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Abstract. Rheumatoid arthritis (RA) is the most common chronic inflammatory joint disease, with a prevalence of
0.5 to 1% in the general population. Imaging can possibly aid in early diagnosis, crucial to effective personalized
therapeutic strategies and treatment follow-up. The intravenous administration of indocyanine green (ICG) has been
considered for identifying synovial hyperperfusion as an RA physiological biomarker. However, while the distri-
bution of ICG in the human hand is a time-dependent process, the particular biodistribution dynamic patterns
established following intravenous administration have not yet been studied. For this reason, the dynamic relation-
ships of ICG distribution in the human hand in RA patients using a method based on principal component analysis
are analyzed. In vivo analyses were corroborated by simulations of clinical scenarios using a finite element method.
Observations of spatiotemporal characteristics are contrasted to fluorescence intensity images and magnetic res-
onance images of the hand joints, employed as the anatomical and diagnostic reference. Processing results for 450
joints from 5 healthy volunteers and 10 patients show that image features obtained from the spatiotemporal analysis
offer good congruence with synovitis and reveal better detection performance compared to observations of raw
fluorescence intensity images. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.9.097004]
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1 Introduction
Rheumatoid arthritis (RA), the most common chronic form of
arthritis,1 is an autoimmune disease that affects up to 1% of the
population. RA typically affects the synovial joint linings, trig-
gering buildup of synovitis in joints, resulting in cartilage
and bone damage. Imaging can play a significant role in the
early diagnosis of RA and monitoring the effectiveness of a
corresponding treatment.2,3 Conventionally, x-ray imaging has
been employed for imaging RA features, such as bone and joint
destruction as a result of inflammation. However, this approach
is limited to imaging effects due to relatively advanced inflam-
mation with visible bone damage.4 Magnetic resonance imaging
(MRI) and ultrasound imaging are also employed as alternatives
to x-ray imaging for early RA imaging. Promising results have
been shown to make early diagnosis possible. Limitations
include the high cost and long examination time (for MRI) or
the operator dependency (for ultrasound).5

Optical imaging has been considered as an alternative RA
imaging method, since it offers fast noninvasive imaging.6–14

Transillumination planar imaging using a 675-nm laser was con-
sidered to assess the progress of disease by observing human
proximal interphalangeal (PIP) finger joints and evaluating fea-
tures of the optical images collected using image classification
algorithms.8 This approach was able to resolve inflammation
in PIP joints in a group of 72 joints with 80% sensitivity and
89% specificity, and was shown to be better in assessing

inflammatory variations in the synovium. Optical tomography
approaches have also been considered to three-dimensionally
resolve optical coefficients changes between rheumatoid syno-
vial tissue in rheumatoid PIP joints in comparison to healthy PIP
joints.7,11,13,15,16 These methods aim at reconstructing the optical
absorption and scattering coefficients in two-dimensional planes
or three-dimensionally in finger joints and rely on the increase
in the optical absorption and scattering due to clouding of the
synovial fluid or membrane inflammation8,11 or measurement
of water concentration and tissue oxygen saturation levels17 dif-
ferentiate between arthritic and healthy joints. It was reported
in Ref. 11 that the optical absorption and scattering of synovial
tissue can increase up to an order of magnitude with inflamma-
tion, and frequency-domain diffuse optical tomography was
shown to differentiate between healthy and arthritic joints
with >85% sensitivity and specificity in a group of 99 PIP
joints with rheumatoid arthritis and 120 healthy PIP joints.15

Diagnosis of osteoarthritis in distal interphalangeal (DIP) joints
of 22 patients and 18 volunteers with 91% sensitivity and 100%
specificity was demonstrated in Ref. 17 using an x-ray-guided
multispectral technique. It should be noted that optoacoustic
methods have also been proposed for imaging inflammatory
arthritis and osteoarthritis in small animal and human joints.18,19

The aforementioned optical and optoacoustic planar or tomo-
graphic optical imaging methods have been limited to interpha-
langeal human finger joints. Laser Doppler imaging has further
been proposed for imaging perfusion maps of microvasculature
in PIP and metacarpophalangeal (MCP) human hand joints.20,21
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In addition to intrinsic contrast, the use of fluorescent dyes
and probes has been also proposed to offer diagnostic informa-
tion on the inflamed synovial tissue based on planar and tomo-
graphic molecular imaging techniques.22,23 Optical imaging
employing indocyanine green (ICG) has been considered in par-
ticular for visualizing RA in preclinical and clinical applica-
tions.9,12,24–26 ICG is a synthetic organic fluorescent dye that
has been considered in a variety of clinical applications, includ-
ing hepatic clearance studies and retinal angiography, as well as
intraoperative applications such as brain surgery and gastroen-
terological surgery.27–31 Studies for the detection of breast
cancer32,33 and the identification of atherosclerosis34 have also
been considered. Upon intravenous administration, ICG distrib-
utes into the vascular system, typically binding to plasma pro-
teins. ICG has a half-life of 3 to 4 min after injection and clears
though the hepatobiliary tract. ICG has peak optical absorption
at ∼780 nm and peak fluorescence at 830 nm in blood.35

A common method to clinically visualize ICG using optical
imaging is epi-illumination fluorescence imaging (EFI), i.e.,
a photographic approach whereby the illumination and the
detection are placed on the same side of tissue.14,36–38

Transillumination and optical tomography imaging have, how-
ever, also been demonstrated.39,40 When performing EFI, the
sample is typically subjected to plane illumination and the fluo-
rescence signal is measured using a CCD at the corresponding
wavelength using appropriate optical filters that reject the exci-
tation light and only allow the emission light to be detected.
Such cameras can operate at video rates, allowing dynamic
measurement of fluorophore biodistribution. Conversely, the
approach is surface weighted, which means that fluorescence
coming from the surface of the tissue is collected more effi-
ciently than deeper-seated fluorescence which is instead attenu-
ated as a function of depth. It should be noted that, to our
knowledge, ICG-based EFI imaging as proposed in Ref. 24
is to date the only fluorescence-based clinical tool for imaging
synovitis in human hand joints and at the same time the only
technique for simultaneously imaging synovitis in all carpal,
MCP, and interphalangeal joints of the human hand. ICG-
aided diagnosis of RA in carpal, MCP, PIP, and DIP joints of
human hands was reported in Ref. 41 to have a sensitivity of
39.6% and specificity of 85.2% in a group of 45 patients.
Another study reported 76% sensitivity and 54% specificity
for 252 patients.26

The output of EFI imaging is a number of fluorescence
frames obtained at sequential time points. The visual inspection
of this information and derivation of diagnostic information is
not straightforward due to the large amount of data collected and
perhaps the presence of subtle spatiotemporal changes that are
not easily captured by human perception. In order to quantita-
tively examine the ICG spatiotemporal profile obtained from
clinical measurements following an intravenous bolus injection
of ICG to patients, we employed principal component analysis
(PCA).42 PCA is commonly applied in studying dynamic events
and has been used in such applications as differentiating internal
organs in mice,37 spectral unmixing applications,43 and multi-
spectral optoacoustic tomography real-time imaging.44 PCA
was applied herein to decompose the complex temporal and spa-
tial dependencies of fluorescence signals following ICG admin-
istration and investigate whether we could identify dynamic or
spatial patterns associated with RA. A secondary objective of
this work was to further gain insights on the effects of depth
on the signals recorded. The purpose of the spatiotemporal

processing was to investigate whether ICG of higher concen-
tration or different time-kinetics was delivered at the synovial
lining compared to the surrounding tissue, as this could be
employed as a marker of RA characterization. A numerical
phantom model built using a manually segmented MR scan
of an MCP joint has been used to simulate the fluorescence
image sequences based on the finite element method (FEM).
The performance of the proposed method has been demon-
strated using this phantom as well as for individual joints
from 10 patients diagnosed with RA and 5 healthy volunteers.
Detailed case studies are presented as well for eight joints with
various degrees of synovitis severity.

