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Abstract. This study aims to determine if light scatter parameters measured with spatial frequency domain
imaging (SFDI) can accurately predict stromal, epithelial, and adipose fractions in freshly resected, unstained
human breast specimens. An explicit model was developed to predict stromal, epithelial, and adipose fractions
as a function of light scattering parameters, which was validated against a quantitative analysis of digitized his-
tology slides for N ¼ 31 specimens using leave-one-out cross-fold validation. Specimen mean stromal, epi-
thelial, and adipose volume fractions predicted from light scattering parameters strongly correlated with
those calculated from digitized histology slides (r ¼ 0.90, 0.77, and 0.91, respectively, p-value <1 × 10−6).
Additionally, the ratio of predicted epithelium to stroma classified malignant specimens with a sensitivity and
specificity of 90% and 81%, respectively, and also classified all pixels in malignant lesions with 63% and
79%, at a threshold of 1. All specimens and pixels were classified as malignant, benign, or fat with 84%
and 75% accuracy, respectively. These findings demonstrate how light scattering parameters acquired with
SFDI can be used to accurately predict and spatially map stromal, epithelial, and adipose proportions in
fresh unstained, human breast tissue, and suggest that these estimations could provide diagnostic value. ©
The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.7.071605]
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1 Introduction
Breast conserving surgery (BCS) combined with radiation
therapy is becoming an increasingly popular treatment for local-
ized breast cancer. However, it still remains a challenge for sur-
geons to obtain clear surgical margins, with 20% to 40% of
patients requiring follow-up re-excision procedures.1 While
histopathology is the “gold-standard” for determining the mar-
gin status, it can take multiple days to process and analyze a
specimen, which requires specimen sectioning, dehydrating, fix-
ing, paraffin embedding, microtoming, slide mounting, and slide
staining. Because of this challenge, there has been a great effort
to determine novels ways to rapidly triage breast tissue speci-
mens, with the ultimate goal of intraoperative tumor margin
assessment.

A common technique to overcome this time barrier is frozen
section pathology (FSP), where cut tissue specimens are flash
frozen and mounted during the surgery, to have slides diagnosed
by a pathologist before closing the surgical cavity. While this
technique has shown some diagnostic value despite known im-
aging artifacts from freezing,2 it remains time consuming (20 to
25 min for a single round of FSP,3 50 minutes for eight FSP

sections4), costly, and stills suffers from under sampling of
the tissue. There have been promising advances in various
novel microscopy techniques, which can create virtual histology
slides in thick unprocessed tissue, with5,6 or without7,8 the appli-
cation of topical fluorescent dyes. And similarly, optical
coherence tomography can provide microscopic resolution in
unprocessed human breast tissue.9,10 However, in the BCS
workflow, there is still an issue of under sampling with these
techniques, as the time it takes to scan and evaluate microscopic
fields of view over an entire lumpectomy specimen creates a
clinical translation challenge.

Wide-field optical imaging can provide rapid sensing of
an entire specimen surface, and while it lacks microscopic
resolution, it can provide molecular or morphological
sensitivity.11,12 In particular, label-free reflectance imaging tech-
niques utilizing multispectral and/or structured illumination
have employed machine learning techniques to back out tissue
diagnoses from raw reflectance spectra or optical properties.13,14

Although machine learning can act as a conduit between
raw optical signals and tissue diagnoses, the cloaking of the
biological mechanism between the source data and predicted
pathology can often hinder clinical acceptance of these technol-
ogies. And although optical properties related to light scattering
have specifically shown enhanced sensitivity to tissue morphol-
ogy,14–16 these parameters lack a clear clinical or biological
definition.

Therefore, the ultimate purpose of this study is to elucidate
the relationship between clinically relevant histological features
from optical reflectance signatures, and furthermore develop
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and validate a method to predict these histological features from
optical signals. For this study, a cohort of N ¼ 31 freshly
resected human breast tissue specimens was imaged with a spa-
tial frequency domain imaging (SFDI) system, resulting in light
scattering parameter maps coregistered to histopathology. The
explicit relationships between optical scattering properties
and stromal, epithelial, and adipose volume fractions segmented
from coregistered digitized histopathology are presented.
Furthermore, a model by which these histologic features can
be predicted is validated and its diagnostic potential in distin-
guishing malignant from normal human breast tissue is
demonstrated.

