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Abstract. An optical time-stretch flow imaging system enables high-throughput examination of cells/particles
with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-
speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently.
A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model
(GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates
distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are
classified by GMM. We compared the performance of our algorithm with support vector machine. Results show
that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy.
This algorithm provides a promising solution for high-throughput and automated cell imaging and classification
in the ultrafast flow cytometer imaging platform. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.

JBO.23.4.046001]

Keywords: ultrafast technology; cytometry; image recognition algorithm.

Paper 170683R received Oct. 19, 2017; accepted for publication Mar. 16, 2018; published online Apr. 5, 2018.

1 Introduction
Imaging flow cytometry, which images large-scale cells, can
reveal important cell parameters, such as amount, shape, and
size, by directly capturing images of individual flowing cells
in real time. Measuring the composition of blood is a vital
step in studying and diagnosing blood diseases or hematological
cancer. Apart from the detection accuracy, the detection speed is
a critical specification of flow cytometer imaging systems as
well. A high-speed flow cytometer imaging system, typically
running at about 100;000 cells∕s, needs to screen a large enough
cell population to find rare abnormal cells that are indicative of
early stage diseases. However, the pursuit of high detection
speed without sacrificing temporal resolution is considerably
restricted by the charge-coupled device or complementary
metal–oxide–semiconductor imaging techniques. Many research
groups1–3 have developed ultrafast cell imaging systems based on
the time stretch concept.4 This concept overcomes the trade-off
between imaging resolution and detection speed by transforming
the spatial information into temporal information. But it also
brings the problem about how to deal with large amount of
cell images rapidly and accurately as imaging speed raised
significantly. Chen et al.5 proposed a method of deep learning,
which classifies cells accurately accompanied by prior training
but suffers from high time cost. Guo et al.6 focused on improv-
ing the precision of classification by combining label-free
images with fluorescence-assisted results. However, improving
cell recognition speed has been largely overlooked in previous
work. In this paper, we present a detection and classification
algorithm without prior training for ultrafast flow cytometer

imaging with improved speed while maintaining good recogni-
tion accuracy.

2 Construction of Ultrafast Flow Cytometer
Imaging System

In our flow cytometer imaging system (Fig. 1), a broadband-
pulsed laser is employed as the light source with a pulse repeti-
tion rate of 50 MHz. After propagating through a section of
dispersion compensating fiber, the optical pulses are dispersed
in the time domain, which leads to the mapping between time
domain and wavelength domain. Then, the optical pulse is cast
into free space from a collimator. A combination of 1∕2 and
1∕4 wave plates is used to adjust the polarization state. The
laser beam is then spatially dispersed by a diffraction grating.
When the dispersed laser beam is focused onto a microfluidic
channel with a depth of 100 μm and a width of 100 μm on a
polydimethyl-siloxane microfluidic chip, a laterally distributed
focused line spot is formed on the focal plane. Along this line
spot, different wavelengths are located at different positions,
indicating that the wavelength-to-space mapping is established.
The cells to be examined flow through the channel and are
illuminated by this one-dimensional scanning beam so that
the intensity information of pulses forms a two-dimensional
image. Finally, the light travels back through the diffraction
grating to a photodiode so that spatial information is encoded
onto time-domain waveform and received in sequence.

3 Cell Recognition Algorithm
According to Abbe diffraction limit, the resolution limit of
our flow cytometer imaging system is r ¼ 0.61λ∕NA ≈ 1 μm,
where λ is the source wavelength and NA is the numerical
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aperture of the system. As the imaging frame rate reaches laser
repetition rate, which is 50 MHz, 5G resolvable points are gen-
erated on 100-μm scan line/s. To match the scan rate, we set
the oscilloscope sampling rate to 10 GHz. Therefore, 8 GB
of data would be produced per second under 8-bit quantization.
With such huge amounts of data continuously produced by the
imaging system, the speed of cell image recognition is the key to
enable continuous operation of the system. An efficient and fast
cell detection and classification algorithm is, therefore, highly
demanded. Since a large amount of pretraining is needed for
typical pattern recognition algorithms, we hope to improve
the operation speed and convenience using a method without
training set. As shown in Fig. 2, the image background of our
system is quite plain with little noise, which makes the appli-
cation of recognition algorithm without training set possible.
So, we proposed a recognition method consisting of a two-
stage cascaded cell detection algorithm (Fig. 3) and Gaussian
mixture model (GMM) classification algorithm.7 This method
avoids typical training and testing of pattern recognition and
analyzes the cells in our images fast and accurately.