2 Methods

2.1 Clinical Imaging of Rheumatoid Arthritis

The methodology and analysis performed in this paper has been
developed in the context of a recent study conducted at the
Klinikum Rechts der Isar, Munich, Germany, with the purpose
of evaluating ICG-aided diagnosis of RA.41 Patients with more
than one tender and/or swollen joint among carpal, MCP, PIP, or
DIP joints were recruited, when the symptom duration exceeded
6 weeks for up to 24 months. The patients were examined by
two rheumatologists via bimanual palpation and then underwent
imaging using a 3T MR machine (Verio, Siemens Erlangen,
Germany). The MR scanning was performed on both hands
simultaneously with patients in a prone position and hands
stretched out in praying posture. Gadopentetatedime glumine
(Magnograf, Schering, Berlin, Germany) was injected as con-
trast agent at a dose of 0.02 ml per kg body weight.
Nonenhanced proton density fat-saturated images and postcon-
trast T1-weighted fat-saturated scans were obtained in transverse
and coronal planes. The contrast agent shows a higher relative
concentration in inflamed than healthy synovial joint linings.41

Three radiologists scored the degree of synovitis in a total of 30
joints of both hands using the MR scans. Synovitis scores on a
4-point-ordinate scale (0: no inflammation, 1: mild, 2: moderate,
3: severe) were assigned to each joint according to the semi-
quantitative assessment system suggested by the OMERACT
MRI group.45 These MR scores constitute the diagnostic infor-
mation for our work.

Figure 1 shows characteristic images for a patient with mild
(MR score of 1) arthritis in the third MCP joint of the left hand.
The bright area around the third MCP joint region, marked in
Fig. 1(b), indicates relatively high accumulation of ICG in the
synovial membrane of this joint. The corresponding transverse
MR image is shown in Fig. 1(c), where the synovitis is visible as
hyperintense signal alteration on T1-weighted, fat-saturated,
contrast-enhanced MR images due to the higher concentration
of the MR contrast agent. The regions of interest (ROIs) delin-
eated with white lines in Fig. 1(c) are manually specified for
each patient and are used in the proposed method, presented
in Sec. 2.2.

Fluorescence imaging was performed with a near-infrared
fluorescence imaging system (Xiralite X4, Mivenion GmbH,
Berlin, Germany), which allows for real-time image acquisition
at the fluorescence wavelength of ICG from the human hands
after epi-illumination excitation.24,26,41 The device employs a
cooled CCD camera, equipped with an 800-nm long-pass opti-
cal filter, which captured images at a frame rate of one image
per second for a total duration of 360 s. For optical imaging, the
patient placed the hands inside the device, on a template
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designed to keep the fingers apart. Continuous illumination with
light-emitting diodes at 740 nm was applied to both hands. The
patients received a bolus injection at a dosage of 0.1 mg per kg
body weight. ICG was injected intravenously approximately
10 s after the beginning of the imaging acquisition so that
pre-ICG administration baseline measurements were always
available.

2.2 Fluorescence Image Analysis

To analyze the fluorescence data collected, PCAwas employed
to decouple the fluorescence image sequence into different tem-
poral and spatial components. PCA is a method for converting
a set of realizations of a group of random variables to a smaller
set of values, which can be considered as realizations of a cor-
responding group of uncorrelated random variables, known
as principal components.42 PCA was applied to a temporally
and spatially windowed subsequence of the original raw
fluorescence image sequence measured from patients’ hands
as described in Sec. 2.1. The resulting principal components
in each subsequence were then combined to form another
sequence. This new sequence was efficiently rendered as a
sequence of color images, where each color corresponds to a
principal component. The signal due to synovitis is likely to
appear as one of such components if it has a dynamic behavior
that differs from that of regular tissue.

The proposed processing method achieves signal separation
through multiple levels of localization in time and space. In the
first step, the hand image is divided into various ROIs as shown
in Fig. 1(b). There are seven ROIs considered for different
regions of the hand. This step is necessary as the signals
have different temporal and spatial characteristics in various
hand regions due to different vascular and anatomical struc-
tures and, therefore, hemodynamics. For example, there is a
denser dorsal venous network in the digital (consisting of
PIP and DIP ROIs) compared to the carpal joints, contributing
to more signal interference in interphalangeal joints. Similarly,
the synovial tissue regions in the MCP joints are shallower and
smaller than the carpal synovium and, therefore, appear as bet-
ter defined yet smaller spots in the fluorescence images com-
pared to the signal coming from inflamed carpal joints. These

observations necessitate localized processing as the processing
method seeks component separation through minimization
of spatial and temporal correlations. The processing is best
focused on regions with similar signal dynamics. Hence, joints
with similar signal behavior are processed in one ROI.

To briefly explain the application of PCA herein, we can
assume fIpg, p ¼ 1 · · · P, as a set of P fluorescence images
of M1 ×M2 pixel size, obtained correspondingly at P time
points. In our study, P was equal to 360, corresponding to
360 images acquired over 360 s. Then for a given joint, let
fJpg, p ¼ 1 · · · P denote the sequence of cropped images at
the corresponding ROI, as shown in Fig. 1(b). The average
intensity within each ROI was subtracted from this image
sequence, such as each Jp had a mean value of zero. Just as
the spatial windowing through the application of the ROI win-
dows is conducive to better performance, the windowing across
the time domain also leads to better signal separation, due
to changes in hemodynamic characteristics postinjection.
Specifically, L successive images were taken from the sub-
sequence Jp and weighted using a time window that tapered
off toward the boundaries of this subsequence. Assuming that
this subsequence is Hk

i , where i ranges from 1 to L and k ranges
from 1 to P − L, we then write

Hk
i ¼ WðiÞJkþi; (1)

where W denotes the window sequence. The window’s length,
L, was empirically adjusted such that the L images within the
time window W have a stationary spatiotemporal behavior, that
is, can be well approximated as linear combinations of few spa-
tial components. For the work presented here, a triangular win-
dow of varying length was employed. The length of the window
W was shorter at the beginning of the sequence, where the tem-
poral dynamism was stronger, and became longer as signal later
stabilized. The sequence Hk

i was the image sequence that was
finally processed by PCA.

