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Abstract. We developed a Monte Carlo-based simulator of optical coherence tomography (OCT) imaging for
turbid media with arbitrary spatial distributions. This simulator allows computation of both Class I diffusive reflec-
tance due to ballistic and quasiballistic scattered photons and Class II diffusive reflectance due to multiple scat-
tered photons. It was implemented using a tetrahedron-based mesh and importance sampling to significantly
reduce computational time. Our simulation results were verified by comparing them with results from two pre-
viously validated OCT simulators for multilayered media. We present simulation results for OCT imaging of a
sphere inside a background slab, which would not have been possible with earlier simulators. We also discuss
three important aspects of our simulator: (1) resolution, (2) accuracy, and (3) computation time. Our simulator
could be used to study important OCT phenomena and to design OCT systems with improved performance.©The
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1 Introduction
Optical coherence tomography (OCT) is a rapidly growing non-
invasive imaging technique with an increasing number of bio-
medical applications.1–6 The study of physical processes
underlying OCT imaging of different objects is mainly due to
the experimental studies. Therefore, the development of a gen-
eral and fast OCT imaging simulator would greatly facilitate
these studies. This advanced simulator would also be a powerful
tool to design novel OCT systems with improved performance,
e.g., increased depth of imaging. Earlier, we developed fast
Monte Carlo methods to compute OCT signals from a turbid
multilayered object.7,8 In this article, we generalize our previous
work to include objects with arbitrary spatial distributions.

Many available OCT simulators7–12 are based on the Monte
Carlo simulation of light transport in multilayered turbid media
(MCML) that was developed by Wang et al.13 MCML is still a
popular simulator. However, its main drawback is its restriction
to multilayered media.

A simulation of OCT imaging of multilayered objects whose
layer boundaries are given by different mathematical functions,
instead of planes, was implemented by Kirillin et al.14 This
approach to modeling nonplanar multilayered media has been
used to simulate OCT imaging of paper,14 human enamel,15

and polarization-sensitive OCT images of human skin.16,17

To develop a simulator of OCT imaging of arbitrary-shaped
media, we need to first consider available simulation methods of
light transport in such media. Among the first efforts to model
arbitrary-shaped media was the cubic voxelization method intro-
duced by Pferer et al.18 In this method, the medium is modeled

as a set of voxels with different optical properties.19–21 Another
method to model the shape of turbid media uses standard geo-
metrical building blocks such as ellipsoids, cylinders, and poly-
hedrons.22 A more recent approach to modeling turbid media is
based on a surface mesh method proposed by Cote and Vitkin23

and Margallo-Balbas and French.24 In this approach, the surface
of every homogeneous region of the turbid media is represented
by a surface mesh. But a high-computational cost is involved in
locating the intersection of the path of a photon with its enclos-
ing surface mesh. Therefore, Fang proposed a Plücker coordi-
nate system-based, mesh-based Monte Carlo method for fast
computation of the location of such intersections.25

To locate the intersection of the path of a photon with the
enclosing surface mesh, one needs to find intersections with
all planes comprising the surface mesh. If the enclosing surface
mesh is convex, then finding such intersections would be con-
siderably simpler. Since a tetrahedron volume is convex with
minimum number of planes, its usage as a building block for
a surface mesh minimizes the computational cost for simulation
of light in arbitrary-shaped media. A Monte Carlo simulator of
light transport in arbitrary-shaped media modeled with tetrahe-
drons is tetrahedron-based inhomogeneous Monte Carlo optical
simulator (TIM-OS) that was developed by Shen and Wang.26

Our OCT simulator is based on the TIM-OS code. A compre-
hensive review of methods to simulate light transport in turbid
media can be found in Zhu and Liu.27

