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Abstract. Tumor progression in breast cancer is significantly influenced by its interaction with the surrounding
stromal tissue. Specifically, the composition, orientation, and alignment of collagen fibers in tumor-adjacent
stroma affect tumor growth and metastasis. Most of the work done on measuring this prognostic marker
has involved imaging of collagen fibers using second-harmonic generation microscopy (SHGM), which provides
label-free specificity. Here, we show that spatial light interference microscopy (SLIM), a label-free quantitative
phase imaging technique, is able to provide information on collagen-fiber orientation that is comparable to that
provided by SHGM. Due to its wide-field geometry, the throughput of the SLIM system is much higher than that of
SHGM and, because of the linear imaging, the equipment is simpler and significantly less expensive. Our results
indicate that SLIM images can be used to extract important prognostic information from collagen fibers in breast
tissue, potentially providing a convenient high throughput clinical tool for assessing patient prognosis. © 2017
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1 Introduction
With 522,000 reported deaths worldwide in 2012, breast cancer
is the most prevalent type of cancer among women and the sec-
ond most prevalent cancer overall according to the World Health
Organization (WHO).1,2 The WHO has also emphasized the
importance of early diagnosis and prognosis in improving health
outcomes. This need has led to significant research into discov-
ering new biomarkers for assessing a patient’s health status early
on.3–5 Current markers, such as histological grade, hormone
receptor status, tumor size, etc., while useful for most patients,
do not accurately predict outcomes for all patients. Thus, there is
a need to expand on the current prognostic markers to account
for biological variation among individuals.4,6 Furthermore, reli-
able prognostic markers help clinicians predict the potential for
metastasis and avoid overtreatment.6

The role of adjacent stroma in mediating breast tumor initia-
tion, progression, and invasion to surrounding tissue has been
extensively discussed over the years.7–11 Tumor invasion into
surrounding healthy tissue involves breaking down of the base-
ment membrane and a desmoplastic response in the stroma. This
response involves an increase in density of the extracellular
matrix, marked by increased deposition of collagen, as well
as recruitment of stromal cells (e.g., fibroblasts and inflamma-
tory cells) to facilitate tumor growth.4,8,9 Using both mouse and

in vitro models of mammary tissue, studies have also concluded
that tumor progression is marked by realignment and reorienta-
tion of collagen fibers.4,12–14 For example, Conklin et al.4

showed that the tumor adjacent collagen signature 3 (TACS
3) correlates with lower disease-free and disease-specific sur-
vival in breast cancer patients.15

Second-harmonic generation microscopy (SHGM) has
emerged as a powerful technique for imaging collagen fibers
in breast cancer stroma with subcellular resolution.16 SHGM
measurement of the prognostic signature TACS 3 was reported
in Ref. 4. Ambekar et al.17 used Fourier analysis on SHGM
images to show that the collagen fibers in breast biopsies are
more aligned in malignant versus premalignant and benign tis-
sue. Riching et al.18 used SHGM to image 3-D collagen gels to
elucidate specific epithelial cell–fiber interactions that are
responsible for enhancing tumor progression along aligned
fibers in breast tissue. Other researchers have used image seg-
mentation and machine learning tools to extract prognostic
information from SHGM images of collagen fibers.19,20

SHGM maps the second-order nonlinear susceptibility χð2Þ
associated with noncentrosymmetric molecules and thus probes
fibrillar collagen structures with specificity.16 As detailed in
Sec. 2, collagen generates a strong second-harmonic signal com-
pared to the surrounding cellular structures, resulting in high
imaging contrast.21 However, the low contrast of other cellular
structures in SHGM images means that the tumor boundary is
difficult to delineate and often other imaging modalities are
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required.20 Furthermore, since SHGM systems employ a laser
point-scanning geometry, the imaging throughput is low and
whole slide scanning of breast cancer tissue sections remains
a tedious task.

Recently, QPI22 has become an emerging tool for label-free
mapping of the optical path-length difference across a sample,
with applications in various areas of medicine, biology, and
material science.22–33 In clinical applications, QPI has been exten-
sively used for blood analysis24,25,29,34–40 as well as cancer
diagnosis41–47 and prognosis48,49 (for a recent review, see Ref. 50).