3.1 First Stage of Detection

In the first stage of cell detection algorithm, we roughly scan test
images such as Fig. 2 obtained by the cell imaging system stated
above to find out cell areas standing out from background
and isolated from others. To show a significant difference in
morphology among different types of cells in our image, we
mixed smaller, human red blood cells with larger cultured
HeLa cells. The method of obtaining these two kinds of cell
suspension is described in detail in Sec. 4. The grayscale test
image is first binarized as shown in Fig. 2, because the test
image has a uniform gray value within background area and
a large contrast between background and cells. Therefore,
a simple threshold segmentation method will suffice to binarize
the image to separate cells from the background initially.

We then use closing operation on the binary image obtained.
Closing operation that consists of an erosion operation and
a dilation operation may help smooth edges, reduce noise, and
eliminate the isolated background areas surrounded by cell
areas. Next, we mark all the connected cell regions individually
using 8-connected boundary tracking algorithm.8 Among all the
connected cell domains, there are some small domains of inclu-
sion and large domains of multiple cells besides single-cell
domains. For tiny inclusion removal, we set a threshold of
the number of pixels under each area in the image according to
the approximate size of cells flowing in our system. If the cell
domain has less pixels than the threshold value, this domain is
considered as an inclusion, which shall not be counted.

3.2 Second Stage of Detection

From the first stage, we have got all regions containing single
and multiple cells. In the second stage, our goal is to separate
multiple clustered cells. To find out large regions of multiple
cells, we set thresholds for the length, width, and aspect ratio
of the regions according to prior cell knowledge. If any one of
the three values of the cell regions exceeds their threshold value,
this domain is considered as a multiple-cell domain for further
segmentation. All the connected cell domains left are considered
to be the image of a single cell. Then, the length, width, and
average gray value of them are recorded for later counting
and classification. As for the multiple-cell domains, we use an
image segmentation method based on distance transform9 and
watershed algorithm10 to set the clustered cells in multiple-
cell domains apart.

Distance transform is an operation for binary images. It turns
a binary image into a gray value distance image where gray
value of each pixel means the distance between the pixel and
its nearest background pixel. Theoretically, we need to scan
all the background pixels to find out the minimum distance
between the pixel and background. The computational cost of

Fig. 1 Ultrafast flow cytometer imaging and analysis system setup. MLL, mode-locked laser; DCF,
dispersion compensating fiber; EDFA, erbium-doped fiber amplifier; Cir, circulator; PD, photo-detector;
and PC, personal computer.

Fig. 2 Image obtained by the ultrafast flow cytometer imaging system showing cell image of red blood
cells and HeLa cells.
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this global action will be very large unless the size of this test
image size is very small. To reduce the computational complex-
ity of distance transform algorithm and improve calculation
speed, distance calculation starts from adjacent pixels to find
out a local minimum distance in the adjacent area of the
pixel. Calculation of local distances is implemented for all
the pixels in the domain forward once and then backward
once. The approximated global distance is a superposition of
the local distances multiplied by corresponding global coordi-
nate. Based on the above-mentioned principles, we select
chamfer distance transform algorithm,11 which operates quickly
and simply. This algorithm also obtains calculated distance
close enough to the real Euclidean distance. As shown in
Fig. 4, distance image transformed from binary image marks
pixels of different locations with different intensity. Pixels on
the edge of adjacent cells are marked with smaller gray values,
which make it easier to divide those adhered cells. In the next
step, we employ watershed algorithm to tag the edges among
adjacent cells.

Figure 5 shows the principle of watershed algorithm. The
peaks in the figure represent the centers of adjacent cells.
When we set the threshold line on a high gray level, the thresh-
old line divides the cell distance image into correct number of
cells. As the threshold line continues to go down, the boundary
of cells extends with the decreasing threshold line. When their

boundaries meet, these cells are not fully merged and begin to
adhere slowly. These pixels, where the two cells overlap ini-
tially, are the boundary points that need to be marked to separate
the cells. This whole process terminates before the threshold
line reaches the background domain. Based on the determined
boundary points, we are able to separate the multiple-cell
domain into several single-cell domains.

Figure 6 shows the single cells we got from Fig. 2 by the
above-mentioned detection method. We can see that adhered
cells are successfully separated and all single cells are solely
marked. After that, an edge image of all single-cell domains
is extracted using edge-detection approach based on Sobel
operator. Then, we measure and record the length, width, and
average gray value of each single-cell domain according to
the edge image.