2 Materials and Methods

2.1 Imaging of Fresh Breast Tissue Samples
Study Protocol

An ex vivo breast specimen imaging study conducted in the
Department of Pathology at Dartmouth Hitchcock Medical
Center (DHMC) was approved by the Institutional Review
Board for the protection of human subjects as detailed in a pre-
vious publication.15 To briefly summarize, excised breast tissue
from patients undergoing elected and consented breast surgery
was immediately transported to the Department of Pathology.
Tissue that was in excess of what was needed to make a clinical
diagnosis and designated for the tissue-bank was considered for
imaging in this study. Tissues that were grossly identified as
invasive cancer, fibroglandular, fibroadenoma, or adipose
were cut to a size of roughly 25 mm × 25 mm × 5 mm, placed
on a glass slide, and immediately imaged from below with a
commercial SFDI system (Modulated Imaging, Inc.),17,18

described in Sec. 2.2. After imaging, the specimens were
immediately returned to the Department of Pathology and
underwent standard histological processing of dehydration, fix-
ation, paraffin embedding, slide mounting, and staining with
hematoxylin and eosin (H&E). The resulting H&E slides
were read by an expert pathologist (W.A.W.) and included in
the patient’s report.

In total, 37 specimens were imaged, which represents an
expanded dataset obtained from a previous study,15 where
only 22 specimens were collected. Furthermore, fibroadenoma
(N ¼ 5) and mucinous ductal carcinoma (N ¼ 1) specimens
were excluded from this study. Theses diagnoses have unique
histopathologic features that were not amenable to the color-
based stroma and epithelium segmentation analysis described
in Sec. 2.3. Thus, N ¼ 10 invasive cancer specimens were
included [N ¼ 7 invasive ductal (IDc), N ¼ 2 intralobular
(ILc), and N ¼ 1 male invasive ductal IDc], N ¼ 14 normal
fibroglandular specimens [N ¼ 2 with fibrocystic disease
(FCD) andN ¼ 1male gynecomastia], andN ¼ 5 pure fat spec-
imens. A total of N ¼ 31 specimens were included as shown in
Table 1.

2.2 Spatial Frequency Domain Imaging and
Light-Scattering Parameters

The SFDI system and light-scattering parameters are thoroughly
described in previous publications.15,19 A description of the
main features pertaining to this study is summarized below.
The SFDI system utilized three light-emitting diodes at
λ = [658, 730, and 850] nm, which focused light on a digital
micromirror device (DMD) to sequentially project sinusoidal
intensity patterns with spatial frequencies, fx, in the range of
[0 to 0.2 and 0.5 to 0.9] mm−1 and in increments of 0.05 mm−1

onto the tissue surface. A charged coupled device (CCD) camera
captured the remitted intensity patterns. Offline, the image
stacks were read into MATLAB (v2016a, Mathworks, Inc.)
and demodulated and calibrated, which yielded reflectance
maps over the acquired wavelengths and spatial frequencies.
These reflectance maps were inverted into maps of optical
properties through a pixel-by-pixel least square fitting routine,
lsqnonlin (MATLAB, v2016a), which minimized the difference
between measured reflectance and light propagation model pre-
dicted reflectance. For the forward light propagation models,
diffusion theory in the spatial frequency domain18 is used for
fx < 0.2 mm−1 and a semiempirical subdiffusive model19 is
used for fx > 0.5 mm−1.