2 Photon Tracing in Turbid Media with
Tetrahedron-Based Mesh

In TIM-OS, each arbitrary-shaped region defined by optical
parameters, scattering coefficient μs, absorption coefficient
μa, refractive index n, and anisotropy factor g, is divided into
a number of tetrahedrons. A large number of successive pencil
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photon packets are launched into the medium from the origin of
a rectangular coordinate system (x; y; z), where the z-axis is nor-
mal to the surface of the medium. The initial weights of these
photon packets are unity, W ¼ 1. A photon packet will travel a
distance equal to the mean free path after which it undergoes
absorption and scattering. The photon packet rates of absorption
and scattering depend on the absorption and scattering coeffi-
cients of the regions where this packet is traveling, respectively.
If a traveling photon packet enters a region with a different
refractive index, then it will undergo both specular reflection
and refraction at the boundary between the two regions.
Therefore, at each step, we have to check if the packet path
and the enclosing tetrahedron intersect. This process is the
most computationally demanding part of the simulation.

Let the photon packet position be p̂, its direction be û, and its
mean free-path length be s. Therefore, any point p̂ 0 on the
packet path satisfies p̂

0 ¼ p̂þ ût, where t ∈ ½0; s�. Let
n̂:x̂þ d ¼ 0 be the equation of any plane of the enclosing tetra-
hedron, where x̂ is any point on this plane, n̂ is its inward normal
unit vector, and d is its minimum distance from the origin. If the
photon packet path intersects any of the enclosing tetrahedron
facets, then the distance from the current packet position to the
plane will be given by

t ¼ −
n̂:p̂þ d
n̂:û

: (1)

The minimum positive-valued t associated with intersections
with each tetrahedron plane indicates the point of intersection of
the photon packet path and the enclosing tetrahedron.

3 Photon Tracing in Turbid Media with
Tetrahedron-Based Mesh

Time-domain OCT signals consist of three types of photons col-
lected by the probe: (1) ballistic photons that are single scat-
tered, (2) quasiballistic photons that are multiple scattered
within the coherence length of the optical source, and (3) multi-
ple scattered photons beyond the coherence length of the optical
source. Ballistic and quasiballistic photons contribute to Class I
diffusive reflectance. The multiple scattered photons beyond the
coherence length contribute to Class II diffusive reflectance. It
has been shown that the Class II diffusive reflectance is a fun-
damental limit for OCT imaging depth.28,29

In our simulator, we used a fiber probe with radius dmax and
acceptance angle θmax. To calculate the Class I diffuse reflec-
tance, we define a spatial–temporal indicator function as

I1ðz; iÞ

¼
�
1; lc> jΔsi−2zmaxj;ri <dmax;θz;i <θmax; jΔsi−2zj< lc
0; otherwise

;

(2)

where lc is the coherence length of the source, ri is the distance
of the i’th-reflected photon packet from the probe, Δsi is the
optical path of i’th photon packet, θz;i is the angle of the photon
packet direction with the z-axis, and zmax is the maximum depth
reached by the photon packet. Similarly, we can define I2 for
Class II diffuse reflectance as

I2ðz; iÞ

¼
�
l; lc < jΔsi−2zmaxj;ri < dmax;θz;i < θmax; jΔsi−2zj< lc
0; otherwise

:

(3)

We calculate Class I diffusive reflectance, R1ðzÞ, and Class II
diffusive reflectance, R2ðzÞ, from a particular depth, z, as the
weighted mean of these indicator functions

R1;2ðzÞ ¼
1

N

XN
i¼1

I1;2ðz; iÞLðiÞWðiÞ: (4)

An estimate of the variance of these estimations could be cal-
culated as follows:

σ21;2ðzÞ ¼
1

NðN − 1Þ
XN
i¼1

½I1;2ðz; iÞLðiÞWðiÞ − R1;2ðzÞ�2; (5)

where N is the number of simulated photon packets, and LðiÞ is
a likelihood ratio due to an importance sampling biasing scheme
defined in the next section.