To implement the PCA on Hk
i , every image in the sequence

Hk
i was first vectorized by tagging along all the columns, i.e.,

hki ¼ ½Hk
i ð1; 1Þ: : : Hk

i ðM1; 1Þ · · · Hk
i ð1;M2Þ: : : Hk

i ðM1;M2Þ�;
(2)

Fig. 1 (a) Sample epi-illumination fluorescence image of the left hand 40 s after injection of indocyanine green (ICG). The patient has mild synovitis in
the third metacarpophalangeal joint of the left hand, as seen by relative signal increase in the delineated region. (b) The joint names are indicated on the
fluorescence image (MCP, metacarpophalangeal, PIP, proximal interphalangeal, and DIP, distal interphalangeal). White curves depict regions of inter-
est (ROIs) specified for processing purposes. (c) The corresponding contrast enhanced, fat saturated, T1-weighted magnetic resonance (MR) image of
the MCP region where the synovitis in the third MCP joint is highlighted due to a higher relative concentration of the MR contrast agent.
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where Hk
i ðn;mÞ is the n’th row and m’th column element of

the matrix Hk
i . For a given k, all the images in the sequence

Hk
i were vectorized and stacked on top of each other to form

an L ×M1M2 matrix Xk as

Xk ¼

2
664
hk1
..
.

hkL

3
775: (3)

The PCA transformation on this matrix relied on the singular
value analysis of the L × L correlation matrix Ck defined as

Ck ¼ XkXT
k ¼ TT

kDTk; (4)

where the L × L unitary matrix Tk is the matrix of eigenvectors
of Ck and T is the matrix transpose operator. The diagonal
matrix D contains the eigenvalues of Ck, i.e., the squares of sin-
gular values of Xk sorted in decreasing order. The PCA trans-
formation of matrix Xk is then given by

Sk ¼ TT
kXk; (5)

where Tk and Sk are L × L and L ×M1M2, respectively. It was
observed that only the first three components had significant
energy, and the components beyond the third one could be
ignored. In other words,

Xk ≅ T̂kŜk; (6)

where T̂k and Ŝk are matrices containing the first three, respec-
tively, columns and rows of matrices Tk and Sk. The values of
the time profile and the spatial components, respectively in T̂k
and Ŝk matrices, may become negative as the PCA transforma-
tion does not enforce non-negativity. The negative values pose a
problem for result interpretation. For this reason, the three im-
aging components were weighed by the corresponding values of
the temporal vectors and thresholds were applied using preset
positive numbers. The corresponding three PCA component
sequences are called fC1

i g, fC2
i g, and fC3

i g. For each window

position, the three components from the middle frame weighed
as such are then mapped into the blue, red, and green transpar-
ency channels of a color image in decreasing order of the ampli-
tude of their corresponding singular values. The resulting color
image is considered as a single frame in a video sequence, which
is finally presented to the reader. It should also be noted that all
frames are normalized across the entire sequence for a more
meaningful depiction.

2.3 Simulation and Analysis Using the Finite Element
Method

To justify the use of superficial measurements for recovering
diagnostic information from deeper-seated activity as well as
studying the performance of the proposed PCA method, we
simulated the fluorescence signals recorded as a function of
assumed physical and geometrical factors that relate to the im-
aging problem studied herein. The simulated factors include
the depth and estimates of the relative ICG uptake ratio of
the synovial linings. We have furthermore investigated the vis-
ibility of the targeted fluorescence signal in various time stages
as the ICG is distributed through the hand and joint area.

Figure 2 demonstrates the numerical phantom model that
was developed and used for the above purposes. The phantom
geometry was developed using manual segmentation of trans-
verse MR images of an MCP joint of a patient with severe syn-
ovitis in the second MCP joint. Three elements were identified
in the segmentation—bone, veins, and synovium—as shown by
different colors in Fig. 2(a). The ICG was assumed to accumu-
late in both the background tissue (volume outside of bones) and
in the synovium at different concentrations. In particular, it was
assumed that the concentration of the fluorophores in the inclu-
sion and the background, i.e., the rest of the slab, constitutes an
uptake ratio of N∶1. To estimate the dynamic range of the
uptake ratio N, we measured intensity of fluorescence observed
in several inflamed joints relative to signal in adjacent nonjoint
tissue. In the measured samples, the joint to nonjoint fluores-
cence ratios ranged between 2.5 and 6.0. While these measured
ratios depend on many physical factors such as the imaging time
point or the location, the extracted dynamic range serves as an

Fig. 2 Numerical tissue phantom built using segmentation of transverse MR images of anMCP finger joint: (a) The phantom contains general tissue, two
dorsal veins (yellow isosurfaces), bones (gray isosurface), and synovium (red isosurface), and ICG accumulated in the synovium is shown by the green
shade. (b) Tetrahedral mesh generated for the numerical phantom with the red dots designating the illumination on the surface. (c) A sample simulated
fluorescence image (as seen by a camera located above the hand and seeing the dorsal side) for synovium located at the depth of 2 mm with an uptake
ratio of 3 relative to general tissue, with the black curve delineating the joint region. The units in (c) are pixel intensity counts.
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estimate of the underlying uptake ratio. Because of higher
attenuation of deep-seated inflammation signal due to depth
effects, this estimate is likely to be a conservative one.
Interestingly, intensity of the inflamed synovium was observed
in MR images to be, depending on severity of inflammation, two
to seven times larger than surrounding tissue. This is justifiable
as the gadolinium-based MR contrast agent and ICG are both
blood pooling agents and the respective signal intensities are
expected to correlate with blood concentration, even though
they have different distribution patterns due to their different
molecular weights. This effect has also been observed in
ICG-based mammography.46

The ICG that accumulated in the synovium is shown by
green shade in Fig. 2(a) and corresponding N-fold increased flu-
orophore concentration in the target tissue (synovium), with
regard to background, as described above. An FEM model
was employed to simulate the propagation of the incident
light and calculate the light intensity emitted by fluorophores
for a given ICG distribution. The mesh consisted of 48,880
nodes and 278,832 elements, with an average edge length of
1.3 mm, and was generated using the methods described in
Refs. 47 and 48. The light propagation in tissue was modeled
using FEM-based discretization of the diffusion approximation
(DA).49 The DA, as a first-order approximation of the more gen-
eral radiative transport equation (RTE), is valid for modeling
light propagation in turbid tissue where the scattering coefficient
is much larger than the absorption coefficient. In tissues, this
optical condition does not generally hold in regions containing
clear fluid such as the synovium or air such as in the lungs, or in
regions with very high absorption such as within large blood
vessels. Nevertheless, light modeling based on DA is widely
used for preclinical applications (such as tumor localization
in murine models of lung cancer50) and clinical applications,
including tomographic imaging of human interphalangeal finger
joints17,51,52 as well as for simulation of light propagation in
joints.7 RTE and its higher-order approximations are employed
as well as a more accurate model for tomographic imaging of
finger joints, but computational particulars also impose a num-
ber of approximations and assumptions.15,53 A recent study
showed that, given a priori anatomical information obtained
through x-ray imaging, the DA-based modeling of light propa-
gation results in <4% error tomographic reconstruction in
human joints, in comparison with higher-order approximations
of RTE, while without such a priori information, the
reconstruction error can be significantly larger.53 The tissue’s
optical absorption and scattering coefficients were set to
typical values of 0.05 mm−1 and 1.0 mm−1, typical for tissue.
Figure 2(b) shows the tetrahedral mesh generated for the phan-
tom, and the red dots mark the illumination surface. Figure 2(c)
depicts a sample fluorescence image obtained using the FEM
modeling.

Dynamic fluorescence images were simulated over 360 s by
assigning time-dependent ICG concentrations to different tissue
segments. Specifically, the blood flow was mimicked by weight-
ing the ICG concentration in the background, veins, and syno-
vium according to time courses experimentally obtained from
fluorescence measurements from the patient whose MR scan
was used for the phantom construction. Three time-curves
were measured from three different locations, i.e., the dorsal
vein, general tissue, and inflamed joint locations. The final
simulated image sequence contains the fluorescence signal ema-
nating from different entities in the phantom and an added

Gaussian measurement noise with 1.5% of the fluorescence sig-
nal energy.