SLIM is a QPI technique characterized by diffraction-limited
transverse resolution and optical-path length sensitivity of less
than a nanometer.27,51,52 It has been employed in the past for
diagnosis of breast cancer42 as well as diagnosis and prognosis
of prostate cancer.5,41,49

In this paper, we show that SLIM, in conjunction with basic
image segmentation, is able to provide information on collagen-
fiber orientation and alignment similar to that obtained using
SHGM. In addition, SLIM generates contrast for epithelial
cells as well, which can be used to detect tumor boundaries.
Furthermore, compared to SHGM, the SLIM images are acquired
at a much higher throughput due to the wide-field geometry.
Recently, SLIM has been automated and developed into the
first QPI tissue scanner. Using both SLIM and SHGM,we imaged
a tissue microarray (TMA) of breast biopsy cores consisting of
both benign cases and malignant cases at different stages of
the disease. Using the Fourier analysis method described in
Sec. 3, we show that both SLIM and SHGM images generate
similar histograms of fiber orientation angle.

This manuscript is organized as follows. In Sec. 2, we present
the theoretical foundation for extracting second-order nonlinear
response from phase-resolved linear imaging. Section 3
describes the experimental details of the study, and Sec. 4
presents the results. Section 5 summarizes and discusses
these results.

2 Theory
In this section, we explain the theoretical motivation for our
SLIM phase imaging by showing that the signal measured in
SLIM is related to that measured in SHGM. The source of
the signal measured in both modalities is the induced polariza-
tion P. To the second-order approximation, this can be related to
the fundamental (incident) field E as

EQ-TARGET;temp:intralink-;e001;63;278P ¼ χð1ÞðωÞEþ χð2Þð2ωÞE2; (1)

where χð1Þ is the first-order electric susceptibility, χð2Þ is the sec-
ond-order nonlinear susceptibility, and ω is the optical fre-
quency of the source.53

The physical quantity measured in SLIM is the spatially
resolved linear response, χð1ÞðrÞ ¼ n2ðrÞ − n20 with n being
the refractive index of tissue, n0 being the refractive index of
the immersion medium, and r ¼ ðx; yÞ. Note that for low refrac-
tive index contrast, χð1Þ simplifies to χð1ÞðrÞ ≈ 2n0½nðrÞ − n0�.
The SLIM signal is the optical path-length map generated by
the tissue slice:

EQ-TARGET;temp:intralink-;e002;63;136ϕðrÞ ¼ β0½nðrÞ − n0�t ≈ β0
χð1ÞðrÞ
2n0

t; (2)

where β0 ¼ 2π∕λ is the wavenumber in vacuum, t is the local
thickness of tissue, and λ is the wavelength of the illumination.22

The physical quantity measured in SHGM is χð2Þð2ωÞ, which
relates to the SHG electric field ESHGð2ωÞ via16,53–55

EQ-TARGET;temp:intralink-;e003;326;730ESHGð2ωÞ ∝ β20χ
ð2Þð2ωÞE2ðωÞ: (3)

We can find a relationship between the χð2Þð2ωÞ and χð1ÞðωÞ
signals measured by our two imaging methods by solving the
equation of motion for the anharmonic oscillator describing
microscopic charge displacement (see, for example, Sec. 1.4.
in Ref. 53). This leads to the expression:

EQ-TARGET;temp:intralink-;e004;326;643

�
2n0
β0t

ϕðr;ωÞ
�
2

¼ ½χð1Þðr;ωÞ�2 ¼ 1

A
χð2Þðr; 2ωÞ
χð1Þðr; 2ωÞ : (4)

In Eq. (4), A ¼ aε2
0
m

N2e3 , where a is a constant that depends on
the mechanical properties of the anharmonic oscillator model, N
is the volume density of electric dipoles in the medium, and e is
the elementary charge. Equation (4) indicates that the second-
harmonic response is proportional to the square of the linear
response, which is measured directly by SLIM, namely,

EQ-TARGET;temp:intralink-;e005;326;525χð2Þðr; 2ωÞ ∼ χð1Þðr; 2ωÞϕ2ðr;ωÞ: (5)

This relationship can then be used to rewrite Eq. (1) in the
form:

EQ-TARGET;temp:intralink-;e006;326;471P ¼ χð1ÞðωÞEþ χð1Þð2ωÞϕ2ðωÞE2: (6)

In Eq. (6), the linear term generates the SLIM signal and
provides contrast in both centrosymmetric and noncentrosym-
metric structures. The quadratic term accounts for the SHGM
signal and generates contrast only in noncentrosymmetric
structures.53 Since the quadratic term has a dependence on
ϕðx; yÞ, we anticipate that, in noncentrosymmetric regions (col-
lagen fibers), SLIM and SHGM images provide similar morpho-
logical information. However, before a comparison between the
two can be made, the centrosymmetric information in SLIM
(linear imaging) needs to be extracted out. In this work, we
extract this information out using image processing techniques,
as discussed in Sec. 4.

