We therefore conclude that
the nondiffractive polarization structures within a vortex beam
should be robust to a variety of experimental imperfections and
experimentally observable in this respect.

When considering higher-order vortex beams, further com-
plications can arise from beam imperfections, resulting in split-
ting the high-order vortex into multiple low-order vortices.22–24

This can impact the topology of the observed nondiffractive
polarization structure as discussed in Appendix D.

5 Conclusions
We have studied the polarization of vector beams carrying op-
tical angular momentum. We show the existence of polarization
features within optical vortex beams that maintain constant
transverse spatial dimensions independently of the beam diver-
gence due to diffraction. The exact size of these vortex polari-
zation structures is dictated by the presence of the longitudinal
electric field in the beam, and such structures are expected for
vortex beams of all topological charges. An analytical paraxial
model predicts their presence in weakly focused beams and a
numerical angular spectrum approach further extended this pre-
diction to tightly focused beams, thereby proving applicability
to all vortex beams. These polarization features are not affected
by finite NAs and so should be experimentally measurable. It
should be noted that the predicted nondiffractive polarization
features have relatively small transverse dimensions of the order
Δρ ≈ lλ∕π, centered on a low-intensity region of the optical
vortex wavefront. Therefore, future measurements will require
subwavelength resolution at low l and increased sensitivity of
the probe for larger values of l.

The demonstrated effect allows one to pinpoint the position
of a phase singularity with subwavelength accuracy independ-
ently of the size of a beam spot. This property may have useful
applications in metrology, optical communications, optical net-
working, laser sensing, and radar operations.

6 Appendix A. Calculation of Polarization
Parameters

In Table 1, we present analytic expressions for polarization
parameters [Eq. (8)] calculated for different polarizations of
optical vortex beams; l > 0 is assumed. The transverse field
is defined by Eq. (1), and the longitudinal field is obtained from
∇ · E ¼ 0 combined with the paraxiality condition, Eq. (2), at
radial positions ρ near the beam axis (much smaller than the
beam waist). As in the main text, we define the dimensionless
radial parameter ζ ≡ l∕ðkρÞ, which depends on the topological
charge l. The transverse polarization vector η⊥ for different
polarizations is given in terms of unit vectors in Cartesian or
cylindrical coordinates.

Let us demonstrate the derivation in the case of linearly po-
larized (along the x axis) light, so that η⊥ ¼ x̂. The continuity
equation ∇ · E ¼ 0, together with the paraxiality condition,
gives us the longitudinal field from the transverse-field deriva-
tive: Ez ¼ i

k ∂Ex∕∂x. After some algebra, the field derivative can
be obtained as

∂Ex

∂x ¼ Ex

�
l
ρ
e−iϕ − 2ρ cos ϕ

wðzÞ2
�
:

In the region much smaller than the beam waist ρ2

wðzÞ2 ≪ 1, the

second term in the parenthesis can be dropped, and the ratio of
longitudinal-to-transverse field is

Ez

Ex
¼ il

kρ
e−iϕ ¼ iζe−iϕ:

The magnitude of this expression yields the result of Eq. (5).
Using the definitions in Eq. (8), the linear polarization
column in Table 1 can be obtained. The derivation is similar
for other choices of a polarization vector η⊥.

Table 1 Polarization parameters.

Circular
σ · l < 0

Circular
σ · l > 0 Linear Radial Azimuthal

η⊥
1ffiffi
2

p ðx̂ − i ŷÞ − 1ffiffi
2

p ðx̂þ i ŷÞ x̂ ρ̂ ϕ̂

pz − 1
1þ2ζ2

1 0 0 0

py

ffiffi
2

p jζj cos ϕ
1þ2ζ2

0 − 2jζj cos ϕ
1þζ2

− 4jζj cos ϕ
1þ4ζ2

0

px −
ffiffi
2

p jζj sin ϕ
1þ2ζ2 0 0 4jζj sin ϕ

1þ4ζ2 0

pxx − pyy 0 0 3
1þζ2

− 3 cos 2ϕ
1þ4ζ2

3 cos 2ϕ

pxy 0 0 0 − 3
2
sin 2ϕ
1þ4ζ2

3
2 sin 2ϕ

pxz − 3ffiffi
2

p jζj sin ϕ
1þ2ζ2

0 3jζj sin ϕ
1þζ2

0 0

pyz
3ffiffi
2

p jζj cos ϕ
1þ2ζ2 0 0 0 0

pzz
1−4ζ2

1þ2ζ2
1 1−2ζ2

1þζ2
1−8ζ2

1þ4ζ2
1
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The expressions for circular polarization (σ · l < 0) are sim-
plified in cylindrical coordinates, for which radial components
of the polarization vector and tensor are zero: pρ ¼ 0, pρz ¼ 0,

pϕ ¼
ffiffi
2

p jζj
1þ2ζ2

, and pϕz ¼ 3ffiffi
2

p jζj
1þ2ζ2

.