2.4 Localization Metric for Image Evaluation

In this section, we establish a framework for quantitative evalu-
ation of the results and comparison of raw and processed com-
ponent image sequences. This framework is then used to
evaluate the performance of the proposed method in localizing
desirable signal components in both FEM-based simulated and
clinical fluorescence image sequences. The idea behind such
framework is to quantify the presence of a component in an
image, which can be potentially attributed to the target fluores-
cence source, i.e., in our case, the synovitis signal. This is
achieved by segmentation of the image and then evaluation
of the binary segments against a reference binary image. The
reference binary image is manually set to a region where the
joint is expected (for clinical images, this region was set with
the help of MR coronal images). If an image segment is local-
ized to the region denoted by the reference binary image, it can
be potentially associated with the fluorescence signal emanating
from joint synovitis.

Specifically, given an image sequence, raw or processed, and
an ROI where a joint is expected to be located, a localization
metric was designed whose value indicates if the image
sequence suggests the existence of a localized signal component
in the joint region. This metric has a value between 0 and 100,
where a value of 100 suggests existence of a signal component
confined within and spanning the joint region and 0 suggests no
localized signal component in the joint region. This metric is
applied on every image in the sequence and the metric associ-
ated with the image sequence is defined as the maximum of all
metrics for the images in the sequence. Hence, the image with
the maximum metric value is regarded as the one containing the
best candidate signal component. For clarification purposes, an
example is presented in Fig. 3. The blue ellipse delineated in
Fig. 3 denotes the approximated location of the second MCP
joint, defined as the “joint ROI.” The fluorescence signal ema-
nating from the ICG accumulated in the inflamed synovial lining
is expected to appear as a distinguishable and localized signal
component at least partly within the joint ROI. The fluorescence
image in Fig. 3 contains such a component, delineated by the red

Fig. 3 Fluorescence image in the MCP area of a patient with moderate
synovitis in the second right MCP joint. The blue ellipse shows the
region the joint is located, i.e., the reference joint region, and the
red curve designates the segmented region that best overlaps with
the reference joint region.
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curve. This component has been segmented using the segmen-
tation approach of the metric framework proposed in the section.

Specifically, let R denote a binary image that is 1 inside the
joint region and 0 outside. For a given image I of size N ×M, a
binary image J is constructed as follows:

J ¼ I > βI0; (7)

where I0 indicates the average intensity of I and the coefficient β
was heuristically set to 1.5 for the fluorescence images I
obtained from patients’ hands as described in Sec. 2.1. The
binary image J is further processed using morphological oper-
ations. Finally, a connected component, also called a binary
label, of the resulting binary image that has the largest overlap
with R is kept as the candidate signal component. Let K be the
binary image containing this segment.

The similarity between the reference binary images R and the
segmented binary image K renders a measure of the likelihood
of the signal component designated by the binary region in K, to
have been originated from fluorescence within the region des-
ignated by R. To quantify the similarity between R and K, we
employ the Jaccard distance54 as an overlap-based measure and
the Hausdorff distance55 as a boundary-based measure and the
signal energy. The application of Hausdorff and Jaccard distan-
ces as typical boundary-based and overlap-based localization
metrics is a common approach for segmentation and image
retrieval evaluation purposes.56–60 A survey and comparison
of several localization metrics for the purpose of evaluation
of image interpretation systems is presented in Ref. 61.

Specifically, in this work, the localization metric for a binary
image K, a given reference binary image R, and the original
gray-scale image I is defined as

SðK;RÞ ¼ 100

×
�
1 −max

�
max½dðK;RÞ; r�

r
; JδðK;RÞ; 1 − EðKÞ

��
;

(8)

where dðK;RÞ and JδðK;RÞ denote, respectively, the Hausdorff
distance and the Jaccard distance between K and R, and EðKÞ is

the energy of the image I within the label inK normalized by the
energy of the image I. The number r denotes the major radius of
an ellipse that envelopes R. SðK;RÞ ranges between 0 and 100.
The configuration of Eq. (8) ensures that a high value of SðK;RÞ
means small Hausdorff and Jaccard distances and a high energy
concentration within the segmented region. Specifically,
SðK;RÞ ¼ 100 means that the K and R are identical and that
the entire signal energy is confined to K, i.e., perfect localiza-
tion. On the other hand, a value of 0 for SðK;RÞ indicates no
overlap or a large Hausdorff distance between K and R or no
signal energy contained within the area defined by K.

The metric for a given image sequence Ii is defined as

SðfIig; RÞ ¼ max
i

SðIi; RÞ: (9)

The metric proposed here is used in Sec. 3 for two purposes.
First, it is employed to compare the processed component
sequences against the draw image sequence for various joints
with different degrees of synovitis severity. Second, the metric
is used to study the performance of the method versus different
physical factors such as lesion depth and uptake ratio using the
numerical phantom presented above in Sec. 2.3.

3 Results

3.1 Processing of FEM-Based Simulated Image
Sequences and Impact of Physical Factors

In this section, we establish the impact of physical and geo-
metrical parameters, such as the synovium depth or the concen-
tration of the ICG in the synovium, on the fluorescence signal
obtained for the geometrical arrangement presented in Sec. 2.3.
Figure 4(a) demonstrates results from the numerical phantom
study. The FEM-based model discussed in Sec. 2.3 was used
to simulate the propagation of incident planar illumination in
the tissue and the resulting fluorescence signal emanating from
the synovial inclusion, the background tissue, and the veins. The
z axis in Fig. 4(a) denotes the relative contrast between the fluo-
rescence signal in the joint region, as shown in Fig. 2(c), and the
background signal in the simulated images for different depths

Fig. 4 Simulation and processing results for the numerical phantom presented in Fig. 2, Sec. 2.3. (a) The ratio between the signal intensities in the joint
ROI and in the background for various depths of the synovium and ICG uptake ratio in the synovium, calculated for the simulated raw fluorescence
image sequence (contrast denotes the maximum of this ratio over the entire sequence). (b) Localization metric for the raw simulated fluorescence
sequences (surface marked with solid lines) and for the three processed image sequences corresponding to the three components (surface marked with
dotted lines) versus depths and uptake ratios. A higher value for the localization metric indicates presence of a localized component in the joint region
in the corresponding image sequence.
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between 2 and 7 mm and uptake ratios between 1 and 10,
whereby uptake ratio denotes ratio of ICG concentration
in synovium over the background. Figure 4(b) illustrates the
results obtained from a simulated longitudinal measurement.
Specifically, for each depth and uptake ratio, the proposed
PCA-based method was applied to the raw fluorescence image
sequence generated using the numerical phantom, where differ-
ent frames denote the simulated fluorescence signal intensity
images over 360 s, as elaborated in Sec. 2.4. Next, localization
metric values for the simulated raw image sequences as well as
the corresponding processed sequences were found, as shown in
Eq. (9). The localization metric was calculated for the individual
simulated images based on the approach described in Sec. 2.4
and Eq. (8). The z axis in Fig. 4(b) denotes the value of the
localization metric calculated for different depths and uptake
ratios for both the raw image sequences (surface marked with
solid lines) and the processed sequences (surface marked with
dotted lines). A high value for the localization metric indicates

presence of a signal component attributable to the synovium
fluorescence.

