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Abstract. Quantitative methods for noninvasive diagnosis of scars are a challenging issue in medicine. This
work aims to implement a texture analysis method for quantitatively discriminating abnormal scars from normal
scars based on second-harmonic generation (SHG) images. A local difference local binary pattern (LD-LBP)
operator combined with a wavelet transform was explored to extract diagnosis features from scar SHG images
that were related to the alteration in collagen morphology. Based on the quantitative parameters including the
homogeneity, directional and coarse features in SHG images, the scar collagen SHG images were classified into
normal or abnormal scars by a support vector machine classifier in a leave-one-out cross-validation procedure.
Our experiments and data analyses demonstrated apparent differences between normal and abnormal scars in
terms of their morphological structure of collagen. By comparing with gray level co-occurrence matrix, wavelet
transform, and combined basic local binary pattern and wavelet transform with respect to the accuracy and
receiver operating characteristic analysis, the method proposed herein was demonstrated to achieve higher
accuracy and more reliable classification of SHG images. This result indicated that the extracted texture features
with the proposed method were effective in the classification of scars. It could provide assistance for physicians
in the diagnostic process. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.1.016021]
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1 Introduction
Scars are areas of fibrosis that replace normal skin secondary to
traumatic or surgical injuries.1 Broadly, scars are divided into
two types: physiologic (normal) and pathologic (abnormal)
scars. Normal scars resulting from a balanced production and
degradation of collagen show no painful symptoms and no dys-
function.2 Abnormal scars, typically including hypertrophic
scars and keloids, are histopathologically characterized by
excessive deposition and the disordered arrangement of collagen
fibers,3 causing esthetical dissatisfaction and even turning
cancerous.4 For the variety of collagenous frameworks in scar
tissues, the morphological distinctions of collagen in normal
scars compared to abnormal scars can help to differentiate
types of scars.

Recently, due to many unique advantages such as reduced
photobleaching and photodamage as well as high resolution im-
aging deep into several hundred microns,5,6 second-harmonic
generation (SHG) microscopy has emerged as a potential

noninvasive tool for imaging collagen in scar tissues.7,8 Many
researches relied on SHG microscopy to describe collagen
organization using empirical observations that were linked to
a pathological condition.9,10 And also, several SHG studies
have proposed methodologies for quantifying characteristics
of collagen.11–13 Texture analysis can provide a novel way of
achieving these ends. A gray level co-occurrence matrix
(GLCM) has been already used in the texture analysis of SHG
images,14,15 but with the limitation of heavy computation.

The local binary pattern (LBP) introduced by Ojala et al.16 is
a widely used texture descriptor because of its low computa-
tional burden and rotation invariance.17 To overcome the draw-
backs of analyzing the local grayscale difference, an improved
approach referred to as local difference local binary pattern (LD-
LBP), was proposed herein for evaluating the homogeneity
feature in SHG images to distinguish collagen distribution in
scars. Meanwhile, wavelet transform can capture the directional
and coarse features in scar SHG images that quantitatively deter-
mine the collagen orientation and coarseness. In this study, we
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combined an LD-LBP operator with a wavelet transform for the
texture analysis of scar collagen SHG images. The homogeneity,
directional and coarse features of SHG images that are associ-
ated with the collagen morphology in scar tissues were
simultaneously extracted to differentiate abnormal scars from
normal scars. To deal with the classification in the situation
of a small example scale, a support vector machine (SVM)
classifier was applied using a leave-one-out cross-validation
(LOOCV) procedure. In addition, comparisons with other tex-
ture analysis methods such as GLCM, wavelet transform, and
basic LBP combined with wavelet transform were performed
to verify the proposed method.

2 Materials and Methods

2.1 Tissue Samples

The ex vivo matured human skin scar specimens (30 normal
and 30 abnormal scars) were collected during plastic surgery
performed on 60 Chinese female patients. The scars were
diagnosed based on histological examination by certified pathol-
ogists and classified according to the traditional histopathological
criteria.4,18 Prior to study participation, all patients signed
an informed consent, and this study was approved by the
Institutional Review Board of FujianMedical University. To pro-
tect the tissue samples from metamorphism, we stored them in
liquid nitrogen (−196°C) immediately after they were excised
from patients. Prior to SHG imaging, the tissues were sectioned
in 140-μm thicknesses and sandwiched between a microscope
slide and cover glass. To avoid dehydration or shrinkage during
the imaging acquisition, a little phosphate-buffered saline (PBS)
solution was dripped into the tissue specimen.