3 Materials and Methods

3.1 Second-Harmonic Generation Microscopy and
Spatial Light Interference Microscopy Imaging
Systems

The optical setups for the two imaging modalities are illustrated
in Fig. 1. While both have been discussed in detail in previous
publications,17,51,56 here, we briefly describe their operating
principles.

SLIM is built as a module at the output port of a commercial
phase contrast microscope (Zeiss Observer Z1). The conjugate
image plane at the output port of the microscope is imaged onto
a CCD camera using a 4f lens system (comprising lenses L1 and
L2). At the Fourier plane of the first lens L1, a spatial light
modulator controls the phase of the unscattered portion of
light with respect to that of the scattered portion in increments
of π∕2. The camera acquires four intensity images at four differ-
ent phase modulations ð0; π∕2; π;−π∕2Þ and, from these
images, the phase of the imaging field ϕðx; yÞ can be computed,
as detailed in Ref. 51. Throughout our experiments, we used a
40 × ∕0.75 NA phase contrast objective. Using a slide-scanning
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platform, developed in-house using C++, we imaged the entire
TMA slide consisting of 24 cores at 0.5-μm transverse resolu-
tion. Subsequent stitching of individual tiles and segmentation
of individual core images were performed using algorithms
developed in-house.42 The acquisition rate for the SLIM
system was 0.08 μs∕pixel.

Figure 1(b) illustrates the SHGM system. ATi:Sapphire laser
was used to produce 70-fs pulses at an excitation wavelength of
780 nm and a repetition rate of 80 MHz. The beam was scanned
onto the sample and focused by a 20 × ∕0.8 NA air-illumination
Zeiss condenser. The transmitted beam was collected in the
forward direction by a 40 × ∕0.9 NA Zeiss objective and
then passed through two filters. The first filter was a 680-nm
short-pass filter (680 nm∕SP-25) for blocking the laser light,
and the second was a 390-nm band-pass filter (390 nm� 18
to 25 nm) for selecting the second harmonic signal. In contrast
to the wide-field CCD detector used in SLIM, SHGM uses a
single-point photodetector. More details regarding the system
have already been published in Refs. 17 and 56. The acquisition
rate for SHGM system was 7 μs∕pixel.

3.2 Tissue Microarray

The breast TMA used in this study was purchased from US
Biomax Inc. (Serial # T088b). The TMA was received from
the manufacturer with all human subject information deidenti-
fied. Neither the authors of this work nor their institutions were
involved in tissue collection. The TMA is comprised of 24 cores
from six different cases with eight benign/normal and 16 malig-
nant cases. The malignant cases included cores corresponding to
three different stages of breast cancer: IIa, IIb, and IIIa. The
insets of both Figs. 1(a) and 1(b) show a hematoxylin and
eosin (H&E) stained bright-field image (henceforth referred

to as “H&E image”) of the TMA. H&E, SLIM, and SHGM
images of one of the cores in the TMA are also shown.

Figure 2 shows H&E, SLIM, and SHG images of three
benign and three malignant cores, each at a different disease
stage, as indicated. The SLIM images generate uniform contrast
across the cores, including in cellular structures. SHGM images,
on the other hand, generate contrast only in areas where collagen
fibers are present. Note that the SHG signal is more sparse in the
malignant cores versus the benign cores due to the higher frac-
tion of epithelial cells in the former, associated with tumor inva-
sion into surrounding stroma. Row 2 of Fig. 2 shows the square
of the quantitative phase map ϕðx; yÞ (SLIM2) for each core.

Figure 3 provides a comparison between morphologies of
stromal and epithelial tissue within one core, as revealed in
H&E, SHGM, and SLIM images. As shown in Figs. 3(a) and
3(g), both SLIM and SHGM reveal qualitatively similar stromal
structures. The situation is different in areas with epithelial tis-
sue, where SLIM images [Fig. 3(c)] contain centrosymmetric
structures, such as epithelial cells, which are absent in SHGM
images [Fig. 3(i)]. The presence of these cellular structures is
confirmed by the H&E stain, which shows cell nuclei in purple
color [Fig. 3(l)]. In areas that are a mixture of cells and collagen
fibers, quantifying fiber alignment and orientation from SLIM
images requires segmentation of epithelial cells, as discussed in
detail in Sec. 4.

