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Abstract. An essential and indispensable component of automated microscopy framework is the automatic focus-
ing system, which determines the in-focus position of a given field of view by searching the maximum value of a
focusing function over a range of z-axis positions. The focus function and its computation time are crucial to the
accuracy and efficiency of the system. Sixteen focusing algorithms were analyzed for histological and histopatho-
logical images. In terms of accuracy, results have shown an overall high performance by most of the methods.
However, we included in the evaluation study other criteria such as computational cost and focusing curve
shape which are crucial for real-time applications and were used to highlight the best practices. © 2012 Society of

Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.3.036008]
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1 Introduction
In biological microscopy it is of great interest to investigate new
methods for the automatization of intensive and repetitive tasks
that requires a high degree of attention from the specialist. Slide
scanning automatization procedures, from image acquisition to
analysis, will be of benefit to the clinician from different aspects.
First, by reducing the contact with the samples it is possible to
realize a better analysis by minimizing alterations in the results
and other risks. Second, this procedure will allow an increase in
the number of fields of view to be analyzed, which is always a
tedious task. In fact, an automatic system will provide more
accurate diagnostics while reducing the time required for that
purpose.

Although focusing can be a trivial task for a trained observer,
automatic systems fail to find the best focused image from a
stack under different modalities such as bright field microscopy
(BFM) or phase contrast microscopy (PCM). Many autofocus
algorithms have been proposed in the literature, but their accu-
racy can deviate depending on content of the processed images.
Among the publications, a wide variety of autofocus methods
have been evaluated. Osibote et al.1 who determined that the
method Vollath-42 had the best focus accuracy for bright-
field images of tuberculosis bacilli. Santos et al.3 came to the
same conclusion. However, other studies such as Kimura et
al.4 and Liu et al.5 found the variance of pixels intensity as
the most accurate method for tuberculosis and other blood
smears. Furthermore, the study performed by Liu included addi-
tional assessment features like dynamic screening, shape of
focus curve, or computation time which complicate the election
of a unique method.

For a specific application, the election of a particular auto-
focus method will depend on two main aspects: the accuracy
error and the computation time (see Redondo et al.6 for some
preliminary results). Both criteria are important, but other fea-
tures such as the number of local maxima, width of the focus
curve or noise/illumination robustness can play a crucial role
in automatic slide screening. Since the type of image on
hand can determine which algorithm should be finally used,
we evaluate in this paper a set of sixteen autofocus techniques
considering the previous features specific to histological and
histopathological images:biopsy, citology, autopsy, and tissue
microarray. The paper is structured as follows. The employed
materials, equipment, and the image dataset are described in
Sec. 2. Section 3 describes the focus measures used in the
present study and provides their mathematical foundations. Sec-
tion 4 makes a comparative study of the experimental results.
Finally, some conclusions and directions of future work are
drawn in the last section.

2 Materials
Specimens fixed in 4% buffered formalin were selected to
prepare 3 to 15 μm thickness, histological slides deparaffinized
in xylene. Thickness depends on the area and the histopatholo-
gical test performed. Both conventional haematoxylin-eosin
stain (HE) and immunohistochemical (IHQ) techniques were
performed. Immunohistochemical detection on areas of paraffin
embedded prostate, breast biopsies, and brain autopsies was
performed using monoclonal mouse anti-human Ki-67 antigen
(clone MIB-1, DAKO, Denmark), and polyclonal rabbit anti-
human antibodies for Prostate-Specific Antigen(PSA, DAKO,
Denmark). The immunocytochemical detection in cytology
from pleural effusions was performed using monoclonal
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mouse antihuman calretinin (clone DAK-Calret 1, DAKO,
Denmark), and papanicolau stain. In all tissue cases, target
retrieval was performed with a pre-treatment module for tissue
specimens, PT Link, (DAKO, Denmark). Ready to use primary
antibodies were incubated for one hour at room temperature.
The detection was performed using the EnVision FLEXþ
(DAKO, Denmark) visualization system in an Autostainer
Link 48 (DAKO, Denmark).

The image stacks were captured from three lung cytologies
with papanicolau and calretinin stain, the latter being a weaker
staining. Lung cytologies were mainly liquid acquired with fine-
needle aspiration, and they are the thinnest case among the
studied cases. From these samples a blood area was considered
in order to validate focusing robustness on delicate cases. Other
analyzed samples were one prostate biopsy, one brain autopsy
and one breast tissue microarray (TMA), whose density is simi-
lar to biopsy. In order to evaluate other realistic conditions, an
additional breast TMA sample with air bubbles produced during
the preparation was also tested.

