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Abstract. We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC)
microscope—a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal
and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimen-
sional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric
analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capa-
bilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences
in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated
SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric
information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of
SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural
changes in collagen-rich samples in three spatial dimensions. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction

Collagen is the most prevalent protein in the human body,' and
as part of the extracellular matrix (ECM), it plays an important
role in regulation of cell behavior.? For type I fibrillar collagen,
properties such as alignment, structural organization, and polari-
zation response have been shown to affect and/or depend on
tumor progression,® bone development,’® aging, and wound
healing.® It has even been suggested that part of the embedding
ground matrix having little fiber content (called the extrafibrillar
matrix or EFM) affects degeneration remodeling’ and mechani-
cal behavior.® Hence, quantification of collagen and the sur-
rounding EFM plus cell (EFMC) properties can provide a
framework for objective assessment of tissues, and for more
accurately monitoring sensitive changes.”™!!

Second-harmonic generation (SHG) microscopy is a preva-
lent fibrillar collagen-imaging modality on which quantitative
techniques have been applied.!>'* SHG microscopy is useful
due to its specificity to the noncentrosymmetric structure of col-
lagen, and the technique’s optical sectioning and label-free
capabilities.'> An example of a quantitative approach employed
on SHG is the forward-to-backward SHG measurement, which
has been used as a potential marker for tendon hydration
levels.'® Also, Fourier-transform SHG has been used to quantify
two-dimensional (2-D)!"'® and three-dimensional (3-D)" colla-
gen fiber spatial organization in tendon.

Quantification of the polarization properties of light scattered
from tissues has been exploited as a means to assess collagen.?® >
A polarization-based technique able to implement quantitative
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measures is polarized light microscopy (PLM).?*** PLM lever-
ages the birefringent properties of collagen to increase image
contrast, and measure fibril orientation and parallelism.>®
For example, quantitative PLM has been used to measure col-
lagen anisotropy in sheep tendon.?” However, PLM is limited to
2-D analysis.

Another group of polarization-based approaches for character-
izing collagen invokes the derivation of the second-order polariza-
tion SuSCCptlblllty M= (SOI SOZ S03 S04)(Si1 Si2 Si3 Si4 )_1
via its relation to the measured SHG intensity.>° This
approach has been employed in revealing significant differences
in the susceptibility matrix elements between human melanoma
tumor and comparable normal mouse skin tissue,?® and for map-
ping anisotropy information in collagen—muscle junction of
chicken wing.*! In another study, our group showed the potential
of using normalized y®) matrix elements to infer molecular
differences in breast biopsy collagen samples.’*® One short-
coming of this method, however, is the need to assume a model
crystallographic arrangement and subsequently fit the measured
SHG signal data to this model.

A more comprehensive polarization-based approach entails
the use of Mueller matrix polarimetry. This technique invokes
the rich and comprehensive Mueller matrix framework for char-
acterization of acquired tissue images.>? The Mueller matrices
can be decomposed to extract parameters that are representative
of the polarization properties of the sample; a popular decom-
position method is the Lu—Chipman Mueller matrix polar
decomposition (MMPD).33 The MMPD, which assumes multi-
plicative polarization effects in optical systems, has been applied
to describe the polarization response of fibrillar collagen* and

1083-3668/2017/$25.00 © 2017 SPIE

August 2017 « Vol. 22(8)


http://dx.doi.org/10.1117/1.JBO.22.8.086007
http://dx.doi.org/10.1117/1.JBO.22.8.086007
http://dx.doi.org/10.1117/1.JBO.22.8.086007
http://dx.doi.org/10.1117/1.JBO.22.8.086007
http://dx.doi.org/10.1117/1.JBO.22.8.086007
http://dx.doi.org/10.1117/1.JBO.22.8.086007
mailto:ktoussai@illinois.edu
mailto:ktoussai@illinois.edu
mailto:ktoussai@illinois.edu

Okoro and Toussaint: Second-harmonic patterned polarization-analyzed reflection confocal microscope

to identify differentiating features between healthy tissues and
cancerous human basal cell carcinoma.*> Our group also previ-
ously applied an adaptation of Mueller matrix polarimetry
to SHG microscopy for assessment of collagenous porcine
tissue.’® Using this adaptation, based on a generalized Stokes—
Mueller formalism®>° and particular to two-photon proc-
esses,’®*! we derived a bimodal mean difference metric (ugq)—
associated with the degree-of-polarization—which showed
increasing variation in porcine tissue with sample thickness.
A limitation of this second-order Mueller matrix theory is
that the parameters are not as intuitive as the conventional polar-
imetry case, which is important for understanding the underly-
ing tissue properties.