2.2 Second-Harmonic Generation Microscopy

The SHG imaging was performed on a Zeiss LSM 510 META
laser scanning microscope coupled to a mode-locked femtosec-
ond Ti: sapphire laser (Coherent Mira 900-F) operating at
810 nm. The sapphire laser (110 fs, 76 MHz) was used as the
excitation light source. An oil immersion objective (×63 and
NA ¼ 1.4) was employed for focusing the excitation beam
into tissue samples (average power less than 5 mW) and for
collecting the backscattered intrinsic SHG signals. The high-
resolution (512 × 512 pixels) image was obtained at 2.56 μs
per pixel (total: 1.57 s) with a view field of 230.8 μm ×
230.8 μm. In this study, one SHG image was collected from
each patient, resulting in a total of 60 scar collagen SHG images
(30 normal and 30 abnormal) for analysis.

2.3 Texture Analysis

2.3.1 Homogeneity features extracted by local difference
local binary pattern

To characterize the homogeneity features in an image, the
local contrast information derived from LD-LBP was used.
Given a gray value of central pixel gc and its neighbors gp
(p ¼ 0;1; : : : ; P–1, P is the number of sampling points in a
neighborhood), the difference between gc and gp can be calcu-
lated by Cp ¼ gp − gc, and the amplitude of Cp is expressed as
Sp ¼ jCpj. As an example, Fig. 1(a) shows the 3 × 3 neighbor-
hood with central pixel gc being 20 and the neighboring pixels
gp are [12, 71, 43, 39, 27, 31, 14, and 6]. The differences in
Cp [Fig. 1(b)] are [-8, 51, 23, 19, 7, 11, −6, −14], and the

amplitudes Sp are [8, 51, 23, 19, 7, 11, 6, 14], as shown in
Fig. 1(c). Then LD-LBP is defined as

LD-LBP ¼
XP−1
p¼0

HðSp − tÞ2p; (1)

where HðxÞ ¼
�
1;
0;
x ≥ 0

x < 0
and t is a threshold to be adaptively

determined. Here, we set t as the mean value of Sp from the
whole image. The LD-LBP operator is defined in a consistent
format with that of the basic LBP operator. Similar to the basic
LBP, the rotation invariant version of LD-LBP is also defined to
achieve rotation invariant classification. Additionally, the LD-
LBP uses a rotation invariant variance measure VAR that char-
acterizes the contrast of local image texture as the representation
of homogeneity features

VAR ¼
XP−1
p¼0

ðgp − wÞ2∕P; (2)

where

w ¼
�XP−1

p¼0

gp

�
∕P: (3)

Low variance (VAR) occurs in images with homogeneous
features, otherwise the VAR is higher.

2.3.2 Directional and coarse features extracted by
wavelet transform

Wavelet transform19,20 was utilized to evaluate the directional
and coarse features in an image. The wavelet transform decom-
poses an image into four subimages: low–low (LL), low–high
(LH), high–low (HL), and high–high (HH). LL is the low-
frequency subimage that contains the main information of the
decomposed image. LH, HL, and HH are three high-frequency
subimages which are horizontal, vertical, and oblique subi-
mages, respectively. The wavelet energy (E) was estimated by
summing the squares of all coefficients pði; jÞ from each sub-
image with dimensions M × N

E ¼
XM
i¼1

XN
j¼1

½pði; jÞ�2: (4)

The distribution of energy (E) in each subimage can deter-
mine the image directionality. The large energy value represents
the main direction of the texture.