3.3 Classification Algorithm

As the length, width, and average gray value of all single cells
are recorded, the cells are classified sequentially by GMM clas-
sification. When the distribution of sample points is approxi-
mately ellipsoid, GMM algorithm uses GMM distribution to
simulate the probability density function generating the sample
points and then clusters them by calculating the parameters of
GMM distribution. GMM distribution is defined as

Fig. 3 Algorithm flow chart of two-stage cascaded detection method.

Fig. 4 Binarized cell image from Fig. 2 is shown in the first figure and processed into distance image by
chamfer distance transformation in the figure below.
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EQ-TARGET;temp:intralink-;e001;63;306pMðxÞ ¼
Xk
i¼1

αi · pðxjμi;ΣiÞ; (1)

where pðxjμ;ΣÞ is the probability density function of Gaussian
distribution, μ is the mean vector, Σ is the covariance matrix,
k is the number of Gaussian distributions, and αi is the mixture
coefficient,

P
k
i¼1 αi ¼ 1. To find the best αi, μi, and Σi of

GMM distribution, we use maximum likelihood estimation
method by finding the maximum of following function:

EQ-TARGET;temp:intralink-;e002;63;199LLðDÞ ¼
Xm
j¼1

ln

�Xk
i¼1

αi · pðxjjμi;ΣiÞ
�
; (2)

where D is the sample set and m is the number of samples.
When LLðDÞ reaches its maximum

EQ-TARGET;temp:intralink-;e003;63;125μi ¼
P

m
j¼1 γjixjP
m
j¼1 γji

(3)

and

EQ-TARGET;temp:intralink-;e004;326;306Σi ¼
P

m
j¼1 γjiðxj − μiÞðxj − μiÞTP

m
j¼1 γji

(4)

can be derived from ∂LLðDÞ
∂μi

¼ 0 and ∂LLðDÞ
∂Σi

¼ 0. Here, γji is the

posterior probability of xj, γji ¼ pMðijxjÞ. Due to
P

k
i¼1 αi ¼ 1,

it can be derived that

EQ-TARGET;temp:intralink-;e005;326;228αi ¼
1

m

Xm
j¼1

γji: (5)

Equations (3)–(5) can be calculated by iteration. Procedure
of iteration is listed below:

1. Initialize parameter model of Gaussian mixture distri-
bution, including mean μi, covariance matrix Σi, and
mixed coefficient αi.

2. The posterior probability γji of each cell sample was
calculated from the parameter model.

Fig. 5 Principle of watershed algorithm.

Fig. 6 Single cells we obtained from Fig. 2 by the two-stage cascaded detection method are shown in
the first figure and then marked by boxes in the figure below.
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3. Calculate the new mean μi, covariance matrix Σi, and
mixed coefficient αi.

4. Calculate the maximum likelihood function LLðDÞ.
If it stops increasing, classify all cells with GMM
distribution and record the result; otherwise, repeat
steps 2 to 4.

The reasons why we choose GMM to classify cells include:
(a) the size and gray value of cells follow the Gaussian
distribution, which makes the algorithm converges fast and
classifies accurately, (b) unsupervised clustering works more
efficiently than supervised ones, and (c) feature dimension can
be expanded easily for other applications.

3.4 Algorithm Time Complexity Analysis

As computational speed is the major advantage of the presented
algorithm, we will compare time complexity of the presented
algorithm with two other typical cell recognition algorithms.
In the two steps of cell detection, the computation time is mainly
consumed in the 8-connected boundary tracking algorithm and
distance transformation. Both of them scan all sample images
once and allocate memory all at once without complex opera-
tions, such as query or convolution. Therefore, the processing
time of them is linear with the scale of sample. In the worst
case, up to 32 operations need to be calculated if boundary
tracking and distance transform are performed for all 8 neigh-
borhood pixels of each pixel. Due to the sparsity of the cell
images, the average number of actual calculations would not
exceed half of the estimated value. Time complexity of GMM
classification is OðPk

i¼1 niÞ ∈ Oðk2nÞ,7 where k is the number
of Gaussian models and n is the number of cell samples. So the
total time complexity of our cell recognition algorithm can be
expressed asOðN þ k2nÞ, whereN is the total number of pixels.