4 Importance Sampling for Reducing
Computational Time of OCT Signals

Importance sampling is a technique used to reduce the variance
of results obtained by Monte Carlo methods using the same
number of statistical samples. Therefore, importance sampling
could be used to bias a Monte Carlo method to reduce the com-
putational cost of a result with a required accuracy. Light propa-
gating in turbid tissue is usually scattered in the forward
direction, i.e., typical turbid tissue has a high-anisotropy factor
and the probability of backscattered events is very small.
Therefore, a very large number of photon packet simulations
are required to estimate OCT signals in a standard, i.e., without
importance sampling, Monte Carlo simulation. By properly
biasing the scattering direction, we could considerably increase
the number of such backscattered events.

A photon packet in turbid tissue will scatter according to the
Henyey–Greenstein phase function,

fHGðcos θsÞ ¼
1 − g2

2ð1þ g2 − 2g cos θsÞ3∕2
; (6)

where g is the anisotropy factor, and θs is the longitudinal angle
between the photon packet propagation direction
û ¼ ðux; uy; uzÞ prior to the scattering and its new scattered
direction û 0. After sampling cos θs from the above distribution,
we rotate the scattering direction û

0
by an azimuthal angle φ

sampled from uniform distribution from 0 to 2π.
The importance sampling technique used in this article is

similar to the one described in Lima et al.8 If a photon packet
is traveling away from the probe (uz > 0), then we bias its scat-
tering direction toward the actual position of the probe,v̂, to
increase the probability of its detection. For the first biased scat-
tering event, we use the following probability density function to
sample the biased longitudinal scattering angle θB:
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fBðcosθsÞ¼
(�

1− 1−affiffiffiffiffiffiffiffi
a2þ1

p
�
−1 að1−aÞ

ð1þa2−2a cosθBÞ3∕2 ; cosθB< ½0;1�
0; otherwise

;

(7)

where a is the given bias coefficient in the range [0,1].
To maintain unbiased estimates of diffusive reflectance, we

assign a compensating likelihood value to this biased scattering
event,

Lðcos θBÞ¼
fHGðcos θsÞ
fBðcos θBÞ

¼ 1−g2

2að1−aÞ

×
�
1−

1−affiffiffiffiffiffiffiffiffiffiffiffi
a2þ1

p
��

1þa2−2a cos θB
1þg2−2g cos θs

�
3∕2

: (8)

After the first biased scattering, the photon packet can
undergo unbiased scatterings with probability p or other biased
scattering with probability1–p. For biased scattering, we sample
the longitudinal scattering angle from a Henyey–Greenstein
phase function that is oriented toward the actual position of
the probe and with anisotropy factor a. For both biased and
unbiased scattering events, we use the following likelihood
function:

Lðcos θBÞ ¼
fHGðcos θsÞ

pfBðcos θBÞ þ ð1 − pÞfHGðcos θsÞ
: (9)

After the tracing of a photon packet ends, due to its collection
by the probe, its exit from the medium or being absorbed by it,
the total likelihood of the photon packet is calculated. This total
likelihood L is the product of all likelihood values assigned to all
scattering events undergone by the photon packet. If L < 1,
another packet with initial likelihood value of L 0 ¼ 1 − L
will be launched from the previous first scattering event position
with a direction sampled from the unbiased Henyey–Greenstein
phase function.8

5 Implementation and Validation of Our OCT
Simulator

We implemented our OCT simulator in American National
Standards Institute (ANSI)-C and used a random number gen-
erator included in the GNU scientific library (GSL).30 We used
an optical fiber probe with radius 1 μm, acceptance angle 5 deg,
and an optical source with coherence length lc ¼ 0.015 mm. We
also implemented the importance sampling scheme described
above with bias coefficient a ¼ 0.925 and additional bias prob-
ability p ¼ 0.5, respectively. We ran our simulations on a 2 GHz
Intel Core i7 CPU with 4 GB of RAM. Each A-scan simulation
used 107 photon packets. Our simulation results were validated
by comparing them with results obtained from the previously
verified OCT simulators for multilayered media by Yao and
Wang9 and Lima et al.8 Since the simulator by Yao and
Wang9 does not use the advanced importance sampling method
in Sec. 4, 109 photon packets were used to obtain results with
comparable accuracy.