In general, Mueller matrix polarimetry has been carried out
using several image acquisition options, namely, brightfield
microscopy,*> optical coherence tomography (OCT),* and
laser scanning reflectance confocal microscopy.** Polarimetry
on OCT is part of the broader polarization-sensitive OCT
(PS-OCT) family that has been used to monitor birefringence
due to thermal damage in porcine tendon,* quantify birefringent
properties of skin,*® and assess coronary plaque collagen
content.*” It has also been combined with SHG for imaging col-
lagen in skin samples from salmon.*® PS-OCT has the advantage
of 3-D sectioning and deep penetration due to the coherence-
gating effect and near-IR wavelengths typically used,
respectively.*” However, in comparison to confocal imaging™
and SHG microscopy, PS-OCT generally does not achieve sub-
micron resolution.’! In addition, PS-OCT specificity to collagen
is not as high as SHG microscopy.’? Laser scanning reflectance
confocal microscopy presents an attractive polarimetric image
acquisition option for several reasons. First, it also enables
3-D optical sectioning.>® Furthermore, it is readily used for
microscopy of unstained tissue samples.’*>* In previous studies,
Mueller matrix polarimetry has been combined with a confocal
imaging system to obtain 3-D polarization information for col-
lagenous tissues.”*** However, confocal microscopy has no
inherent imaging specificity to collagen, and hence, any sub-
sequent analysis based on acquired images cannot discriminate
between collagenous and noncollagenous regions. There is,
therefore, a need to specify collagen-rich regions with a com-
plementary technique so as to accurately target and characterize
the collagen response in tissue samples.

We present herein the second-harmonic patterned polariza-
tion-analyzed reflection confocal (SPPARC) microscope,
which provides both SHG and linear polarimetric confocal
microscopy images at a target imaging plane in a volume.
The primary aim of this work is to demonstrate the capabilities
of SPPARC microscopy in obtaining spatially dependent polari-
zation information in 3-D, from both collagen fibers in tissue
and the surrounding EFMC. It combines the advantage of col-
lagen-specificity from SHG microscopy with the potential
insight acquired from linear polarimetry in reflection confocal
microscopy. Moreover, the optical sectioning capability of
both techniques is retained. The SHG images are used as an
endogenous mask to pattern the confocal images, and the result-
ing collagen-filtered confocal images undergo MMPD analysis
for extraction of traditional, linear polarimetric measures,
namely, depolarization, retardance, and diattenuation matrices,
along with their associated scalars. In addition, the noncollag-
enous regions comprising the EFMC can also be obtained from
the SPPARC images and analyzed. To our knowledge, this is
the first time that a single microscopy platform can provide
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label-free, quantitative information of both the collagen fibers
comprising the ECM and the EFMC environment around the
fibers.

The paper is organized as follows: we first briefly review the
relevant Mueller matrix theory and polar decomposition in
Sec. 2. Section 3 describes the experimental setup and sample
preparation process, while the results are presented in Sec. 4. In
Sec. 5, we discuss and summarize these results.

2 Theory

In this section, we review the theory behind Mueller matrix
decomposition. The Mueller matrix formalism deals with inten-
sities rather than fields,’® and this enables a mathematical
description that accommodates the depolarization phenomena.
A Mueller matrix linearly relates an input to an output
Stokes vector via matrix multiplication given by

S,=MS;, D

Moy Moy My M3
my my My M3
Myy My My My
mzy mz;p M3z M33
matrix and S; and S, are the input and output Stokes vectors,
respectively. To obtain representative Mueller matrices of tis-
sues, multiple Stokes vector measurements should be taken.
For a given set of input Stokes vectors and a minimum of four
independent output Stokes vector measurements, M can be
uniquely determined by concatenating the vectors into matrices
and inverting such that

where M = is a 4x4 Mueller

M= (S Sp Sz Su)(Si S S3 Su)™. @

Due to noise in measurements, it becomes desirable to “over-
sample” by taking more measurements, and then use the least
squares estimate of the inverse (Chapter 22 of Ref. 57)

Son)(Sil Sin )1_3]’ (3)

where ()3' represents the pseudoinverse operator and n (>4) is
the number of polarization state generator (PSG) configurations
used in the measurements.