Tissue samples were digitalized with a motorized microscope
(Leica DM-6000B) controlled by using our own software devel-
oped by VISILAB research group. Images were 1392 × 1040
in size and 8 bits of dynamic range in grayscale. An expert
trained in pathological diagnosis task selected the best focal
plane from which 20 images were captured upward in axial
direction and another 20 downward, thus the stacks are made
of 41 images where Z-step was 1 μm. Four different magnifica-
tions were used: ×10 (NA ¼ 0.30), ×20 (NA ¼ 0.50), ×40
(NA ¼ 0.75), and ×63 (NA ¼ 0.90). Significant differences
in NA were tested to see how the optical contrast could affect
the focusing metrics. Three stacks were captured with four dif-
ferent magnifications each from seven different tissue samples
(papanicolau and calretinin lung cytologies, blood, prostate
biopsy, brain autopsy, breast TMA, and TMAwith air bubbles).
The result was 84 stacks in total. See Fig. 1 for some examples.
The best focus was finally obtained from an averaged evaluation
from five experts. All algorithms were written in Matlab R2010
and run on Intel Core i7 Extreme Quad 3.07 Ghz, 4 GB RAM,
HD SSD 6 Gb∕s.

3 Autofocus Methods
Autofocus is a property of an automatic system (e. g., micro-
scope or camera that provides the optimum focus for specific
objects in a scene). In the case of a camera, most of the
autofocusing methods are based on external means by emitting
ultrasonic or infrared waves. These methods are called active
methods due to the way of measuring the distance between
the lens and the object of the scene. Passive autofocus systems
are based on analyzing the image sharpness of the objects,
which is usually associated with a higher frequency content.
In microscopy, the focusing procedure is carried out mechani-
cally and is obtained by varying the distance between the
objective lens and the subject of interest. In order to speed
up the acquisition process in automated microscopy, the search
for the best focus cannot be extended to a whole number of
stacks in real-time applications. A good slide screening strategy
could be to first perform a coarse search of large steps guided by
a simple focus measure with low computation time and then
switch to a finer search where a significant difference between
two consecutive image captures appears.7 Automatic systems
often fails to focus images under different microscopic modal-
ities. Therefore, a desirable focus measure should be evaluated

in terms of reliability, accuracy, and speed. Most of the methods
proposed in the literature can be classified into five groups: deri-
vative, transform, statistical, histogram, and intuitive-based
methods.8

In this study, a wide set of focus measures from the already
well known methods to those proposed recently have been ana-
lyzed. Some of these measures have been specifically proposed
for autofocusing bacteria specimens,9,10 while others have not
been tested within this particular context.11 Other focus mea-
sures, such as4 Brenner gradient and entropy method,3 have
not been included here, but they belong to the same family
of Vollath and histogram techniques. In the next lines we sum-
marize the main characteristics of the focus measures selected
for the current study. For an image of size M × N, the notation
g(m,n) refers to the image intensity at point (m, n), while the
symbol * indicates the convolution operator.

• Gaussian filter (GS). This focus measure is based on the
energy content of a linearly filtered image by convolving
the image with a first-order Gaussian derivative.12

FGSðσÞ ¼
1

MN

X
m

X
n

½gðm; nÞ � Gmðm; n; σÞ�2

þ ½gðm; nÞ � Gnðm; n; σÞ�2 (1)

where Gm and Gn are the first-order Gaussian deriva-
tives in the m and n directions. The σ parameter of
the Gaussian method should be adjusted in relation
to the objects present in the image. The effect of chan-
ging the scale values results in robustness against
noise, dust on the preparation surface, and optical arti-
facts. We evaluated three different values that were
selected to test the robustness of the method, such
as, σ ¼ 0.1, 1, and 10.

• Laplacian (LAP). This focus measure was originally used
to find focusing errors caused by noise.13 This algorithm
has some desirable properties such as simplicity and rota-
tional symmetry. The algorithm convolves a discrete
Laplacian mask with the input image as follows:

FLAP ¼
X
m

X
n

½gðm − 1; nÞ þ gðmþ 1; nÞ

þ gðm; n − 1Þ þ gðm; nþ 1Þ
− 4 · gðm − 1; nÞ�2. (2)

• Log–histogram (LOG). This measure is based on the
assumptions that in some medical images, such as tuber-
culosis bacilli, the gray levels are contributing solely to
the upper part of the histogram, given that bacilli are
much brighter than the background.9 Image histogram
approximates a probability distribution function of gray
levels, where the variance of this distribution increases
as the image sharpness increases too. This algorithm is
based on the use of the image histogram modified by a
logarithm function as follows:

FLOG ¼
X
l

½l − Elogflg�2 · log ðplÞ; (3)
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where pl is the probability of the intensity level l and
Elogflg ¼ P

ll · log ðplÞ is the expected value of the
log–histogram.