The resulting optical properties of interest quantifying light
scattering were the phase function parameter γ, reduced scatter-
ing coefficient μ 0

s, and wavelength versus scatter power, B. The
absorption coefficient, μa, was also quantified but was not
included in this analysis as chromophore mapping in BCS spec-
imens was the subject of previous studies, which demonstrated
that spectroscopic scattering parameters were more diagnosti-
cally discriminant.14 The phase function parameter quantified
directional light scattering (relative amount of forward to back-
ward scatter) and is related to the amount of scattering features
smaller and larger than the wavelength of light.20,21 The reduced
scattering coefficient is related to the overall density of scatter-
ing features.22 The scatter power quantifies the exponential
power of which μ 0

s varies with the wavelength of light {assum-
ing μ 0

sðλÞ ¼ A½λ∕ð800 nmÞ�−B}, and has been shown to be
related to size-scale distribution of scattering features.23,24

Previous studies have shown the spatial resolution of μ 0
s to

be ∼2 mm with a 1- to 2-mm depth penetration, while both
the spatial resolution and depth penetration and γ was <1 mm.15

2.3 Quantitative Digital Histology Analysis

The goal of the color-based quantitative histological analysis
was to estimate the relative fraction of epithelium, stroma,

Table 1 A table listing patient and specimen sample sizes.

Class Subtype Npatients Nspecimens npixels

Invasive cancer 10 10 12,225

IDc 7 7 7841

ILc 2 2 4203

Male IDc 1 1 181

Fibroglandular 14 16 29,233

Normal breast 11 13 24,373

Normal breast w. FCD 2 2 1319

Gynecomastia 1 1 1762

Fat 5 5 9073

Total 29 31 50,521
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and adipose over each lesion, assuming that these tissue spec-
imens were comprised of these three bulk tissue morphologies.
Physical H&E stained histology slides of the study specimens
were digitized with a slide scanner with a resolution of 500 or
1000 pixels per mm. The methodology of processing the digi-
tized H&E slides is shown in Figs. 1(a)–1(d). First, scanned
slides underwent white balancing to control for minor changes
in imaging conditions. Next, slides were deconvolved into
monochromatic hematoxylin and eosin intensity channels as
shown in Fig. 1(b), using a well-established spectral unmixing
technique.25 This was implemented using the “Color
Deconvolution” plugin (v1.7) in Fiji (v2.0.0): a distribution of
the open-source image processing software package ImageJ.26

Next, the hematoxylin and eosin intensity images were con-
verted to binary images, shown in Fig. 1(c), from which volume
fractions of epithelium, stroma, and adipose were estimated. The
binary conversion process was as follows: hematoxylin and
eosin intensity images were converted from a RGB (red,
green, and blue) to HSV (hue, saturation, and value) color
space using the rgb2hsv function in MATLAB (v2016a), and
the color saturation was used to compare each stain’s affinity.
Pixels with greater hematoxylin saturation than eosin saturation
were labeled hematoxylin, whereas pixels with greater eosin
than hematoxylin saturation where labeled eosin. Pixels without
significant hematoxylin or eosin saturation (<1∕10th maximum
value) being white space were labeled as no stain. Next, epi-
thelium, stroma, and adipose volume fractions, shown in
Fig. 1(d), were estimated from these binary stain images as

the fraction of hematoxylin, eosin, or no stain labeled pixels,
respectively, within 200-μm × 200-μm voxels. Because of dis-
tortions through histological processing steps (e.g., dehydration
and fixation), exact pixel-to-pixel correlation between the histo-
logical and optical maps could not be made. Instead, a certified
and expert histolopathologist (W.A.W.) outlined a single lesion
on each digitized histology slide, which was used to qualita-
tively inform a conservative ROI selected within the lesion of
the histological fraction maps and optical property maps, as out-
lined in cyan in Figs. 1(d) and 1(e). The mean and standard
deviation were calculated for each optical property and histo-
logical ROI and used for the model fitting, with each data
point corresponding to a specific specimen. The ROI in the his-
tology map are slightly different from the ROI in the optical
property due to the changes in shape induced by the fixation
process, but the authors note that the minor deviations in the
shape of the ROI were nearly insensitive to the results as the
mean of the ROI was analyzed rather a pixel-by-pixel analysis.