5.1 Simulation of OCT Signal from a Multilayered
Object

As a multilayered object, we used a medium consisting of four
layers with optical properties, as shown in Table 1, similar to
objects used in Refs. 7–9. In our novel tetrahedron-based

simulator, this multilayered object was divided into 9600 tetra-
hedrons that resulted in 2205 vertices.

Figures 1 and 2 show the A-scans obtained from our object
using two previously validated OCT simulators for multilayered
objects and our novel tetrahedron-based OCT simulator for arbi-
trary-shaped objects. As seen in Figs. 1 and 2, the results from
the three simulators are in excellent agreement, which validates
the results from our new simulator. One would expect the com-
putational cost to simulate OCT signals from a multilayered
object using a tetrahedron-based simulator would be higher
than using a layer-based one. The layer-based simulator by
Lima et al.8 took 24 min to calculate Class I and Class II dif-
fusive reflectances for a single A-scan, whereas our new tetra-
hedron-based simulator took 43 min.

5.2 Simulation of OCT Signal from a Nonlayered
Object

To demonstrate the ability of our new OCT simulator to simulate
signals from nonlayered objects, we simulate OCT imaging of a
sphere inside a homogeneous slab. As shown in Fig. 3, we
placed a sphere of radius 0.1 mm, at depth 0.2 mm, inside a
slab with 3 × 3 mm lateral dimensions and 1 mm axial dimen-
sion. The optical properties of this nonlayered object are shown
in Table 2.

We used the mesh generator NETGEN31 to generate 4437
tetrahedrons and 800 vertices to represent our nonlayered object.
To obtain an OCT B-scan, we simulated 512 equidistant A-scans
along the x-axis from x ¼ –0.15 to x ¼ 0.15 mm. A depiction
of these tetrahedrons and the imaged cross-section of the object
are shown in Fig. 4. The simulation of a complete B-scan took
approximately 360 h on our computer.

Figures 5(a) and 5(b) show the simulated B-scan OCT
images from our nonlayered object, each comprised 512 A-
scans along the x-axis. Figure 5(a) represents the Class I
OCT signal resulting from single-scattered photons, while
Fig. 5(b) represents the Class II OCT signal resulting from
multiple-scattered photons. We note that the Class I diffusive
reflectance-based image in Fig. 5(a) closely resembles the
object, a sphere inside a slab. Also, as expected, being an
image based on single-scattered light, its intensity is consider-
ably reduced as the imaging depth increases. From Fig. 5(b), we
note that, as expected, the intensity of the Class II diffusive
reflectance increases with depth, particularly inside the sphere,
but as the imaging depth increases, it gets weaker due to absorp-
tion. All these results are as one would expect from a physical
OCT, which further validates our new simulator.

Table 1 Optical parameters of the multilayered object used to
validate our new tetrahedron-based OCT simulator.

Layers
Height
(cm)

Scattering
coefficient
μsðcm−1Þ

Absorption
coefficient
μaðcm−1Þ

Anisotropy
factor g

Refractive
index n

1 0.0200 60 1.5 0.9 1.0

2 0.0015 120 3 0.9 1.0

3 0.0345 60 1.5 0.9 1.0

4 0.0440 120 3 0.9 1.0
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5.3 Resolution, Accuracy, and Computation Time of
Our OCT Simulator

In the following subsections, we discuss three important aspects
of our simulator: (1) resolution, (2) accuracy, and (3) computa-
tion time.

5.3.1 Simulation resolution

The lateral resolution of physical OCT systems depends on the
used wavelength and numerical aperture of the imaging optics.