4 Results

4.1 Decoupling Isotropic from Anisotropic Signals in
Spatial Light Interference Microscopy Images

Prior to measuring collagen fiber orientation, the SLIM and
SHGM images were registered and an image segmentation algo-
rithm was used to remove isotropic structures from SLIM

Halogen Lamp

Slide scanner

PC Microscope SLIM Module

CCD Camera

SLM

SLIM H&E

Ti:Saph Laser

Slide scanner

680 nm 
SP filter

390 nm/10 
BP filterIP

(a) (b)

SLIM Optical Setup SHGM Optical Setup

Photodetector

SHG H&E
C

Ob

TL L1 L2

BS

C
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TL L1
L2

M

M

M

IP

SHG Microscope

Fig. 1 (a) Optical setup of the SLIM system, built as a module attached to the output port of a commercial
phase contrast microscope. The inset shows an H&E image of the TMA slide, as well as H&E and SLIM
images of one of its cores. Scale bar: 200 μm. (b) Optical setup of the SHGM system. The inset shows an
H&E image of the TMA slide as well as H&E and SHGM images of one of its cores. C, condenser; Ob,
objective; TL, tube lens; IP, image plane; M, mirror; BS, beam splitter; SP, short pass; BP, band pass;
SLM, spatial light modulator.
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images, leaving behind the highly anisotropic collagen fibers.
No information from the SHGM data was used for the segmen-
tation of SLIM images.

To perform image registration, the SLIM images were first
downsampled, from 12;000 × 12;000 to 9216 × 9216 pixels∕
core, to match the sampling of the SHGM images. These images
were then coregistered using ImageJ by selecting control point
pairs for each image and matching them using transformation
techniques (primarily translation and rotation).

The image segmentation algorithm used for removing iso-
tropic cellular structures from SLIM images is schematically
illustrated in Fig. 4. Specifically, for each core image, we
first computed the response to the Leung–Malik (LM) filter
bank comprising gradient filters at 50 different orientations.57,58

Each filter in the bank computed the directional image gradient
using the first derivative of a Gaussian, oriented at α ¼ mπ

50
,

where m ¼ 0; 1; 2; : : : 49, from the horizontal axis in the image.
The resulting stack of responses represented both the magnitude
and direction of the local gradient or anisotropy in a pixel’s
vicinity for each TMA core. The magnitude of these gradients
was then normalized by the highest value in the stack and was
summed along the stack (along the z-axis in Fig. 4). The result-
ing image represented the isotropy map of the tissue with higher
values representing locally isotropic structures (background and
cells) and lower values representing locally anisotropic struc-
tures (collagen fibers). This isotropy map was then low-pass fil-
tered (Gaussian kernel of 15 × 15 pixels, which is slightly larger
than one epithelial cell) and the Otsu’s thresholding method was
used to find the grayscale level separating anisotropic from

isotropic pixels.59 The Otsu thresholding method dynamically
sets the threshold by minimizing the intraclass variance and
maximizing the interclass variance under the assumption of a
biomodal class histogram distribution. Since this method estab-
lishes a threshold based on the natural separation of isotropic
and anisotropic pixels in the data, it can be applied to arbitrary
SLIM images without prior training. After setting the isotropic
pixels to zero, we employed another round of low pass filtering
(Gaussian kernel, 5 × 5 pixels) followed by thresholding to
remove any remaining background pixels and obtain the label
map. During this process, the maximum gradient along z for
each pixel was also used for detecting the remaining background
pixels and marking them for removal. The final segmentation
map was then computed using the label map as a mask. The
segmentation algorithm was coded in MATLAB, and a prepub-
lished LM filter generator was used for the purpose.60

As apparent from comparing the SLIM and segmented SLIM
images in Figs. 4(f) and 4(g), the algorithm leads to oversegmen-
tation, and sometimes collagen fibers that are isotropic at length
scales equal to or smaller than the size of one epithelial cell are
segmented out. In some cases, the segmentation algorithm may
break up thin or twisting fibers. As shown in Sec. 4(c), these
imperfections in segmentation are subdominant, and the local
collagen orientation remains similar between SLIM and SHGM
images. Furthermore, as demonstrated in Refs. 4, 20, and 55,
biomarkers for prognosis are based on average orientation of
collagen over spatial scales that are longer than those at which
segmentation errors occur in our images. Thus, for the relevant
clinical applications, sufficient information remains in the