MMPD decomposes the derived Mueller matrices into three
matrices: the diattenuation, retardance, and depolarization
matrices® such that

M= (S,

M:MAMRMD, (4)
where
=T 2T =T
My=(24 O ) Me=(L O ) mpy=(1 D),
P, my, 0 mg D mp
%)

where m,, mg, and mp, are the 3 X 3 depolarizgtion, retardance,
and diattenuation submatrices, respectively, P, is the polari-
zance vector, and D is the diattenuation vector. Scalar parame-
ters, derived from the full matrix and submatrices, offer
quantitative insight of physically relatable metrics, which are
more intuitive for description of the systems. Table 1 lists
some common scalar parameters and their respective definitions
that can be extracted using MMPD analysis. These parameters
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Table 1 Description of selected scalar parameters obtainable from the submatrix decomposition of the Mueller matrix (first two) and directly from

the Mueller matrix (last three).33%8

Scalar metric Mathematical definition

Description

Diattenuation D= norm(b)

Measure of the dependence of the transmittance of the system on incident polarization.

Obtained from the diattenuation vector.

Depolarization A=1— \Tf(Méa)—ﬂ

Measure of depolarization power of the depolarizer matrix on a polarized incident source.

Obtained from the depolarization matrix.

Linear retardance
+(Mg11 + Mpg2)?2 — 1}

Linear DOP DOP, = %
Circular DOP DOP¢ = zgﬁi’;zz

R_ = cos™" {[(mpg1y + mgo0)2  Degree of change in retardance for linearly polarized light.

Degree to which linearly polarized input light preserves its polarization state.

Degree to which circularly polarized input light preserves its polarization state.

were chosen based on their sensitivity to sample differences dur-
ing experiments and their generally intuitive definitions.

3 Materials and Methods

3.1 Sample Preparation

Porcine tendon and posterior cruciate ligament (PCL) were
embedded in optimal cutting temperature compound at —25°C.
The samples were then cut into thin sections using a cryostat
(Leica CM3050S) and soaked in 1x phosphate-buffered saline
to remove the excess embedding compound. Next, the sections
were placed on glass microscope slides, and # 1.5 coverslips
were mounted on top with the aqueous mounting media.
Tweezers were used to gently lower the coverslip on the micro-
scope slide to avoid creating any air bubbles. After the samples
were dried, nail polish was applied on the corners to seal the
samples. Note that this study is exempt from the Illinois
Institutional Animal Care and Use Committee.

3.2 Experimental Setup

Figure 1 shows the SPPARC optical setup. A Ti:Sapphire laser
system (Spectra-Physics Mai-Tai) produces 100-fs duration

S — T
LS: Laser source 1)
M:  Mirror l' ]‘ OBJ
BS: Beam-splitter Lsd
L1 L2
G:  Galvo scanner iy
L:  Lens i‘:, % I I M2
P:  Pinhole G I I 7
OBJ:  Objective lens
S: Sample 3 w3 b
SPF:  Short-pass filter I
BPF:  Band-pass filter PSA @
D: Detector BS @ 780nm I
—t— SPF
LS @ 780nm M1

Dsyo |

Fig. 1 Experimental setup. The yellow region represents part of the
setup that requires critical precalibration. The bold red line shows the

pulses spectrally centered at 780 nm. The polarization state
of the input beam is set using a PSG.*® This beam is directed
through a cube beam-splitter (30:70) and subsequently relayed
by mirrors and lenses. A strain-free objective (Olympus
ACHN40XP 0.65NA 40x) focuses the beam onto the sample.
This relatively lower numerical aperture and strain-free objec-
tive is used to allow the focusing behavior to be satisfied within
scalar diffraction theory™ and to minimize unwanted polariza-
tion scattering effects. Scanning galvo mirrors sweep the beam
across a ~200-um field-of-view on the sample. The episcattered
signal is collected by the same objective, and guided back
through the initial path up till the beam-splitter which partially
reflects it toward a polarization state analyzer (PSA)*® to mea-
sure the polarization state of the signal. The beam is focused
through a 50-um-diameter pinhole at the conjugate plane and
then measured by a photomultiplier tube (PMT) detector
Dconp to obtain polarimetric confocal images via different
PSG-PSA configurations. SHG images at 390 nm are obtained
using right circularly polarized light and no PSA, by inserting
mirror M3 into the beam path. This deflects the beam toward a
short-pass (Semrock FFO1-680/SP-25) and band-pass (Semrock
FF01-390/BP-18-25) filter combination so as to allow only the
second-harmonic signal through, which is then detected by the
PMT (Dsuc)-

3.3 Setup Calibration and Mueller Matrix
Characterization

Polarimetric images obtained using the setup include polarization
contributions from the optical setup. In order to isolate the sam-
ple’s Mueller matrix contribution, a full characterization of the
optical setup’s Mueller matrix is done. First, the forward matrix
M is obtained by PSA-PSG measurements using the arrangement
1.000 0.000 0.000 0.000
0.063 —-0.704 —0.391 0.592
—0.083 —0.675 0.644 -0.396
-0.012 -0.052 -0.652 —0.624
In a similar manner, the forward + backward matrix Mgg
was obtained from the arrangement in Fig. 2(b) to be