In the following experiment, we would use a typical pattern
recognition algorithm called support vector machine (SVM) pat-
tern learning algorithm12 in control group. It is a commonly used
supervised learning recognition algorithm with training group.
The training time complexity of SVM is Oðm2t2Þ and the test
complexity is Oðm2NÞ, where t is the number of training sam-
ples and m is the dimension of feature vector. As can be seen,
our algorithm using unsupervised learning by making cell detec-
tion in advance may avoid the significant time overhead required

for training of supervised learning and point-by-point window
sliding of test image. Another algorithm used for flow cytometry
is convolutional neural network (CNN).5 Its time complexity of
convolutional layer l for each sample isOðM2K2ClCl−1Þ, where
M is dimension of feature map, K is the dimension of convo-
lution kernel, andCl is the number of layer l outputs. So the total
time complexity is O½NðPlM

2K2ClCl−1Þ�. Clearly, CNN has
a high time complexity due to repetitive convolution operation.
It usually requires GPU to help shorten the operation time.
In summary, the presented algorithm has lower time complexity
than other common cell recognition algorithms theoretically.

4 Experimental Results
We applied the presented recognition method to process images
of three kinds of cell suspension: HeLa cells, Jurkat cells, and
red blood cells. HeLa cells, a cell line of cervical cancer cells,
are adherent cells. We cultured them in Dulbecco’s modified
eagle medium (DMEM), which contains 10% fetal bovine
serum and 1% penicillin and streptomycin. The medium was
incubated in a 5% CO2 incubator at 37°C. When the cells
covered about 80% of the bottom of the petri dish, we washed
the cells with phosphate-buffered saline and treated with trypsin
for 3 min. Trypsin was then aspirated and fresh medium was
added. The cells were gently pipetted from the bottom of
the petri dish and whipped into single-cell suspension for use.
Jurkat cells, an acute T lymphoblastic leukemia cell line, are
suspension cells. We cultured them in DMEM medium as well.
The medium was incubated in a 5% CO2 incubator at 37°C.
When the cells grew to a dense density, we gently pipetted
the cells and whipped them into single-cell suspension for use.
To obtain red blood cell suspension, we drew human whole
blood and then added edetate anticoagulant and saline with suf-
ficient mixing. The blood was then centrifuged and the super-
natant discarded. Concentrated red blood cells were obtained
by repeating centrifugation three times and retaining the lower
fluid. A few drops of concentrated erythrocytes were added to
normal saline and diluted into a red blood cell suspension.

Each type of cell image was obtained by cell suspension
flowing on the microfluidic chip at 1 ml∕min in 64 ms through
our flow cytometer imaging system individually (Fig. 7). The
data are reconstructed and processed by MATLAB® 2014b
running on a PC with CPU frequency of 2.20 GHz and 8-G
memory.

Fig. 7 Image obtained by the ultrafast flow cytometer imaging system showing three types of cells:
the left figure is the original image and the resolution of the right figure is 1∕10 of the left.
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The total running time of the two-stage detection algorithm
and classification was around 70 to 78 s. The comparison group
classified these cells with SVM pattern learning algorithm. The
result of classification is shown in Table 1.

Compared to the SVM method, results in Table 1 showed
that the presented algorithm increased the running speed by
over 150% without sacrificing recognition accuracy. The pre-
sented algorithm missed less cells than SVM algorithm. But,
its false positive rate was higher. The reason was that the
two-stage cascaded detection method would detect some blurry
cells or cells in irregular shape, which SVMwould miss but may
cut large cells into several small ones, which increased the false
positive rate. Analyzing the false detection rate, we found that
most of undetected cells had small intensity because they flew
slightly away from the focal plane. Very few cells were wrongly
detected because they overlapped each other too much to be di-
vided. Comparing the recognition rate of red blood cells with the
other two types of cells, red blood cells were easier to classify
because they were much smaller. SVM algorithm performed
a little bit better while distinguishing HeLa cells and Jurkat
cells because it would catch more detailed features than our
algorithm.

In flow cytometry imaging, the signal-to-noise ratio is usu-
ally stable, because of the constant imaging optical path and
little impurities in the suspension. The most important impact on
image quality is the resolution of imaging affected by sampling
rate and resolution limit of the optical system. Therefore, we
repeated the recognition experiment described above while
reducing image quality as shown in the right figure of Fig. 7
to verify the recognition capability of the presented algorithm
on low-quality images. The result is shown in Table 2.