Fig. 1 A-scan of Class I diffusive reflectance from the multilayered object above. The green and blue
lines are results from the previously validated layered-based OCT simulators by Yao and Wang9 and
Lima et al.,8 respectively. The red line represents the Class I signal of our novel tetrahedron-based
OCT simulator.

Fig. 2 A-scan of Class II diffusive reflectance from the multilayered object above. The green and blue
lines are results from the previously validated layered based OCT simulators by Yao and Wang9 and
Lima et al.8 respectively. The red line represents the Class II signal of our novel tetrahedron-based
OCT simulator.

Fig. 3 Spatial structure of our nonlayered object.

Table 2 Optical parameters of the nonlayered object used in our new
tetrahedron-based OCT simulator.

Medium

Absorption
coefficient
μaðcm−1Þ

Scattering
coefficient
μsðcm−1Þ

Anisotropy
factor g

Refractive
index n

Slab 1.5 60 0.9 1

Sphere 3 120 0.9 1
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Our simulated lateral resolution of a B-scan is, however, equal to
the distance between our simulated A-scans.

Figures 6(a) and 6(b) show the simulated Class I and Class II
B-scans of our nonlayered object using 75 equidistant A-scans,
along the x-axis from x ¼ –0.15 to x ¼ 0.15 mm. These

B-scans have a lower lateral-simulated resolution than the B-
scans, comprised 512 A-scans, as shown in Fig. 5. As shown
in Fig. 6, the sphere is still distinguishable despite the lower lat-
eral simulation resolution. As the computation time to simulate a
B-scan is linearly related to the number of simulated A-scans,
the results in Fig. 6 were obtained in approximately 53 h.
Therefore, the lateral-simulated resolution, i.e., the number of
A-scans to simulate, should be chosen depending on the object
of interest.

The axial resolution of physical OCT systems is approxi-
mately equal to the coherence length of the optical source.
Our simulated axial resolution of an A-scan is, however, deter-
mined according to the Eq. (3). If a collected photon has traveled
an optical distance Δsi and has reached a maximum depth, zmax,
satisfies the conditions

lc > jΔsi − 2zmaxj; (10)

or

lc < jΔsi − 2zmaxj; (11)

Fig. 4 A depiction of the tetrahedrons representing our nonlayered
object. The solid black lines shown in the imaged cross-section (B-
scan) depict intersections of these tetrahedrons with the imaging
cross-section.

Fig. 5 Simulated (a) Class I and (b) Class II reflectance-based B-scan OCT image of our nonlayered
object.

Fig. 6 Simulated (a) Class I and (b) Class II reflectance-based B-scan OCT images of our nonlayered
object using 75 A-scans.
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we classify it as Class I or Class II photon, respectively. Next,
we assign a depth, z, to this photon which satisfies the following
inequality according to Eq. (3):

Δsi − lc
2

≤ z ≤
Δsi þ lc

2
: (12)

Normally, one would assign a single A-scan pixel to re-
present this depth range. Our simulator, however, allows over

sampling of simulation depth by dividing the depth range in
Eq. (12) into a number of subresolution depth ranges and
then assigning an additional pixel to each of these subresolution
depth ranges. Therefore, our simulated axial resolution depends
on the coherence length of the source, similar to physical OCT
systems, and on the defined number of subresolution depth
ranges, i.e., the required oversampling ratio. We used an over-
sampling ratio of 6 in all our simulations above. As our simu-
lation computation time is dominated by the number of

Fig. 7 (a) Class I signal estimates and their confidence intervals, (b) signal-to-computational-noise ratios
of Class I signal estimates, and (c) signal-to-computational-noise of Class I signal estimates using impor-
tance sampling with 107 and 105 photons and without importance sampling using 107 photons.
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simulated photons, rather than the coherence length or oversam-
pling ratio, any simulated axial resolution value will have a neg-
ligible impact on computation time.