Fig. 2 Morphological comparison between (a) benign and (b) malignant cores from patients at three
different stages of disease as captured by SLIM, SHGM, and H&E images. The square of the quantitative
phase map in SLIM is referred to as SLIM2 and is proportional to ½χð1Þ�2.
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segmented SLIM images to measure fiber-orientation based
biomarkers. Another important consideration for clinical
applications is the relative orientation of tumor adjacent col-
lagen fibers with the tumor boundary. While SLIM images can
be segmented to digitally remove the epithelial cells, they
clearly resolve epithelial structures, allowing determination
of the tumor boundary orientation with respect to the collagen
fibers.

4.2 Fourier Analysis

Fourier analysis was carried out on SHGM and segmented
SLIM images to extract collagen fiber orientation. Each image
was sectioned into subimage regions using grids (16 × 16,
32 × 32, or 64 × 64), and the localized orientation per subimage
(which we call θ) was determined using the Fourier analysis
technique outlined in Ref. 55. Regions having a mean direction

Fig. 3 (a–c) SLIM, (g–i) SHGM, and (j–l) H&E images of both stromal and epithelial/stromal mixed tissue
in a TMA core. (a,d,g,j) Left-most and (c,f,i,l) right-most columns show zoomed-in versions of the regions
indicated on the core in the central column (b,e,h,k). As is evident from a comparison with the H&E
images, the SLIM images show contrast in both stromal and epithelial regions whereas the SHGM
images only generate contrast in stromal regions. (d–f) Segmented SLIM images were obtained from
the SLIM images by numerically removing the cellular structures and preserving the collagen fibers.
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Fig. 4 The segmentation algorithm for removing isotropic structures from SLIM phase images. (a) SLIM
phase map before segmentation (color bar in radians). (b) Response to LM filter bank. (c) Normalized
isotropy map. (d) Binary label map. (e) Segmented SLIM image (color bar in radians). (f) and (g) Zoomed-
in portions of the SLIM and segmented SLIM images, respectively, showing an epithelial stromal boun-
dary. The segmentation algorithm removes isotropic structures and preserves anisotropic signals asso-
ciated with collagen fibers.

Fig. 5 The Fourier analysis procedure for computing collagen fiber orientation probability densities.
(a) SLIM image. (b) Segmented SLIM image. (c) Orientation map of SLIM image. (d) SHGM image.
(e) Orientation map of SHGM image. (f) Probability density of collagen fiber orientation θ computed
from the SLIM orientation map in (c). (g) Bar chart showing the number of isotropic and anisotropic regions
in segmented SLIM image. (h) Probability density of collagen fiber orientation θ computed from the SHGM
orientation map in (e). (i) Bar chart showing the number of isotropic and anisotropic regions in SHGM
image. The Pearson’s correlation ρ between the probability densities for the two modalities is also shown.
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above a chosen threshold were referred to as anisotropic regions,
while those under this threshold were labeled isotropic. To high-
light preferred orientation in each subimage, quiver plots were
superimposed on anisotropic regions to give an orientation map.
Histograms of θ for anisotropic regions (number of bins ¼ 32)
and bar plots showing the isotropic and anisotropic region
counts were also generated from these data. The θ histograms
were further normalized to obtain orientation probability den-
sities PSHGðθÞ and PSLIMðθÞ. Figure 5 shows the comparable
results obtained for a selected pair of segmented SLIM and
SHGM images.

4.3 Comparison Between Second-Harmonic
Generation Microscopy and Spatial Light
Interference Microscopy Signals

Figure 6 shows the fiber orientation probability densities PSHG

and PSLIM for three different cores, extracted from their respec-
tive SHGM and segmented SLIM images. As shown, the shapes
of the density functions obtained from the two modalities are
qualitatively similar for each of the cores. To obtain a quantita-
tive measure of this similarity, the following procedure was
used. The cross-correlation between PSHG and PSLIM was
first obtained, and the circular lag corresponding to maximum

cross-correlation was computed. The two densities were then
shifted relative to one another by this lag, so any errors due
to overall rotation between the two images are minimized.
This alignment procedure is required for a fair comparison
between the two densities because errors in registration of
the images from the two modalities can cause one density to
be slightly shifted with respect to the other. After alignment,
the Pearson’s correlation coefficient ρ between the two densities
was computed as a quantitative measure of their similarity. The
Pearson’s correlation measures the similarity of any two random
variables X and Y and is defined as follows:

EQ-TARGET;temp:intralink-;e007;326;631ρ ¼ E½ðX − μxÞðY − μyÞ�
σxσy

: (7)

In Eq. (7), the operator E½� refers to the expected value, and μ
and σ are the mean and standard deviation, respectively, of the
random variable in question.61 The correlation coefficient ρ has
values over the interval ½−1;1� with −1 referring to perfect neg-
ative correlation and 1 corresponding to perfect positive corre-
lation. In our analysis, X and Y refer to the probability densities
PSHG and PSLIM.

The three cores in Fig. 6 belong to three different disease
stages and, therefore, correspond to three different morphologies.

Fig. 6 Comparison between the fiber orientation probability densities and bar charts counting number of
isotropic and anisotropic regions for three different cores: SHGM (left column) and SLIM (right column).
This comparison is shown (a and b) for a benign core, (c and d) malignant stage IIa core and (e and f)
malignant stage IIIa core. The similarity of PSHG and PSLIM is measured for each case using the
Pearson’s correlation coefficient ρ, as indicated. Scale bar: 200 μm.
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As shown, the benign core shows the highest positive correlation
between PSHG and PSLIM with ρ ¼ 0.93, which decreases to
0.82 for the stage IIa malignant core. The lowest correlation
is seen for the stage IIIa core, which was computed as 0.71.
This trend can be accounted for by the fact that a core from
a patient at an advanced stage of disease is more likely to contain
large amounts of epithelial tissue. A large proportion of epi-
thelial tissue suppresses the SHG signal and results in greater
image segmentation errors in SLIM images due to the smaller
amount of collagen involved, resulting in lower agreement
between the two. In addition to the probability densities, the
bar charts showing the number of isotropic and anisotropic
cells counted by the Fourier analysis procedure are also very
similar for both imaging modalities, as demonstrated in Fig. 6.

5 Summary and Discussion
Motivated by the relationship between χð2Þ and ½χð1Þ�2 (Sec. 2),
we presented experimental support for the hypothesis that meas-
uring χð1Þ via phase-resolved imaging can provide χð2Þ informa-
tion, similar to that obtained in SHGM. Specifically, we have
shown that SHGM and segmented SLIM images measure quan-
titatively similar collagen fiber orientations in breast tissue. The
conclusions are significant because collagen fiber alignment and
orientation are potential markers for patient prognosis. While, in
the past, SHGM has been the method of choice for measuring
these biomarkers, our results demonstrate the potential of SLIM
as a complementary method for this assessment. Clearly, com-
pared to SHGM, SLIM lacks the specificity to collagen, as the
phase image includes signals due to centrosymmetric molecules.
As a result, a numerical postprocessing procedure is necessary
to eliminate the isotropic structures from the SLIM image.
However, these isotropic signals, mainly from epithelial contri-
butions, can be used to delineate the glands and, potentially,
tumor margins. These margins are difficult to detect in
SHGM alone and other modalities are sometimes used (e.g.,
two-photon fluorescence microscopy).21,62

In comparing the optical setups of the two modalities, it is
evident that SLIM benefits from common components, of much
lower cost, compared to those needed in SHGM (e.g., halogen
lamp versus femtosecond laser). Furthermore, due to the full-
field and continuous wave illumination, SLIM operates at
much lower exposures and, thus, is nonperturbing to live
cells and tissues. For example, SLIM imaging over multiple
days without damage is possible.26 The acquisition rate of
the SLIM system is 0.08 μs∕pixel, as compared to 7 μs∕pixel
for the state-of-the-art SHGM system used here. Of course,
SLIM signals do not depend on phase matching, and, as
such, the signals are always quantitatively related to the struc-
ture under investigation.

Before our method becomes adoptable to a clinical setting,
further investigations on a large cohort of cases that are positive
and negative for collagen biomarkers (such as TACS-3) are
required. Since SLIM provides a quantitative map of tissue,
it lends itself to the application of machine learning tools for
automated analysis and classification. Development of computa-
tional tools for automated detection of biomarkers is crucial for
future SLIM applications in high-throughput screening.
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