For an image with a coarse texture, the energy is mainly
concentrated in the low-frequency subimage, while for an
image with a thin or complex texture, the energy is mainly

Fig. 1 (a) 3 × 3 neighborhood with central pixel being 20; (b) the local
differences; and (c) the amplitudes of local differences.
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concentrated in the high-frequency subimage.21 Thus, the
energy ratio (Er) in the low-frequency subimage was calculated
to investigate the coarse features of an image, given by

Er ¼
ELL

ELL þ ELH þ EHL þ EHH

× 100%; (5)

where ELL, ELH, EHL, and EHH represent the energy (E) in LL,
LH, HL, and HH subimages, respectively. The energy ratio (Er)
is higher in images with coarse features and lower for those with
thin or complex features.

2.3.3 Combination of local difference local binary pattern
and wavelet transform

To simultaneously obtain the homogeneity, directional and
coarse features, LD-LBP and wavelet transform were combined
for analysis. The steps of the algorithm are given as follows:

Step 1: Transform the original SHG image
(512 × 512 pixels) into a grayscale image.

Step 2: Encode the grayscale image by LD-LBP, and calcu-
late LD-LBP variance (VAR) according to Eq. (2).

Step 3: Encode the LD-LBP image by wavelet transform,
and calculate the energy (ELL, ELH, EHL and EHH) in
each subimage and energy ratio (Er) in the low-
frequency subimage according to Eqs. (4) and (5).

Step 4: Combine the above texture parameters to compose
the characteristic vector of each image: [VAR, ELL, ELH,
EHL, EHH, and Er].

Step 5: Employ Gaussian normalization22 to avoid deviation
caused by the different physical meaning and the range
of each texture parameter. Supposing that the initial
characteristic vector is [f1; f2; : : : ; fn], the normalized
characteristic vector [F1; F2; : : : ; Fn] is calculated by
Fi ¼ ðF 0

i þ 1Þ∕2, where F 0
i ¼ ðfi − eÞ∕3σ (e is the

mean, and σ is the standard deviation of the initial char-
acteristic vector).

2.4 Classification

An SVM classifier was used to test the ability of the texture
parameters to classify the SHG images into normal or abnor-
mal.23–25 Given a training sample set ½ðxi; yiÞ�ni¼1, where xi
denotes the training vector, xi ∈ Rn and yi denote the

corresponding class label, yi ∈ f1;−1g, and n denotes the total
number of the training sample. SVM finds the solution of the
following optimization problem

Minimize
w;b;ξ

1

2
hw · wi þ C

Xn
i¼1

ξi;

Subject to∶ yiðhw · xii þ bÞ þ ξi − 1 ≥ 0 ;

(6)

where C is a penalty parameter of the error term, ξi is the non-
negative slack variable, w is the normal vector of the hyperplane,
and b is the offset of the hyperplane. Then, SVM finds the
linearly separating hyperplane with the maximal marginal in
a higher dimensional space. A kernel function Kðxi; xjÞ ¼
φðxiÞTφðxjÞ is used to map the training sample into a higher
dimensional feature space. In our study, the radial basis function
was chosen as the kernel of the SVM.

Moreover, the LOOCV procedure was used to address the
drawback of the small-sized sample.26,27 Each time one single
sample was considered as the validation data and the other sam-
ples were considered as the training data. In this work, we have
a total of 60 scar collagen SHG images (30 normal and 30
abnormal). The procedure was repeated 60 times until every
sample was used as the validation data.

2.5 Statistical Analysis

For statistical analysis, a total of 30 normal and 30 abnormal
scar collagen SHG images were measured for texture analysis.
Statistical analyses were performed by using the MATLAB®
(version 2010b) software. Quantitative data were presented
as a mean value with its standard deviation indicated
(mean� SD) and compared using the Student’s t-test analysis.
Differences were considered to be statistically significant when
the p-values were less than 0.05.