• Weighted histogram (WHS). Images focused under fluor-
escence illumination exhibit higher portions of pixels with
bright gray levels than unfocused images. This recently
proposed measure is based on a weighted image
histogram without introducing a constant threshold.10

This was empirically achieved by multiplying the fifth
root of the number of pixels of each gray level hðiÞ by
the fifth power of its gray level i and subsequent division
by 1015. The sum of all transformed gray values was then
used as a focus measure.

FWHS ¼
X
l

� ffiffiffiffiffiffiffiffi
hðlÞ5

p
· l5 · 10−15

�
. (4)

Fig. 1 Examples of microscopy images of size 1392 × 1040. (a) Brain autopsy with magnification ×20, (b) prostate biopsy ×40, (c) calretinin lung
cytology ×10, (d) papanicolau lung cytology ×20, (e) blood ×20, (f) breast TMA ×63, and (g) TMA with air bubbles ×10.1*
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• Power squared (PS). This focus measure sums all image
intensities.3

FPS ¼
X
m

X
n

gðm; nÞ2 (5)

• Threshold (TH). First used with metaphase images of
chromosomes 14, it sums the pixel intensities above a
threshold as follows:

FTH ¼
X
m

X
n

Tτ½gðm; nÞ� (6)

with

Tτ½x� ¼
�
1 if x > τ
0 otherwise

(7)

Note that due to the background in the analyzed images
being lighter, we inverted the gray values. We used a
fixed threshold 50 points higher than the maximum
given by the histogram of the first image in the stack.

• Variance (VAR). This focus measure computes variations
of pixel intensities and uses the power function to amplify
larger differences from image mean intensity.14

FVAR ¼ 1

MN

X
m

X
n

½gðm; nÞ − ξ�2 (8)

where ξ ¼ 1
MN

P
m

P
n gðm; nÞ is the image mean.

• Normalized variance (NVAR). This measure is a variation
of Eq. (8). The variance measure is divided by the mean ξ,
which compensates for changes in the average image
brightness.

FNVAR ¼ 1

MNξ

X
m

X
n

½gðm; nÞ − ξ�2 (9)

• Vollath–4 (VOL4). This measure proposed by Vollath2 is
based on an autocorrelation function.

FVOL4 ¼
XM−1

m

X
n

gðm; nÞ · gðmþ 1; nÞ

−
XM−2

m

X
n

gðm; nÞ · gðmþ 2; nÞ (10)

• Vollath–5 (VOL5). Vollath presented a systematic study
of the properties of autofocus criteria and proposed a mod-
ification of Eq. 10 which suppresses high frequencies.2

FVOL5 ¼
XM−1

m

X
n

gðm; nÞ · gðmþ 1; nÞ −MNξ2 (11)

• Tenengrad (TEN). This algorithm convolves an image
with Sobel operators and then it sums the square of all
the magnitudes greater than a threshold value.15–17

FTEN ¼
X
m

X
n

½gðm; nÞ � S�2

þ ½gðm; nÞ � S 0�2; ∀ gðm; nÞ > τ (12)

where S and S 0 are the Sobel’s kernel and its transpose,
respectively, where S is given by:

S ¼
"
1 0 −1
2 0 −2
1 0 −1

#
(13)

Although in the original implementation of the Tenen-
grad algorithm a threshold was used, we decided to
include all pixels in the summation.

• Absolute Tenengrad (ATEN). This focus measure is simi-
lar to the previous Eq. (12), but the absolute value of the
gradient coefficients is taken in order to reduce the
computation time. This technique is known as absolute
gradient and was proposed in Jarvis.18

FATEN ¼
X
m

X
n

jgðm; nÞ � Sj þ jgðm; nÞ � S 0j (14)

• Discrete Cosine Transform (DCT). As Subbarao et al.19

has pointed out, focusing techniques based on band–
passed filters performs well. In this algorithm, images
are divided into blocks of K × K pixels then DCT is
applied according to the following expression:

cðu; vÞ ¼ Cu · Cv ·
X
m

X
n

gðm; nÞ · cos
�
πð2mþ 1Þu

2K

�

× cos

�
πð2nþ 1Þv

2K

�
; (15)

where Cu ¼ 1∕
ffiffiffiffi
K

p
when u ¼ 0, Cv ¼ 1∕

ffiffiffiffi
K

p
when

v ¼ 0 and Cu ¼ Cv ¼
ffiffiffiffiffiffiffiffiffi
2∕K

p
otherwise. The focus

measure is computed as the sum of absolute coeffi-
cients of four diagonal bands representing mid and
high frequencies20 (see Fig. 2).