1.000  0.000  0.000 0.000

-0.001 -0.951 -0.224 -0.202

in Fig. 2(a) to be Mg =

path of the illuminating beam. The thin magenta line represents the Mg = Since we
common path taken by the emitted signals on reflection by the beam- 0.039 0.144 0.179 = —1.000

splitter, while the thin red and blue lines show the paths taken by the 0.006 0.422  -0.900 -0.151

confocal and SHG signals, respectively. have
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Fig.2 Mueller matrix characterization of the optical system. (a) The forward matrix, M. (b) The forward +
backward matrix, Mgg, using a mirror M in place of the sample. The arrows to the right bottom corner
indicate the path traveled by the beam from generation to analysis.

confocal
shg
masked

S8.pm

Fig. 3 (a—c) Confocal (red), SHG (green), and resulting masked (gray) images for three layers of a por-
cine tendon z-stack with a step size of 5 um. The currently imaged region in a stack is colored in yellow in
the schematic above each column. The 50-um scale bar applies to only the masked images.

MFB = MBMmirrorMFs (6)

the backward matrix Mg can then be obtained from

MB = MFB (N[F)I_Jl (Mmirr0r>;1a (7)
1 0 0 O

where Mo = 8 (l) _01 8 is the ideal mirror
00 0 -1

Mueller matrix reflecting at normal incidence.®® Using Mg
and Mg, the sample matrix Mg,mpe can be obtained from
the measured matrix M. qureq Via
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Msample = (MB);leeasured (MF)I_’] : )

3.4 Mueller Matrix Extraction and Decomposition

For a selected region, 36 polarimetric confocal sample images,
from six PSA configurations for each of six PSG states, and a
corresponding SHG image are obtained. Each image spans
512 x 512 pixels and is collected in ~120 s. The SHG image
is binarized by setting a threshold, based on second-harmonic
signal strength, to highlight regions with appreciable collagen.
This thresholded SHG image is then used as a mask to pattern
the polarimetric confocal images. This process has the effect of
yielding confocal images of collagen-rich regions. We sub-
sequently determine the Mueller matrix per pixel using an
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image analysis algorithm based on Eq. (3) and extract subma-
trices and scalar parameters using equations in Table 1.

4 Results

Figure 3 shows the confocal (red), SHG (green), and resulting
SHG-patterned confocal (grayscale) images for three layers of a
3-D z-stack of porcine tendon, with a step size of 5 ym. From

theoretical considerations,” the axial resolutions are calculated
to be 1.4 - n - Ay /NA? (= 2.6 um) for confocal microscopy,
and 2.3 - n - Ay /NA? (= 2.1 um) for SHG microscopy. The
emission wavelengths, A, and A, are given to be 780 and
390 nm, respectively, and n is assumed to be that of air. These
values are sufficiently close to show that the images are roughly
representative of similar planes. Each slice should also exclude

1 35
0.8 3
2.5
0.6
2
< <
04t € o 1.5 q
0 1
v
0.2 ¥ A4
+ Diatt LinDOP 0.5 ]
¢ Depol v CircDOP < LinRet
0 0
0 5 10 0 5 10
AXIAL POSITION (xm) AXIAL POSITION (zm)
(a) (b)

Fig. 4 Variation of mean polarization parameters for collagen across three porcine tendon layers.
(a) Diattenuation, depolarization, linear DOP, and circular DOP, over a 0-to-1 range and (b) linear retard-
ance, over a 0-to-z range. The legend shows the color assignment for each parameter.

Circular DOP
0.26+0.19

TENDON 500
COLLAGEN

100 200 300 400 500

Depolarization
' 0.36%0:13

100 200 300 400 500

Linear Retardance

1.79+0.73
100 i
200
200 .
400
o .

100 200 300 400 500

(a)

Circular DOP

PCL
COLLAGEN

50 gm

100 200 300 400 500

Depolarization

0.15%0.13

100 200 300 400 500

Linear Retardance

2.92:0.17 5
25
2
1.5
1
05
0

100 200 300 400 500

(®)

Fig. 5 Comparison between selected polarization parameter maps (circular DOP, depolarization, and
circular retardance) of collagen in porcine (a) tendon and (b) PCL. The color bars represent the
range of allowed values for each polarization metric. The inset values at the top right hand of the images
are the average parameter values per pixel that contributes to signal, along with the standard deviation.
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significant out-of-plane signal contamination, since the resolu-
tion is less than the 5-um layer separation.