The results suggest that fluorescence signals can be retrieved
for depths where synovitis can occur for different joints. In addi-
tion, the PCA analysis shows the presence of a signal compo-
nent localized in the joint region for larger range of uptake ratios
and a given depth and vice versa. The fluorescence signal in
finger joints is also affected by the impact of the blood flow
on the ICG distribution. After the intravenous injection, the
ICG circulates to the hands through the radial and ulnar arteries
and then flows back through palmar and venous veins, resulting
in fluorescence signal emanating from dorsal veins and general
tissue interfering with the synovitis signal. The FEM simula-
tions presented in Fig. 4(a) suggest that even for synovitis
up to 3 mm under skin, interference occurring for uptake
ratios <3 can complicate signal detection. However, as seen
in Fig. 4(b), the PCA-based method could decouple the fluores-
cence signals from the vein and background signal for the

Fig. 5 Case study of a 64-year-old female patient with severe synovitis in the left carpus and severe and moderate synovitis in, respectively, left second
and fourth PIP joints. (a) Sample fluorescence image at 100 s with corresponding three ROIs delineated by white curves. (b) to (e) Raw fluorescence
images (0 to 65,535 intensity counts with black indicating 0) corresponding to time points 37, 43, 53, and 89 s postinjection, respectively; (f) to
(i) Corresponding processed colored images at the same four time points. (j) to (k) and (n) and (o) are raw and processed images for the left second
PIP, and (l) and (m) and (p) and (q) correspond to the results for the left fourth PIP joint for time points 30 and 42 s postinjection. The inflamed synovial
linings characterized by higher relative accumulation of MR contrast agent are marked on transverse contrast-enhanced T1-weighted MR images in (r)
to (t) for left carpus and second and fourth PIP joints, respectively. The three principal components are mapped to red, green, and blue channels in (f) to
(i) and (n) to (q). In all cases and time points shown, the signal in the blue channel signifies synovitis, while green and red channel signals can be mainly
attributed to fluorescence emanating from dorsal veins in (f) to (i) and the dense vascular network of fingertips in (n) to (q).
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FEM-based time-series simulations for lesions up to 5 mm deep
for uptake ratios <5, while the target signal could be distin-
guished in the raw fluorescence images only up to 2 mm
of depth.

3.2 Spatiotemporal Analysis Applied to Arthritic
Hand Joint Images

Following the analysis of simulated data, we applied the PCA
method in the study of RA patients. Figure 5 shows raw and
processed results for a fluorescence image sequence obtained
from a 64-year-old female patient with severe arthritis in the
left carpus and moderate and severe synovitis in, respectively,
left fourth and second PIP joints. The ROI of these three joints
of the left hand are delineated in Fig. 5(a). Transverse T1-
weighted contrast-enhanced fat-saturated MR images verifying
the synovitis severity of left carpus and second and fourth PIP
joints for this patient are also shown in Figs. 5(r) to 5(t), respec-
tively. The raw fluorescence images measured at time points 37,
43, 53, and 89 s are shown in, respectively, Figs. 5(b) to 5(e)
within the ROI corresponding to the carpus joint. Figures 5(f)
to 5(i) show the corresponding processed images at these time
points, where the three components are mapped, according to
increasing magnitude of the corresponding singular values, to
the green, red, and blue channels of depicted color images.
The color values in processed images range between 0 and 1.
A prominent fluorescence signal appears on the raw images
of the carpus, in particular at time point 37 s. Accordingly, a
strong first PCA component (mapped to the blue channel)
appears in Figs. 5(f) to 5(i), congruent to the location where
the fluorescence signal appears in the raw data. Interestingly,
component #1 appears in all time points of the sequence, in con-
trast to the raw fluorescence signal that virtually disappeared at
later time points as shown in Figs. 5(d) and 5(e). The raw and
processed image frames for the left second PIP joint are shown
in Figs. 5(j) and 5(k) and Figs. 5(n) and 5(o), respectively, and

Figs. 5(l) and 5(m) and Figs. 5(p) and 5(q) present correspond-
ing results for the left fourth PIP joint for time points 30 and 42 s
postinjection. Similar to the carpus, a strongly localized signal
component appears in the first component, visible in the two
time-point displays for both joints.

The severe synovitis of the left carpal and second PIP joints
as well as the moderate synovitis of fourth PIP joint can be
easily seen in the blue channel of the processed images. This
example demonstrates the virtue of the proposed method in tem-
poral and spatial decoupling of the various signal components
contributing to the fluorescence image. Specifically, the signal
from the veins and the synovitis are clearly decoupled into the
three color channels (corresponding to the three principal com-
ponents) in Fig. 5(g) for the carpus, at the time point 24 s. The
synovitis signal is the most temporally persistent component (in
comparison with the vein signals, for instance). It is therefore
transformed into the blue channel, which is the most dominant
channel, i.e., with the largest singular value. On the other hand,
the vein signal passes through the green and red channels at dif-
ferent time points. Some of the synovitis signal has leaked as
well into the red channel, as seen in Fig. 5(f). The localization
metric calculated for raw and processed image sequences were
calculated according to Eq. (9). The reference ROIs for the three
joints in this and next cases were set using the fluorescence
images and the corresponding MR coronal images, as the ana-
tomical reference. The metric values for these joints and other
joints studied in this section are presented in Table 1. The metric
for the processed sequence represents the maximum of the three
sequences, corresponding to the three components. As can be
seen, the first component (mapped to blue channel) in the proc-
essed sequence achieves a maximum metric of 83 for the carpus,
while the corresponding value for the raw sequences is 35. For
the second and fourth PIP joints of the left hand, metric values
of, respectively, 66 and 46 were calculated for the processed
sequences, while no localized components were found in the

Table 1 Localization metric values calculated for raw and processed image sequences for cases presented in Figs. 5 to 8.

MR score

Sequence localization
metric

Channel with
maximum localizationRaw Processed

Left carpus, Fig. 5 3 35 83 1 (blue)

Left second proximal interphalangeal (PIP), Fig. 5 3 0 66 1 (blue)

Left fourth PIP, Fig. 5 2 0 46 1 (blue)

Right third metacarpophalangeal (MCP), Fig. 6 3 31 60 1 (blue)

Left carpus, Fig. 7 2 0 32 2 (red)

Left second MCP, Fig. 7 2 0 54 2 (red)

Left third MCP, Fig. 7 1 0 48 2 (red)

Left fourth MCP, Fig. 7 2 0 8 3 (green)

Left fifth MCP, Fig. 7 2 0 9 3 (green)

Right carpus, Fig. 8 0 0 0 —

Note: Columns 1 through 5 indicate, respectively, the joint name and location, the MR-based synovitis score, the localization metric values for raw and
processed sequences, and the channel where the frame with the maximum metric occurs.
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raw images, leading to a metric value of 0. This is likely due to
the strong coupling of synovitis signal with the signal from non-
specific background and dorsal venous networks of fingers.