3 Results

3.1 Collagen Second-Harmonic Generation Images
of Human Skin Scars

Representative high-resolution collagen SHG images from
human normal and abnormal scars are shown in Figs. 2(a)
and 2(b), respectively. This presents a great difference in the
morphological structure of the collagen between the normal
and abnormal scars. As we can see from Fig. 2(a), large and

Fig. 2 Collagen second-harmonic generation (SHG) images in human (a) normal and (b) abnormal
scars. Images are 512 × 512 pixels.
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coarse collagen bundles with a well-regulated distribution and
well-defined orientation in the normal scar are well identified.
In contrast, a less organized and disordered collagen structure
characterized by thinner but more complex fibril bundles are
clearly seen in the abnormal scar [Fig. 2(b)]. All these observa-
tions are well consistent with the previous description of normal
or abnormal scars.28,29

3.2 Quantification of Collagen in Human Skin Scars

In order to quantitatively characterize the collagen morphology
in normal and abnormal scars such as collagen distribution, col-
lagen orientation, and collagen coarseness, we applied detailed
texture analysis based on LD-LBP and wavelet transform to col-
lagen SHG images. Texture parameters including homogeneity,
directional and coarse features of SHG images were extracted.
Demonstrated in Fig. 3 is the decomposition process of the
collagen SHG images, including an original collagen SHG
image of normal scar [Fig. 3(a)], the corresponding LD-LBP
transformed image in gray scale [Fig. 3(b)], and the four sub-
images by one-level wavelet transform decomposed from the
LD-LBP image [Fig. 3(c)].

3.2.1 Homogeneity feature

Figure 4 presents the LD-LBP variances of collagen SHG
images from normal and abnormal scars, showing a much
smaller value of normal scar SHG images compared to abnormal

scar SHG images (0.04� 0.01 versus 0.55� 0.35; p < 0.05).
Quantitatively analyzed result indicates that the normal scars
have a more homogeneous collagen morphology than the abnor-
mal scars.

3.2.2 Directional and coarse features

Figure 5 gives the energy values in each subimage on both nor-
mal and abnormal scar SHG images. By comparing energy val-
ues in each subimage, it can be seen that the energy is mainly
concentrated in the LL subimage compared to LH, HL, or HH
subimage, for both normal (2.16� 0.09 versus 0.44� 0.03,
0.26� 0.04, or 0.20� 0.03; p < 0.05) and abnormal scar
collagen SHG images (1.72� 0.11 versus 0.69� 0.09,
0.32� 0.02, or 0.18� 0.02; p < 0.05). Moreover, texture
details are mainly distributed in the LH subimage and less dis-
tributed in HL or HH subimages for both normal (0.44� 0.03
versus 0.26� 0.04, or 0.20� 0.03; p < 0.05) and abnormal scar
collagen SHG images (0.69� 0.09 versus 0.32� 0.02, or
0.18� 0.02; p < 0.05).

Energy ratios in the low-frequency subimage are depicted in
Fig. 6. This clearly shows that energy ratios in the low-fre-
quency subimage of normal scar SHG images are higher than
those of abnormal scar SHG images (70.55� 1.93% versus
59.27� 0.46%; p < 0.05). These statistical results are consis-
tent with the observation that the collagen arrangement within
normal scars is ordered and coarser compared to abnormal scars.

3.3 Optimal Wavelet and Decomposition Level

Table 1 describes the accuracy of the SVM classifier in the
LOOCV procedure based on texture parameters of LD-LBP

Fig. 3 The decomposition process of collagen in an SHG image. (a) Original collagen SHG image of
normal scar. (b) The local difference local binary pattern (LD-LBP) transformed image in gray scale from
(a). (c) The four subimages by one-level wavelet transform decomposed from (b).

Fig. 4 LD-LBP variances of collagen SHG images from normal and
abnormal scars. Error bars indicate calculated standard deviations.

Fig. 5 Energy values in each subimage of collagen SHG images from
normal and abnormal scars. Error bars indicate calculated standard
deviations.
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combined with Haar, Daubechies, Symlets, and Morlet wavelet
transform. As can be seen from the table, the overall accuracy of
the SVM classifier is relatively higher when LD-LBP is com-
bined with the Haar wavelet. Moreover, Haar wavelet is fast
in speed and describes detailed features,30 which were adopted
in this study.