5.3.2 Simulation accuracy

Another very important aspect of our simulator is the accuracy
of its results. The accuracy of Monte Carlo simulations is gen-
erally quantified by the variance of obtained results. In Fig. 7(a),
we show estimates using different number of photons of Class I
signals of an A-scan of our nonlayered object, in addition to
confidence intervals (CIs) of these estimates. The CI of Class
I and Class II signal estimates CI1;2ðzÞ, is defined as

CI1;2ðzÞ ≡ ½R1;2ðzÞ − σ1;2ðzÞ; R1;2ðzÞ þ σ1;2ðzÞ�: (13)

We note from Fig. 7(a) that as the depth increases, the CIs
increase relative to the signal values. Therefore, as reported by
Yao and Wang,9 the accuracy of our signal estimates relative to
signal values decreases with depth.

Another measure of the accuracy of our estimated Class I and
Class II signals is the signal-to-computational-noise-ratio, which
is given by

SNR1;2ðzÞ ¼
R1;2ðzÞ
σ1;2ðzÞ

: (14)

In Fig. 7(b), we show signal-to-computational-noise-ratios,
SNR1ðzÞ, of Class I signal estimates, using different number
of photons, of an A-scan (x ¼ 0) of our sphere inside a slab
object.

We note from Fig. 7(b) that, as expected in Monte Carlo sim-
ulations, the signal-to-computational-noise-ratio is proportional
to the square root of the number of simulated photons, N, i.e.,

SNR1;2ðzÞ ∝
ffiffiffiffi
N

p
: (15)

We also note that our simulation computation time is linearly
proportional to N.

To illustrate the effect of our importance sampling technique,
in Fig 7(c), we compare the signal-to-computational-noise-ratio
of three A-scans (Class I) at x ¼ 0 of our sphere inside a slab
object. Two of these A-scans were obtained with our importance
sampling technique using 107 and 105 photons. The third A-
scan was obtained using 107 photons but without using impor-
tance sampling. As seen in Fig 7(c), our importance sampling
technique has improved the accuracy of the simulation by
approximately 100 times.

5.3.3 Simulation computation time

Different approaches could be used to reduce the computation
time of our simulations. First, we could simulate a smaller num-
ber of A-scans, which would result in reduction of lateral res-
olution in the simulated B-scan images. Second, we could use a
smaller number of launched photons per A-scan, which would
result in simulation results with lower accuracy. Third, because
the inherently parallel nature of Monte Carlo simulations, we
could reduce our simulation time by implementing our simulator
on graphics processor units (GPUs). Simulations of light trans-
portation in turbid media32–34 and of OCT in multilayered
media35 have been implemented on GPUs using the compute
unified device architecture (CUDA) programming language.

In addition to parallel implementation, a hardware implementa-
tion on field-programmable gate array (FPGA) of simulation of
light transport in turbid media has been shown to reduce com-
putation time.36 This FPGA-based approach could also be used
to reduce computation time of our simulator.

6 Conclusions
We developed a novel Monte Carlo-based simulator of OCT im-
aging for turbid media with arbitrary spatial distributions. This
simulator allows computation of both Class I and Class II dif-
fusive reflectance-based OCT images. It was implemented using
a tetrahedron-based mesh that allows modeling of an arbitrary-
shaped medium with a desired accuracy. This mesh also reduces
the computation cost required to obtain the intersection of a pho-
ton path with its enclosing tetrahedron. We used Monte Carlo
importance sampling to significantly increase the probability of
a photon reaching the optical detector, thereby reducing simu-
lation time.

Our simulation results were verified by comparing them to
results from two previously validated OCT simulators for multi-
layered media. We also presented simulation results for OCT
imaging of a sphere inside a background slab, which would
not have been possible with earlier simulators. We also dis-
cussed the resolution and accuracy of our simulator and sug-
gested different ways to reduce computation time. Our
simulator could be used to study important OCT phenomena
and to design novel OCT systems with improved performance.
As future work, we plan to implement our simulator on GPUs
using the CUDA programming language, as well as develop a
similar simulator for swept-source OCT systems.
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