Fig. 2 Main diagonal coefficients corresponding to a 8 × 8 pixels block.
In our case, the image is divided into blocks of 40 × 40 pixels to reduce
the computation time.

*Some sample stacks can be found at http://www.iv.optica.csic.es/page49/styled/
page59.html
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FDCT ¼
XKþ2

d¼K−1
jcðu; vÞj; ∀ d ¼ uþ v. (16)

• Midfrequency–DCT (MDCT). The influence of the band–
pass DCT coefficients on the focus measure has been ana-
lyzed by Lee at al.11.The same authors proposed a 4 × 4

convolution mask for extracting the central coefficient
cð4; 4Þ of the DCT, hence the sum of the convolution
operation along the whole image is used as a focus mea-
sure (see Fig. 2). The operator originally named MF-DCT
can be calculated as:

FMDCT ¼
X
m

X
n

ðgðm; nÞ � OMDCTÞ2 (17)

with

OMDCT ¼

2
664

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1

−1 −1 1 1

3
775: (18)

We also experimented with Hu moments21,22 but the results
were not included here due to their low performance in this
framework. Since the time-to-focus calculation could vary
depending on the implementation of each algorithm, the Matlab
code can be downloaded from http://www.iv.optica.csic.es/
page49/styled/page59.html.

4 Experiments

4.1 Accuracy Error and Computational Cost

The error of the algorithms applied to the seven types of stacks is
depicted in Fig. 3(a). The abbreviations GS1, GS2, and GS03
are related with the Gaussian method for respective sigma values
of σ0.1, σ ¼ 1, and σ ¼ 10. Furthermore, the lines drawn above
the bars indicate the variance of data. According to such plots,
most of the algorithms show high performance (between 2 and
4 μm which indicates a 2 to 4 frame distance) except TH and
DCT. TH manifests strong dependency on selecting an appro-
priate threshold and has difficulties at high magnification factor
[see Fig. 3(b)]. The lowest mean error corresponds to ATEN of

2.65 μm. Although it is not presented here, the lowest error is
achieved for weak-stained cytologies, below 1 μm for most
methods. In contrast, the error is triggered for the TMA with
bubbles up to 10 μm for most of the methods. Figure 3(b) pre-
sents the mean error for separate magnification factors, or NA.
With the exception of the TH method, one can see that all the
algorithms drastically impair their accuracy at ×63 factor, and
others like DCT method impairs even at ×40 [see Fig. 3(b)].
This is consistent with the fact that higher magnification objec-
tives provide a shallow depth of field. Such reduction could be
mitigated by increasing the size of the DCT kernel at the
expense of simultaneously increasing the computation time.

For real-time applications, a trade-off between computational
cost and accuracy is necessary. Thus, the algorithms with the
best ranking in terms of computational cost are not necessarily
effective in terms of accuracy (see Fig. 4). We considered more
realistic to provide a relative comparison among all the methods
rather than taking an absolute measure. Notice that in a real
system implementation using a compiled language such as C
or C++, or even if we consider an embedded architecture, the
absolute values would vary significantly. From the evaluated
algorithms, the TH method was the fastest with 2.5 ms per
image. Hence the computational time employed for this algo-
rithm was taken as a reference for comparing the time of
the other measures. Based on these results, the measures with

Fig. 3 (a) Global error performed by the autofocus measures and (b) global error according to the magnification value (NA) (right).

Fig. 4 Averaged computation time factor compared to the fastest algo-
rithm TH (scored ×1).
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the lowest error performance but also fast implementation are
VAR and NVAR, followed by VOL5 and MDCT. These
algorithms where also tested on a Mac mini Intel Core Duo
2.4 GHz, and we discovered some fluctuations for DCT, but
the rest of the methods behaved quite stable.