Listed in Table 2 is the accuracy of the SVM classifier in the
LOOCV procedure based on the texture parameters of LD-LBP
combined with an n-level Haar wavelet transform (n ¼ 1, 2, 3).
It can be observed that the SVM classifier has an overall accu-
racy of 90.0% when LD-LBP is combined with one-level Haar
wavelet. The accuracy drops to 73.3% and 71.7% when a two-
level or three-level Haar wavelet was used. Therefore, a one-
level Haar wavelet transform was selected in this analysis.

3.4 Comparison with Other Methods

To evaluate the effectiveness of the proposed method for scar
discrimination, the SVM classifier in the LOOCV procedure

was trained and applied to classify collagen SHG images of
normal and abnormal scar tissues using GLCM, Haar wavelet
transform, basic LBP combined with Haar wavelet transform,
and the proposed method combining LD-LBP and Haar wavelet
transform texture parameters, respectively. Additionally, a
multipurpose image classifier called WND-CHARM was also
used for comparison.31 Results are shown in Table 3. Using
the GLCM,32,33 four texture features including contrast, corre-
lation, energy, and homogeneity were extracted from the scar
collagen SHG images and analyzed using the texture average
of four directions (0 deg, 45 deg, 90 deg, 135 deg) with distance,
d ¼ 10. It can be seen from Table 3 that the SVM classifier has
a higher accuracy when combined LD-LBP and Haar wavelet
transform parameters were included in the classification model,
while a lower accuracy is obtained when GLCM or Haar wavelet
transform was independently used, respectively. The basic LBP
combined with a Haar wavelet transform does not give a satis-
factory performance for distinguishing abnormal scars from
normal scars. In addition, WND-CHARM was less effective
than the proposed method specifically designed for texture
classification of scar SHG images.

Figure 7 compares the receiver operating characteristic
(ROC) curves34 with the LOOCV procedure generated by tex-
ture parameters from the GLCM, Haar wavelet transform, basic
LBP combined with Haar wavelet transform, and the proposed

Fig. 6 Energy ratios in low-frequency subimage of collagen SHG
images from normal and abnormal scars. Error bars indicate calcu-
lated standard deviations.

Table 1 Accuracy of support vector machine (SVM) classifier in the
leave-one-out cross-validation (LOOCV) procedure based on texture
parameters of local difference local binary pattern (LD-LBP) combined
with Haar, Daubechies, Symlets, and Morlet wavelet transform.

Group

LD-LBP +
Haar (%)

LD-LBP +
Daubechies (%)

LD-LBP +
Symlets (%)

LD-LBP +
Morlet (%)

Normal 90.0 90.0 83.3 86.7

Abnormal 90.0 86.7 86.7 90.0

Overall 90.0 88.3 85.0 88.3

Table 2 Accuracy of SVM classifier in the LOOCV procedure based
on texture parameters of LD-LBP combined with one-level, two-level,
and three-level Haar wavelet transform.

Group

LD-LBP + one-
level Haar (%)

LD-LBP + two-
level Haar (%)

LD-LBP + three-
level Haar (%)

Normal 90.0 86.7 83.3

Abnormal 90.0 60.0 60.0

Overall 90.0 73.3 71.7

Table 3 Comparison of the accuracy of LD-LBP + Haar wavelet
transform to other methods.

Group

WND-
CHARM (%)

GLCM
(%)

Haar
(%)

Basic LBP +
Haar (%)

LD-LBP +
Haar (%)

Normal 83.3 80.0 83.3 86.7 90.0

Abnormal 66.7 30.0 23.3 50.0 90.0

Overall 75.0 55.0 53.3 68.3 90.0

Fig. 7 Receiver operating characteristic (ROC) curves for texture
parameters from the four texture analysis methods including gray
level co-occurrence matrix (GLCM), Haar wavelet transform, basic
LBP + Haar wavelet transform, and LD-LBP + Haar wavelet trans-
form. The area under the ROC curve is 0.96 for texture parameters
(LD-LBP + Haar), 0.75 for texture parameters (basic LBP + Haar),
0.59 for Haar wavelet parameters and 0.63 for GLCM parameters.
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method. The area under the ROC curve (AUC) is a measure of
the overall diagnostic performance.35 It is seen from Fig. 7 that
the accuracy of the SVM classifier, as represented by the AUC,
is determined to be 0.96 when LD-LBP was combined with
Haar wavelet transform parameters for classification. These val-
ues drop to 0.75, 0.63, and 0.59 when the combined basic LBP
and Haar wavelet transform parameters, the GLCM parameters
or the Haar wavelet transform parameters were independently
used, respectively. The diagonal line y ¼ x is the expected
ROC curve of a random guesser (with AUC ¼ 0.5).