7 Appendix B. Definition of Stokes
Parameters

A polarization coherence matrix EmE�
n for two-dimensional

electric fields E ¼ ðEx; Ey; 0Þ is defined in terms of Stokes
parameters as16

S0 ¼ ExE�
x þ EyE�

y; S1 ¼ ExE�
x − EyE�

y;

S2 ¼ ExE�
y þ EyE�

x; S3 ¼ iðExE�
y − EyE�

xÞ: (12)

If the transverse electric field is linearly polarized along the
x axis, then the polarization of the full field is determined by
three Stokes parameters defined for its corresponding x; z com-
ponents, which in turn relate to the polarization parameters in
Eq. (8) as

SðxzÞ1

S0
¼ pzz − pxx

3
;

SðxzÞ2

S0
¼ − 2

3
pxz;

SðxzÞ3

S0
¼ −py: (13)

8 Appendix C. Decomposing the Angular
Spectrum into a Polarization Basis

Here, we show how nonparaxial fields of a focused vortex beam
are calculated using the angular spectrum approach. We start
with the paraxial expression for a Laguerre–Gauss beam11

E⊥ðrÞ ¼ η⊥A⊥
w0

wðzÞ
�

ρ

wðzÞ
�jlj

Ll
m

�
2ρ2

w2ðzÞ
�
e
− ρ2

w2ðzÞ

× ei½lϕþkzþk ρ2

2RðzÞ−ðlþ2mþ1ÞψðzÞ�; (14)

where w0 is the beam waist in the focal plane, wðzÞ is the beam
radius at any point in space, Ll

m is the generalized Laguerre
polynomial of order l and a radial index m, RðzÞ is the beam
curvature radius, and ψðzÞ is the Gouy phase factor. We then
consider a Fourier transform in the z ¼ 0 plane that defines
the angular spectrum of a beam:

E⊥ðkx; kyÞ ¼
1

4π2

ZZ
E⊥ðx; yÞe−iðkxxþkyyÞdx dy: (15)

This Fourier transform can be solved analytically. For an l ¼ 1
and m ¼ 0 Laguerre–Gauss beam

E⊥ðkx; kyÞ ¼ iη⊥A⊥
πw3

0

2
e
−w2

0
ðk2xþk2yÞ
4 ðkx þ ikyÞ: (16)

This is the angular spectrum of the transverse components only
(it ignores the z component), but from E⊥ðkx; kyÞ one can find
the plane wave amplitudes Ap∕sðkx; kyÞ that, when substituted
into Eq. (11), give an electric field E ¼ E⊥ þ Ezêz at z ¼ 0
(the focal plane), whose transverse component matches exactly
Eq. (14), but which also possesses the corresponding Ez com-
ponent that appears naturally from the electromagnetic plane-
wave polarization superposition.

In the remainder of this section, we do not explicitly write the
ðkx; kyÞ dependencies of the angular spectrum for ease of nota-
tion, but note that all the fields mentioned here are the spectra
defined in the ðkx; kyÞ plane unless otherwise stated. All fields
are assumed to be time-harmonic.

The angular spectrum of the total field E can be represented
in a Cartesian basis E ¼ Exx̂þ Eyŷþ Ezẑ, which can be split
into a transverse part and a longitudinal part E ¼ E⊥ þ Ezẑ.
Similarly, in the p∕s polarization basis E ¼ Apêp þAsês.
Equating these, one can write the transverse part of the field as

E⊥ ¼ Apêp þAsês − Ezẑ: (17)