Results in Table 2 showed that the greater the amount of data,
the better the presented algorithm could help to speed up
the calculation. Moreover, the performance deterioration of the
presented algorithm was less severe than SVM algorithm. One
reason was that the recognition capability of our algorithm

Table 1 The cell detection and classification result of different algorithms.

Red blood cells HeLa cells Jurkat cells Grand total Running time (s)

Two-stage detection with GMM classification Detected cell number 676 415 342 1433 73.2

False positive (%) 1.60 5.49 5.40 3.63

False negative (%) 1.89 6.44 8.24 4.73

SVM pattern learning algorithm Detected cell number 676 416 338 1430 190.3

False positive (%) 0.73 5.25 4.83 3.01

False negative (%) 2.61 5.97 7.39 5.07

Table 2 The cell detection and classification result of low-quality images.

Red blood cells HeLa cells Jurkat cells Grand total Running time (s)

Two-stage detection with GMM classification Detected cell number 689 405 328 1422 46.2

False positive (%) 4.06 12.41 11.65 8.29

False negative (%) 4.06 15.75 18.47 10.89

SVM pattern learning algorithm Detected cell number 687 401 319 1407 87.8

False positive (%) 5.52 11.93 12.22 8.97

False negative (%) 5.81 16.23 21.59 12.60

Fig. 8 Classification result of all cells. The surfaces in the figure are
the decision surfaces between every two kinds of cells. The decision
surface consists of points having the same Mahalanobis distances
from every two Gaussian distributions.
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caught up with SVM while the image lost detailed information.
The other reason was that SVM would miss more cells in
low-quality images while two-stage cascaded detection method
would detect more of them by adjusting thresholds. It was
proved that our algorithm had more resistibility to the deterio-
ration of picture quality than SVM algorithm.

In Fig. 8, we can see that the decision surfaces calculated by
the GMM divided the data points of the three kinds of cells into
three groups. Some HeLa cells and Jurkat cells near the decision
surface were not correctly identified due to their similar
morphology. The cell size statistics is shown in Fig. 9. The size
of each kind of cells complied with Gaussian distribution.
Figure 10 shows the microscope images of the cell suspension
tested by the flow cytometer imaging system. The three groups
of cells had mean diameter of 6.9, 13.5, and 14.1 μm, which
accorded with the diameter of human red blood cells, HeLa
cells, and Jurkat cells, respectively. We expected the ratio among
red blood cells, HeLa cells, and Jurkat cells to be 2∶1∶1 while
preparing cell suspension for experiment. According to our
experiment result, the ratio was 1.98∶1.18∶1. The difference

may result from cell counting error and the inhomogeneity of
the cell solution flowing in our imaging system.

5 Conclusion
In summary, a two-stage cascaded cell detection algorithm com-
bining distance transform and watershed algorithm followed
by GMM classification is designed and implemented. The main
advantage of the proposed algorithm is its high efficiency and
reduced computing time due to the fact that background of cell
images is homogeneous and can be easily removed, avoiding
time-assuming prior training, sliding-window, and massive
convolution operations of pattern recognition as usually used
in existing flow cytometer systems. The presented algorithm
greatly improves the classification speed and maintains cell
screening accuracy even if image quality deteriorates signifi-
cantly. It can also be adapted to image different kinds of cells
or particles, which also helps to put this system into practice.

The proposed system is targeted for blood diagnostics or
other body fluid diagnostics, such as the detection of cancer

Fig. 9 Cell size statistics.

Fig. 10 Cell image obtained by microscope.
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cells in trace amounts that flake off of organs into blood in
the early stage of cancer. Compared with traditional cancer
detection methods, cancer cells can be found earlier, more
conveniently, and more accurately. However, according to the
analysis of our experiment results and recent researches, imag-
ing flow cytometry with image recognition can achieve high
recognition rate but cannot guarantee 100% accuracy. Other
conventional inspection methods are needed to assist detecting
sparse events accurately, such as early cancer cells in the blood.
Target cells can be gathered by combining our high-speed cell
recognition algorithm with cell sorting. In this way, the concen-
tration of target cells can be greatly improved, which would
facilitate the following cell-stain and smear microscopy or
cell labeling with fluorescent markers for accurate diagnosis.
As cell sorting is required, it is necessary to detect and classify
cells in real time, which proves the significance of high-speed
cell recognition algorithm. Furthermore, optimization of the
algorithm, including abandonment of unnecessary background
information and algorithm’s implementation on field-program-
mable gate array platforms, would be explored to address the
challenge of classifying and sorting cells in real time.
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