4.2 Noise and Non-Homogeneous Illumination

The performance of autofocus measures have been evaluated
when noise and illumination changes are added to the stacks.
In the case of noise, we have added increasing levels of zero
mean Gaussian noise to the original data and calculated their
influence in the accuracy error. Although the used values are
far from the normal usage conditions, this experiment can pro-
vid extra information about the true robustness of the focus
functions. The results for noise robustness are summarized in
Fig. 5. Notice that most of the methods are reasonably stable
until the distortion becomes extremely large, with the exception
of DCT, MDCT, LAP, and TH which manifest more sensibility
to noise. GS, PS, VAR, and VOL5 are among the most robust.

The non-homogeneous illumination was simulated using a
radial luminance pattern, [see Fig. 5(b)] whose representation
as a gray-level image was added to the original images and nor-
malized to the maximum gray-level of the original image. For
this test, different intensity maxima were used which can be
observed in the small pictures inside the plot. The focus measure
TH is highly sensitive to this type of distortion which could be
mitigated by the election of an optimum threshold. However, in
any case, this evidences its lack of robustness. Power squared

Fig. 5 Reponses of the focus functions to (a) zero mean Gaussian noise and (b) center-radial illumination.

Fig. 6 Autofocus curve characterization by the number of local maxima
η and the width ratio at 80% and 40% of the maximum width ¼ α∕β.

Fig. 7 Comparison of focus measures in terms of (a) averaged number of local maxima (included the global maximum) and (b) averaged width ratio
of the focus curves.
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focus measure is highly dependent on the illumination, probably
because it relies on overall power of the image contents.

4.3 Accuracy in Focus Curve

A key aspect in the automatization process is to determine
reliable and fast autofocusing methods. In such automatization
processes the shape of the focus curve can play an influential
role. Groen et al.14 used eight different criteria for the evaluation
of autofocus functions. Figure 6 stands for a schematic repre-
sentation of the main characteristics of an autofocus curve.
Ideally the focus function should be unimodal, but in practice
it can present various local maxima which can affect the con-
vergence of the autofocus procedure. Moreover, the focus
curve should ideally be sharp at the top and long tailed,
which can accelerate the convergence of the screening proce-
dure when the whole slice is scanned. This way, in order to
have a more complete characterization of the autofocus algo-
rithms, we have verified the shape of their autofocus curve
by taking into account two aspects: the number of local maxima
and the width ratio, expressed as: width ¼ α∕β, where α and β
are, respectively, the width of the focus curve at 80% and 40%.

First, one can observe in Fig. 7(a) that most algorithms pre-
sent a unique maximum as averaged value, except LAP, PS, TH,
VOL4, TEN, and ATEN, and the worst cases are DCT and
MDCT. With respect to the width ratio of the focus curve,
(see Fig. 7(b)) no significant discrepancies are found. In
Table 1 summarizes some of the most accurate and/or the fastest
algorithms, where VAR, NVAR, and VOL5 show high perfor-
mance for the three aspects.

5 Conclusions
In biological microscopy it is of great interest to investigate new
methods for automatizing laborious tasks that require a high
degree of attention from the specialist. Therefore, slide scanning
automatization procedures, from image acquisition to analysis,
will be of benefit to the clinician. We have presented here a
study of focus measures to automate the acquisition of histolo-
gical and histopathological images.

According to the results, most of the methods exhibit a low
accuracy error, but only NVAR, VAR, and VOL5 simulta-
neously exhibit a faster implementation and a low number of

local maxima. They could be considered as suitable candidates
for an automatic system. Moreover, considering external distor-
tions such as noise and non-homogeneous illumination, the last
two candidates perform more robustly. If the computational effi-
ciency is even more exigent, an alternative solution could
consist of applying the fastest algorithm as a coarse search,
that is TH, and then performing a finer search with another
fast and accurate algorithm.

Future work is required for defining efficient whole slide
scanning strategies such as using a coarse to fine search proce-
dure or other optimal search methods. Even further, the use of
Field Programmable Gate Arrays (FPGAs) or the General-Pur-
pose computation on Graphics Processing Units (GPGPU) will
be considered in the future for increasing the overall perfor-
mance of an autofocus system. The FPGAs parallel processing
and high speed capability will speed up both the image proces-
sing and focusing control parts that are limiting factors in an
automatic acquisition system. In particular, the implementation
of the better performant autofocusing methods in FPGA archi-
tectures will allow the parallel execution of them and therefore
to select the most accurate method almost in real time. The
selection procedure can be implemented e.g., through an evolu-
tionary algorithm. Another fast but less accurate algorithm could
be included to cope for pre-screening tasks. Finally, it is neces-
sary to remark that this type of technique will come to help the
clinician specially in those repetitive and tedious tasks such as
image acquisition and autofocus, but they do not replace the
expert until image analysis methods become effective.
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