We can further write Ez in terms of Ap as Ez ¼ E · ẑ ¼
ðApêp þAsêsÞ · ẑ ¼ Apðêp · ẑÞ, where we used the fact that ês ·
ẑ ¼ 0 because ês ¼ 1ffiffiffiffiffiffiffiffiffi

k2xþk2y
p ð−ky x̂þ kx ŷÞ. Thus, the transverse

field is uniquely related to the s and p polarization amplitudes as

E⊥ ¼ Ap½êp − ðêp · ẑÞẑ� þAsês: (18)

If we now perform a dot product with the p/s basis unit vectors,
and noting that êp · ês ¼ 0 and êp · êp ¼ ês · ês ¼ 1, we find

E⊥ · êp ¼ Apð1 − ðêp · ẑÞ2Þ; E⊥ · ês ¼ As: (19)

Knowing that êp ¼ ês × k
k ¼

	
kxkz

k
ffiffiffiffiffiffiffiffiffi
k2xþk2y

p ; kykz
k

ffiffiffiffiffiffiffiffiffi
k2xþk2y

p ;−
ffiffiffiffiffiffiffiffiffi
k2xþk2y

p
k



,

we find that 1 − ðêp · ẑÞ2 ¼
	
kz
k



2
and so we can obtain the

orthogonal scalar plane-wave polarization coefficients in terms
of the transverse field spectrum as

Ap ¼ ðE⊥ · êpÞ
�
k
kz

�
2

;

As ¼ E⊥ · ês: (20)

Applied to the specific case of the vortex beam defined by
Eq. (16), we obtain the explicit expressions for the p∕s polari-
zation basis coefficients

Ap ¼ iA⊥
w3
0

8π
e
−w2

0
ðk2xþk2yÞ
4 ðkx þ ikyÞk

kxηx þ kyηy

kz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ;

As ¼ iA⊥
w3
0

8π
e
−w2

0
ðk2xþk2yÞ
4 ðkx þ ikyÞ

−kyηx þ kxηyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ; (21)

where η⊥ ¼ ηxx̂þ ηyŷ. The nonparaxial fields are then gener-
ated by substituting the above Ap∕s into Eq. (11) from the main
text. We numerically evaluate the integral in Eq. (11) as a finite
sum of different plane waves whose fields can be analytically
computed and summed.

9 Appendix D. Splitting of Higher-Order
Vortices

The analytical model in Sec. 2 is concerned with ideal vortex
beams of any order. However, when a vortex beam with l > 1
is perturbed, the high-order vortex can split into multiple lower-
order vortices.
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The splitting of an l ¼ 3 vortex beam can be investigated with
our nonparaxial angular spectrum method by employing the ap-
propriate equations forAp andAs. The continuous integration of
the angular spectrum is approximated by a summation of a finite
number of plane waves and inevitably generates a numerically
approximate beam, which tends toward the ideal case when the
number of plane waves tends to infinity. Figures 5(a)–5(d) show
the phase of the transverse electric field for a nonparaxial l ¼ 3
vortex beam linearly polarized along x, constructed using the
angular spectrum approach and integrating a finite number N
of plane waves. This integration introduces a small perturbation
in the fields away from the ideal vortex beam and, therefore, pro-
motes a splitting of the l ¼ 3 singularity into three distinct l ¼ 1
vortices. The separation distance among the three singularities is
reduced by increasing the number of plane waves.

This split vortex beam can now be analyzed by simulating
polarization parameters in Eq. (8). For an l ¼ 3 obtained, simu-
lated with high N, nondiffractive features in the polarization
structure can be observed similar to what was previously seen
for an l ¼ 1 vortex [cf. Figs. 5(e) and 1(c)]. When N is high, the
individual l ¼ 1 vortices are extremely close together, and a col-
lective l ¼ 3 polarization structure (such as the white cylindrical
pzz ¼ 0 contour) is present. When N is reduced and the vortices
separate slightly, the pzz ¼ 0 contour is warped [Fig. 5(f)]. With
further reduction of N, the singularities move far apart and do
not exhibit a collective polarization structure; instead, three indi-
vidual pzz ¼ 0 cylindrical contours are observed [Fig. 5(g)]. In
all three cases, the polarization structures were found to be non-
diffractive as they extend far beyond the divergent beam field
intensity drop-off. In other words, an ideal l ¼ 3 vortex beam
exhibits the polarization structure predicted in Sec. 2 with the
analytical paraxial model, but this structure breaks down into

three separate structures when the beam is imperfect, with each
of the separate vortices carrying its own non-diffractive polari-
zation structure.
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