Another presentation for a severely arthritic joint presented in
Fig. 6 further demonstrates the decoupling ability of the pro-
posed method. In this case, a 46-year-old female patient with
severe synovitis in the third right MCP joint is presented.
The raw fluorescence images in the MCP region, as delineated
in Fig. 6(a), are shown in Figs. 6(b) to 6(e) at time points 35, 57,
67, and 91 s after ICG injection. The corresponding processed
images are shown in Figs. 6(f) to 6(i). As in the previous case,
a strong fluorescence signal appeared in this case as well in
the raw fluorescence images at the MCP second region. This
signal is stronger at earlier time points and later weakens.
Correspondingly, the first PCA component showed a strong sig-
nal that similarly diminished with time. A transverse MR image
of the right MCP joints of this patient is shown in Fig. 6(j),
which verifies an area with apparent severe synovitis at the
third right MCP joint. Due to its strength and temporal persist-
ence, the synovitis signal also shows up in the blue channel here
and the vein signal mostly in the red channel. There is very little
contribution in the green channel. Similar to the previous case,
the inflammation signal is well decoupled from the background
in the last time point, while fairly unclear in the raw fluorescence
image. The metric values for this case, as seen from Table 1, are
31 and 60 for, respectively, the raw and the blue channel of the
processed sequence.

The cases presented in Figs. 5 and 6 corresponded to carpal,
MCP, and PIP joints with moderate to severe synovitis. The pro-
posed method is also applied to joints with mild to moderate
synovitis. As described in Sec. 2.1, the joints with mild and
moderate synovitis correspond to MR-assigned synovitis scores
of 1 and 2, respectively.

The processing results for a 49-year-old female patient with
mild to moderate joint synovitis are presented in Fig. 7. The
processing results are shown for two ROIs—the carpus ROI
and the MCP ROI—as shown in Fig. 7(a). Transverse images
of the MCP region and image of the carpus, as shown in
Figs. 7(h) and 7(i) and Figs. 7(r) and 7(s), respectively, present
the MR findings for this patient with the red arrows depicting
synovitis. The patient suffers moderate synovitis in the third

right MCP and the left carpal joints and mild synovitis in the
second right MCP joint.

Figures 7(b) to 7(d) and Figs. 7(e) to 7(g) demonstrate the
raw fluorescence images and the processed images correspond-
ing to the time points 37, 52, and 99 for the MCP region. This
patient had mild synovitis in the third MCP joint and moderate
synovitis in the second, fourth, and fifth MCP joints. While
almost invisible and indistinguishable in the raw fluorescence
images, the synovitis signals are clearly seen in the marked loca-
tions in Figs. 7(f) and 7(g). Furthermore, the raw fluorescence
images for time points 37, 48, 72, and 99 and the corresponding
processed images for the carpus are shown in Figs. 7(j) to 7(m)
and Figs. 7(n) and 7(q), respectively. The signal from carpus
synovitis is almost invisible in the raw fluorescence images,
i.e., Figs. 7(j) to 7(m). However, the red channel shows a tran-
sient signal component in Fig. 7(q) inside the marked region,
which can be potentially attributed to the inflammation in the
carpus. The vein signal appears in the red and green channels
transiently in Figs. 7(n) to 7(q) and persistently in the blue chan-
nel across all four time points. As seen in Table 1, the localiza-
tion metric values for the second and third MCP joints reach
a maximum of, respectively, 54 and 48 in the red channel
and 0 in the raw sequence. The corresponding metric values
for the carpus are 32 and 0 for the red channel of the processed
sequence and the raw sequence, respectively. It should be men-
tioned that although the patient was diagnosed based on MR to
have moderate synovitis in both fourth and fifth left MCP joints,
both raw and processed sequences achieve very low (0 and 8,
respectively) metric values, which means the inflammation was
not detectable in either sequence.

3.3 Spatiotemporal Analysis Applied to Healthy
Hand Joint Images

Figure 8 demonstrates a control case of a 43-year-old male
patient with no inflammation in the right carpus. The raw fluo-
rescence and processed images are shown in Fig. 8 for the car-
pus ROI, delineated in Fig. 8(a) for a sample fluorescence image
at time point 100 s. Specifically, Figs. 8(b) to 8(d) depict the
cropped raw fluorescence images obtained at time points 36,
42, and 61 s postinjection, and Figs. 8(e) to 8(g) show the cor-
responding processed images consisting of the three PCA

Fig. 6 Case study of a 46-year-old female patient with severe synovitis in the third right MCP joint. (a) Sample fluorescence image at 100 s with MCP
ROI delineated by white line. (b) to (e) Raw fluorescence images corresponding to time points 35, 57, 67, and 91 s postinjection, respectively. (f) to
(i) Corresponding processed colored images at the same four time points. (j) A transverse contrast-enhanced T1-weighted fat-saturated MR image of the
MCP joints with the red arrow depicting the inflamed synovial lining characterized by higher relative accumulation of MR contrast agent. The three
principal components are mapped to red, green, and blue channels in (f) to (i). The signal in the blue channel signifies synovitis in the third MCP at all
four time points. The green and red channel signals can be attributed to background and vein signal, respectively.

Journal of Biomedical Optics 097004-9 September 2013 • Vol. 18(9)

Mohajerani et al.: Spatiotemporal analysis for indocyanine green-aided imaging of rheumatoid arthritis. . .



components mapped to red, green, and blue channels. Moreover,
Fig. 8(h) presents the T1-weighted MR findings for this patient
as a coronal image of the carpus. No significant contrast due to a
higher uptake of MR contrast agent can be observed in Fig. 8(h),
and a synovitis score of 0 was subsequently assigned by the radi-
ologist group (see Sec. 2.1 for explanation). The signal compo-
nents appearing in the three color channels, corresponding to the
three PCA components, of Figs. 8(b) to 8(d) are uncharacteristic
of carpus synovitis and are attributable to veins or artifacts. In

this case, neither the raw fluorescence sequence nor the proc-
essed color images show any signal components typical of car-
pus synovitis. As observed in Table 1, the metric values for both
processed and raw sequences are 0 for this case, that is, no local-
ized component in the joint ROI was detected.

The data processing and simulations presented here were
performed in 32 bit MATLAB on a Windows-based PC with
a 2:3 GHz Intel CPU and 3.25 GB of RAM. The mesh genera-
tion, FEM modeling, and forward problem solution lasted,

Fig. 7 Case study of a 49-year-old female patient with moderate synovitis in the left carpal and second MCP joints and mild synovitis in the third left
MCP joint. (a) Sample fluorescence image at 100 s with MCP and carpal ROIs delineated by white lines. (b) to (d) Raw fluorescence images cor-
responding to time points 37, 52, and 99 s, respectively. (e) to (g) Corresponding processed colored images at the same three time points in the
left MCP region. (h) to (i) transverse contrast-enhanced T1-weighted MR images of the MCP joints with the red arrows depicting the inflamed synovial
lining in second and thirdMCP joints. The signal in the red channel specified by the dashed ellipses in (f) and (g) can be attributed to synovitis. Images (j)
to (m) and (n) to (q) correspond to, respectively, raw and processed images of the carpus at time points 37, 48, 72, and 99 s. (r) and (s) show two
transverse MR images of the carpus. The red channel signal in (q) delineated by the dashed ellipse can be associated with the moderate carpus
synovitis.

Fig. 8 Control case study of a 43-year-old male patient with healthy right carpal joint. (a) Sample fluorescence image at 100 s with carpal ROI delin-
eated by white line. (b) to (d) Raw fluorescence images corresponding to time points 36, 42, and 61 s, respectively. (e) to (g) Corresponding processed
colored images at the same four time points. (h) A coronal contrast-enhanced T1-weighted MR image of the carpus joints. The signal appearing in the
red, blue, and green channels in (e) to (g) are due to veins or otherwise isolated spots, as in (e), and are uncharacteristic of carpus synovitis signal.
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respectively, 60, 127, and 460 s. The processing of a given data-
set consisting of 360 images took 110 s for all of 30 hand
joints.