4 Discussion
In this paper, the combination of LD-LBP and wavelet transform
was proposed to characterize the homogeneity, directional and
coarse features in SHG images of human skin abnormal scars
distinguished from normal scars. First, using the LD-LBP
variance, we quantitatively evaluated the collagen distribution
within normal and abnormal scar tissues. The comparison of
the LD-LBP variances of normal and abnormal scar collagen
SHG images (Fig. 4) demonstrated that the texture distribution
in the normal scar SHG images was more homogeneous com-
pared to abnormal scar SHG images. This verified the point that
the distribution of the collagen in normal scars is better-regu-
lated than that of abnormal scars, supported by the observations
in collagen SHG images from normal and abnormal scars
(Fig. 2). Second, to investigate the differences in the collagen
orientation or coarseness between normal and abnormal
scars, we calculated energy values of each subimage (Fig. 5)
and energy ratios in the low-frequency subimages of SHG
images (Fig. 6). The results indicated that normal scar SHG
images had more ordered and coarser textures compared to
the abnormal scar SHG images. The provided interpretation sup-
ported the previous reports that the collagen fibers in normal
scars are better oriented and coarser than those of abnormal
scars.12,28,36 In addition, to determine the optimal wavelet and
decomposition level, we evaluated the texture parameters of
LD-LBP combined with Haar, Daubechies, Symlets, and
Morlet wavelet (Table 1), and one-level, two-level, and three-
level Haar wavelet transform via the SVM classifier with the
LOOCV procedure (Table 2). Based on the data presented in
Tables 1 and 2, it was quite evident that the one-level Haar
wavelet achieved the highest accuracy.

On the other hand, the accuracy of the SVM classifier based
on texture parameters extracted from the proposed method that
combined LD-LBP and Haar wavelet transform was compared
to other methods including GLCM, Haar wavelet transform, the
basic LBP combined with Haar wavelet transform, and WND-
CHARM (Table 3). Overall, the SVM classifier using the texture
parameters from the proposed method gave better accuracy than
WND-CHARM, GLCM, Haar wavelet transform, or the basic
LBP combined with Haar wavelet. Finally, the ROC analysis
further evaluated the performance of the proposed method
(Fig. 7). The ROC curve based on LD-LBP combined with
Haar wavelet transform parameters achieved the highest AUC
values (AUC ¼ 0.96). This indicates that our methodology is
effective in differentiating abnormal scars from normal scars.
It may enable a better understanding of the pathophysiology
of scars. Texture analysis for quantifying scar collagen morphol-
ogy is a work in progress and shows feasibility in scar diagnosis.
We have reason to believe that it may provide a valuable tool for
studying scars.

5 Conclusion
In conclusion, we have demonstrated the feasibility of quanti-
tative discrimination between human normal and abnormal scars
based on texture analysis combining LD-LBP and Haar wavelet
transform derived from SHG images. The homogeneity, direc-
tional and coarse features that are associated with the collagen
morphology in scars demonstrated the differences between nor-
mal and abnormal scar SHG images. Using the SVM classifier
with the LOOCV procedure and ROC analysis, the accuracy
was demonstrated to be improved with combined LD-LBP and
Haar wavelet transform parameters compared to the case when
the GLCM, the Haar wavelet transform or the basic LBP com-
bined with Haar wavelet parameters were independently used.
Although our study is only a proof of concept with a limited
sample size, its implication is that the texture analysis of
SHG images could have clinical potential in differentiating
abnormal scars from normal scars, and can also help plastic sur-
geons and dermatologists to identify optimal therapeutic options
to cure scars.
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