The variation of parameters across the three layers imaged is
shown in Fig. 4. From Fig. 4(a), depolarization and circular
DOP parameters show a similar trend, reducing in value with
deeper tissue penetration. Diattenuation and linear DOP show
minimal variation across layers. The high linear DOP values
indicate that there is a cumulative effect of preserving linear
polarization, which is expected to be along the direction of
the fibrils. In Fig. 4(b), it is observed that the average linear
retardance reduces with deeper penetration.

Figure 5 shows polarization “heat” map comparisons
between selected parameters from collagen in PCL and the
center z-slice of porcine tendon imaged. On average, PCL
has higher circular DOP values (0.75) than tendon (0.25).
This implies that circularly polarized light preserves its polari-
zation to a higher degree on passing through PCL. This obser-
vation is supported by the depolarization map, since the
reduction of circular DOP most likely contributes to the overall
depolarization of the sample. Ligament and tendon are connective
tissues that have parallel and tightly packed heterogeneous col-
lagen fibers.®' However, ligament may also include collagen bun-
dles with spiral arrangement,®” and this additional organization

Diattenuation
0.21+0.10

PCL
COLLAGEN 100 200 300 400 500

Linear DOP
0.8910.21

100 200 300 400 500

Linear Retardance

100 200 300 400 500

(@)

2.9240.17 I

variation potentially explains the preferential response to circu-
larly polarized light. Furthermore, the linear retardance of ten-
don collagen is less than that of PCL collagen. Since linear
retardance is related to the birefringence of the sample, this
seems to infer that the PCL region imaged has higher birefrin-
gence than tendon, which is another expected effect of a spiral/
helical fiber arrangement.®

Figure 6 shows the “heat” map comparisons for some param-
eters from a collagen-rich region and noncollagenous EFMC in
PCL. The differences in mean values are more subtle in this
case. Also, the polarization data do not show as much variation
as the confocal images, and this may be due to additional iso-
tropic absorption which varies across the region imaged and
affects intensity but not polarization information. It is observed
that, on average, the linear DOP is preserved more for PCL col-
lagen than PCL EFMC. This suggests that there are more com-
ponents that scatter linear polarization in the EFMC than in
fibers. Furthermore, the higher average linear retardance points
to the relatively higher birefringence of collagen compared with
EFMC. A previous study that alludes to this showed that
increased presence of other EFMC components such as proteo-
glycan caused lower linear birefringence,** inferring that the
EFMC has an average lower linear retardance than collagen.

Diattenuation

100 200 300 400 500

Linear DOP

100 200 300 400 500

Linear Retardance

2.7910.29 :
25
2
1.5
1
0.5
0

100 200 300 400 500

(b)

Fig. 6 Comparison between selected polarization parameter maps (diattenuation, linear DOP, and linear
retardance) for (a) collagen and (b) EFMC, in porcine PCL. The color bars represent the range of allowed
values for each polarization metric, apart from diattenuation, whose range has a maximum at 0.5 to
increase contrast. The inset values at the top right hand of the images are the average parameter values
per pixel that contributes to signal, along with the standard deviation.
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However, care must be taken in comparing these values, as the
overlapping error bars suggest that the observed differences are
not statistically significant.

5 Summary and Discussion

In this paper, we introduced the multimodal SPPARC micro-
scope, from which 3-D SHG-patterned confocal microscopy
images of collagen fibers were obtained. We applied linear
polarimetric analysis and matrix decomposition methods to
these images in order to obtain rich polarization information.
We also showed that SPPARC microscopy permits label-free
quantitative analysis of the EFMC, which to our knowledge
had heretofore not been accomplished. Using MMPD as a
decomposition approach, we highlighted differences in average
parameter values between tendon and PCL collagen and
observed that PCL preserves circular DOP (and hence has less
total depolarization) than tendon collagen. The variation in
parameters was not as pronounced for the comparison between
tendon collagen and tendon EFMC. We also tracked changes in
parameters across layers for collagen in tendon. The retardance
parameters in particular showed gradually reducing values for
deeper penetration.

In order to make statistically significant comparisons with
stronger interpretation of results, an in-depth study involving
more samples and further data analysis would be needed. In
addition, the potential of polarimetric measures for differentia-
tion would be more readily realized for complex microstructures
having greater diversity, such as the case with varying pathol-
ogies of cancerous tissues. This is indeed the focus of ongoing
work being undertaken. Furthermore, more recent decomposi-
tion methods can be adapted to SPPARC microscopy; one
such method is the differential matrix decomposition,®> which
assumes the sample’s properties within a differential matrix set
by the spot size of the probing beam.
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