3.4 Spatiotemporal Analysis Applied to 450 Joints

The PCA-based processing method proposed in Sec. 2.2 was
applied to fluorescence image sequences obtained from a
group of 10 patients (7 females and 3 males, aged 51� 15)
and 5 healthy volunteers (4 females and 1 male, aged
24� 2). The patients and volunteers were selected, examined,
and imaged with contrast-enhanced MRI, and MR-based syno-
vitis scores of 0 to 3 (healthy to severe) were assigned to each of
the 450 joints, as explained in Sec. 2.1. The distribution of syn-
ovitis severity among different joint groups (carpal, MCP, and
interphalangeal) are shown in Table 2. For each of the 450 joints,
the localization metric was calculated for both the raw sequence
and the processed sequences, as defined in Sec. 2.4. As a
reminder, the metric has values in the range of 0 to 100,
where a higher metric value indicates presence of a signal com-
ponent in the corresponding sequence localized around the
respective joint. Figure 9 presents a box-and-whisker plot of
metric values for all joints grouped according to synovitis
severity for both raw and processed sequences.

As the localization metric ranges between 0 and 100, a
threshold can be applied to the localization metric to make a
decision about synovitis severity of a given joint. For instance,
given a threshold r, the joints with localization metric values
larger than r can be classified as arthritic (consisting of all
three levels of mild, moderate, and severe synovitis) and joints
with metric values smaller than r can be classified as healthy.
For a classifier defined as such and for a threshold value r,
sensitivity and specificity can then be determined based on
MR synovitis scores as the gold standard. Performing this
analysis for all possible threshold values results in the receiver
operating characteristic (ROC) curve, depicting sensitivity v
ersus sensitivity ¼ 1 − specificity.62 The corresponding ROC
curves are presented in Fig. 10 for both raw (blue solid and dot-
ted curves) as well as processed (red solid and dotted curves).
The solid ROC curves denote sensitivity versus specificity when
the threshold is applied to the metric to make a decision between
“healthy” and “mild, moderate, or severe” synovitis, denoted
here as classification I. The dotted ROC curves present sensi-
tivity versus specificity when the decision is made between
“healthy or mild synovitis” and “moderate or severe synovitis,”
denoted here as classification II.

Table 2 Distribution of synovitis severity among the 450 hand joints of 10 patients and 5 healthy volunteers.

Healthy
Mild inflammation
(MR score of 1)

Moderate inflammation
(MR score of 2)

Severe inflammation
(MR score of 3)

Carpal joints 12 11 5 2

Metacarpophalangeal joints 59 73 17 1

Interphalangeal joints 235 28 6 1

Fig. 9 Box plot of localization metric values assigned to raw and proc-
essed sequences for individual 450 joints of 10 patients and 5 healthy
volunteers. The joints are grouped according to the severity of synovitis,
where the left, blue boxes in each of the four groups correspond to proc-
essed sequences and the right boxes to raw sequences. Outliers are
denoted by red points, the red line segment indicates the median,
and box lower and upper edges are 25th and 75th percentile. In groups
“healthy,” “mild,” “moderate,” and “severe,” there were 306, 112, 28,
and 4 joints, respectively.

Fig. 10 Receiver operating characteristic (ROC) curves for localization
metric values assigned to raw (blue curves) and processed (red curves)
sequences for 450 joints of 10 patients and 5 healthy volunteers. The
solid and dotted curves show classification performance for differenti-
ating, respectively, between healthy and mild, moderate, or severe
synovitis, denoted as classification I, and between healthy or mild syn-
ovitis and moderate and severe synovitis, denoted as classification II.
The green dotted line represents random classification line of
(sensitivity ¼ 1 − specificity).
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4 Discussion
Fluorescence images from RA patients and a healthy volunteer
were analyzed for their intensity and their spatiotemporal char-
acteristics also against MR images. It was found that PCA
applied in time-series fluorescence images of the hand captured
following intravenous ICG administration can decouple fluores-
cence signals associated with inflammation from the back-
ground and vein interference signals. Case studies were
presented for eight carpal, MCP, and interphalangeal joints
from four patients with varying degrees of synovitis (healthy
to severe) presented in Secs. 3.2 and 3.3. Two patients had
severe synovitis (MR-assigned synovitis score of 3) and one
had mild to moderate synovitis (respective MR scores of 1
and 2) in carpal and MCP joints. One of the patients had mod-
erate and mild synovitis in the second and fourth PIP joints of
the left hand. One patient with healthy carpal joint, as verified
by MRI, was shown to visually establish a control case study.
The processing result along with the corresponding transverse or
coronal images of contrast-enhanced T1-weighted MR images
are presented in Figs. 5 to 8.

These findings were corroborated with numerical simula-
tions based on a numerical phantom built using a segmented
MR scan and were used to better understand the clinical find-
ings. As expected, the contrast between the target and back-
ground fluorescence quickly falls with increasing depth and
uptake ratio, as shown in Fig. 4(a). This reduces the detection
sensitivity as was also observed by the localization metric sur-
face in Fig. 4(b), which suggests lack of a localized signal com-
ponent distinguishable as desirable fluorescence in the raw
fluorescence measurements. It was found that a localized signal
component appears in the joint region in at least one of the PCA
components for lower depth and uptake ratios than in the origi-
nal images, as shown in the dotted surface in Fig. 4(b), in a wider
area in depth-uptake plane.

The impact of physical factors on the fluorescence signal was
studied in Sec. 3.1. Observations of MR images of different
patients revealed a synovial lining depth of 2 to 5 mm, 3 to
8 mm, and 7 to 16 mm for interphalangeal, MCP, and carpal
joints, respectively. It can be seen from Fig. 8(a) that, even
for relatively large uptake ratios, it is difficult to detect the desir-
able signal at locations deeper than ∼5 mm due to the low rel-
ative contrast. These observations suggest low detectability of
the targeted fluorescence signal in the raw fluorescence images
for joints located deeper than 5 mm under skin, which can apply
to some MCP and carpal joints. However, this conclusion does
not necessarily mean that the fluorescence emanating from the
inflammation of such joints cannot be distinguished in the raw
images. The reason is that the numerical phantom presented in
Sec. 2.3 does not render a full description of the in vivo situation.
Factors such as heterogeneous and time-variant background
fluorescence or nonuniform optical properties in tissue can
degrade or improve the signal quality in comparison to predic-
tions by the numerical model.

As noted, a low value of localization metric suggests pres-
ence of a signal component localized to the joint region
and hence potentially attributable to the inflammation signal.
While a higher metric value generally suggests improved per-
formance in terms of signal visibility, the metric value cannot
be interpreted as an indicator of the statistical sensitivity or
specificity values. This observation means that the manifestation
of a localized signal component in the joint regions, attributable
the synovitis signal, has been more frequent in the processed

sequences. However, the proposed method has a higher locali-
zation metric value for the healthy interphalangeal joints. This
can be attributed to the dense dorsal vein network in the fingers,
a fact that contributes to false positives and lowers sensitivity for
the interphalangeal joints.

Corresponding analysis of the clinical data demonstrated that
the contrast between synovial tissue and background tissue gen-
erally scaled with the severity of the disease; however, it dimin-
ished with time due to background nonspecific fluorescence
signals. Subcutaneous dorsal veins demonstrated particularly
high nonspecific signals; however, the entire tissue nonspecifi-
cally uptakes ICG and offers strong background signals. This
reduction of contrast may lead to false positives or negatives,
thus adversely affecting sensitivity. Similarly, fluorescence
obtained from ICG circulating in the relatively dense subcuta-
neous venous network in interphalangeal joints further compli-
cates the reading of raw images and may lead to reduced
sensitivity and specificity.

Conversely, the PCA analysis revealed components linked to
time-dependencies of the ICG circulation. Three components
were identified to reveal clinically relevant time relationships.
In particular, the first component demonstrated congruence
with the appearance of increased fluorescence signals in joints.
In other words, the first PCA component (i.e., the blue channel
in the processed images) demonstrates consistent fluorescence
signal increase in given joints. This was the case for fluores-
cence signals emanating from joints with moderate to severe
synovitis demonstrated in Figs. 5 and 6. Signals from veins
are also mapped to the first component for the same reason
in Fig. 7. The second and third PCA components mapped,
respectively, to the red and green channels in the processed
images generally represent signal of transient nature. This tem-
porally variable signal can arise from several sources. The fluo-
rescence emanating from deep-seated lesions such as synovial
lining, due to transitory accumulation of ICG, or the fluores-
cence carried quickly through veins can contribute to the second
and third components. The transient, yet strong, signal emanat-
ing from dense vascular of fingertips also often contributes
to red and green components, as seen in Figs. 5(n) to 5(q).
Since the third component, represented by the green channel,
corresponds to the lowest singular value and, hence, signal
with lowest temporal correlation, it is generally expected to re-
present highly transient signals. The transient nature and, there-
fore, the level of information in the three PCA components are
more pronounced at early time points, e.g., 20 to 100 s, after the
injection. At later time points, such as after 120 s postinjection,
the signal is mainly composed of the first PCA component and
there is very little contribution from the second and third com-
ponents, as the ICG has reached a relatively stable distribution
in the hands and the signal experiences merely an exponen-
tial decay.

As explained, the temporal characteristics of the fluorescence
signal in a given location in tissue impact the association of the
fluorescence to a given PCA component. These temporal char-
acteristics are mainly determined by the distribution of the ICG
by the blood, as explained in Sec. 3.1, and other physiological
factors such as tissue capillary permeability. However, it is not
possible to attribute the fluorescence due to ICG presence in a
certain tissue to a given PCA component.

The performance of the proposed approach is also limited by
the physical factors of depth and uptake ratio. As with the raw
fluorescence images, the interpretation of the processing results
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is user-dependent. Characterization of certain signal compo-
nents localized around the joint areas should be performed care-
fully so as not to lower diagnostic specificity. Furthermore, the
presence of a strong transient or persistent signal component in a
given joint might deteriorate the decoupling of the targeted fluo-
rescence signals emanating from other joints. An example can
be seen in the case study demonstrated in Fig. 7. The patient was
diagnosed based on the MR images with moderate synovitis in
the fourth and fifth left MCP joints. However, neither the raw
data nor the processed sequence can indicate synovitis in these
joints. This might be due to poor accumulation of ICG in the
joint linings or interference from background tissue.

In Sec. 3.4, we presented imaging results for 450 joints of 5
healthy volunteers and 10 patients. The box plot demonstration
of the localization metrics calculated for raw and processed
sequences was presented in Fig. 9. As seen, the metric values
calculated for the processed sequences generally correlate with
severity of synovitis and are much higher than the corresponding
values calculated using raw data for arthritis joints. The metric
values for processed data from healthy joints are also lower for
healthy joints than arthritic joints.

A more rigorous performance analysis was achieved using
the ROC curves presented in Fig. 10. It can be seen that
when differentiating between “healthy” and “mild, moderate,
or severe” synovitis, denoted as classification I and correspond-
ing to solid ROC curves in Fig. 10, classification using raw data
is relatively close to random line (specificity ¼ 1 − sensitivity).
This is due to the fact that the target inflammation signal is
almost always corrupted by interference from veins and other
tissues, hence complicating observation of a localized signal
component in the joint regions. The situation is better when dif-
ferentiating between “healthy or mild synovitis” and “moderate
or severe synovitis,” denoted as classification II, using raw data
(corresponding to the dotted blue curves in Fig. 10). In fact for
classification II, a specificity of 90% and a sensitivity of 44%
can be achieved using the raw data. This is in accordance with
the results of the clinical study presented in Ref. 41, which
reports relatively low sensitivity (∼39%) for a relatively high
specificity (∼85%) when differentiating between healthy and
inflamed joints (classification I). It should be noted for specific-
ity values >90%, the sensitivity values when using the raw data
are slightly larger than when using the processed data, in both
classifications I and II, though in all cases sensitivity is <45%.
This is due to the fact that for healthy joints, more localized
components have been detected in processed sequences than
in raw data, as also seen in Fig. 9.

The area under the curve (AUC) values are found for the
ROC curves presented in Fig. 10. For a given classifier ranking
positive samples higher than negative ones, the AUC is equal to
the probability of ranking a random positive sample higher than
a random negative sample and is, hence, a measure of a classi-
fier’s quality.63 For classification I, AUC values of 0.57 and 0.67
were found when using, respectively, raw (dotted blue ROC
curve) and processed (dotted red ROC curve) sequences. For
classification II, AUC values of 0.69 and 0.83 were calculated
when using, respectively, raw data (solid blue ROC curve) and
processed data (solid red ROC curve). For the current dataset
and specificity >60%, the sensitivity achievable for any thresh-
old when using the raw data is limited to 25 and 50% for clas-
sifications I and II, respectively. However, when using the
processed data, the sensitivity is limited to 65 and 94% for
classifications I and II, respectively. These observations

suggest using the proposed PCA-based method results in
superior clinical performance than relying on raw data for
diagnosis.

It is important to note that the fluorescence image sequences
are in practice analyzed and interpreted for diagnosis by spe-
cially trained human readers.26,41 The specificity and sensitivity
values inferred from ROC curves of Fig. 10 serve to compare
diagnostic value between raw and processed data. While the
results demonstrate performance improvement when using
the proposed method, the sensitivity and specificity of diagnosis
performed by an expert human reader is expected to be higher
than the values inferable from the ROC curves presented here.
Furthermore, a cross-examination of both raw and processed
sequences is likely to improve performance over using either
sequence alone. A more complete clinical assessment of the pro-
posed method requires examination of processed sequences
by trained human readers for a clinically significant group of
patients and is a subject of ongoing research.

In conclusion, the proposed method has the capability of dif-
ferentiating between signal components that have different tem-
poral behavior. This capability potentially enables separation of
fluorescence emanating from tissue parts with different temporal
and spatial profiles of ICG uptake. The interference from fluo-
rescence in veins and the general tissue can be particularly miti-
gated, rendering the time-series analysis potentially as highly
relevant to improve detection of inflamed joints compared to
observing intensity images. The resulting color image sequen-
ces, when examined along with the original raw dataset, can
help better localize the signal components due to the synovitis,
hence improving diagnostic performance as shown by analysis
of results of processing imaging data for 450 joints. The results
of this work can also be employed to design next-generation
optical systems and methods for imaging and detection of
joint inflammation using exogenous fluorescence. Under-
standing the impact of physical and physiological factors on
the detectability of the desirable fluorescence signal and the pro-
posed numerical model can be employed to optimize the hand
and finger posture during imaging. Moreover, the FEM-based
time-series simulation framework can be employed to analyze
the performance of other postprocessing approaches.
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