2.4 Optical-Histological Model Creation

With the paired light scattering parameters and segmented epi-
thelium, stroma, and adipose fractions, models were created
using the fit function in the Curve Fitting Toolbox in
MATLAB (v2016a). The mean epithelium, stroma, and adipose
fractions are plotted as functions of μ 0

s in Fig. 2(a), γ in Fig. 2(b),
and B in Fig. 2(c), respectively, where each data point represents
each specimen mean and the error-bars represent one standard

Fig. 1 (a) A digitally scanned H&E slide with resolution of 500 pixels/mm. (b) Intensity images of the
hematoxylin and eosin stains calculated through a color deconvolution of the H&E slide. (c) Binary hema-
toxylin, eosin, and no stain images calculated from a manual threshold of the color saturation of the
deconvolded stain intensity images (note: black = foreground, white = background). (d) Volume fractions
estimates of epithelium, stroma, and adipose calculated over 200-μm × 200-μm areas of the binary stain
images. (e) Corresponding optical property maps of the fresh specimen acquired prefixation and pre-
staining. The lesion outlined in cyan in both (d) and (e) denotes the region over which empirical relation-
ships are determined between the histological and optical data.
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deviation. The fitted relationships are shown as solid lines and
the 95% prediction intervals are shown as dotted lines. The
explicit form of each relationship is shown in Fig. 2(d),
along with the specific fitted parameters and corresponding
95% confidence intervals (CIs) of each parameter. Given the
monotonic nature of the stroma and adipose volume fractions,
a two-parameter logistic-like equation well described the data. A
three-parameter Gaussian-like equation described the peaked
epithelium volume fraction response, with fat and fibroglandular
specimens both having a diminished epithelium volume fraction
but separate optical properties. The reduced scattering coeffi-
cient was the least accurate predictor for both epithelium and
stroma, suggesting this parameter has the least sensitivity dis-
tinguishing cellular versus connective glandular tissue. This
is expected as reduced scattering is related simply to scatter den-
sity rather than a scatter size scale feature, like the scatter slope
or phase function parameter, which is sensitive to changes in

Rayleigh like scattering from collagen and Mie like scattering
from cellular organelles. The root mean square error (rmse) and
degree of freedom adjusted coefficient of determination (r2adj)
were calculated for each relationship and are shown in
Figs. 2(a)–2(c). The mean rmse over all models was 0.16,
whereas the mean r2adj was 0.69.

2.5 Statistical Methods

For the leave-one-out cross-fold validation (LOO-CV), perfor-
mance metrics were calculated for all specimen lesion pixels and
also specimen averaged values. The sensitivity, specificity, and
accuracy were calculated for each of the three output classes for
specimens and pixels, and CIs were calculated using the
Clopper-Pearson method according to a binomial distribution
using the MATLAB (v2016a) function binofit. A two-sided

Fig. 2 A summary of the relationships between the volume fractions of stroma, epithelium, and adipose
calculated from the H&E sections and the optical properties (a) μ 0

s, (b) γ, and (c) B, which describe overall
light scattering intensity, intensity change with scatter angle, and intensity change with wavelength of
light, respectively. The rmse and the adjusted coefficient of determination (r 2adj) are shown for each rela-
tionship. The solid line is the fitted equation and the dotted line is 95% prediction interval. Data points
represent means within each specimen, while error-bars represent one standard deviation. In (d), the
equations for fitting the volume fractions of stroma, epithelium, and adipose as a function of each optical
property, denoted by [x ], are shown, along with the values of the fitted parameters. Values in parenthesis
are 95% (CIs).
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two-sample t-test was used to test statistical significance of
differences in distributions.

3 Results

3.1 Histological Predictions from Label-Free Scatter
Images

Based on the fitted models described in Sec. 2.4, a predictive
model of the epithelium, stroma, and adipose fractions as a func-
tion of the light scattering parameters was created and tested, in
addition to a simple threshold-based tissue classification model
as shown in Fig. 3. To test the accuracy of the predictive model,
a LOO-CV scheme was used. For a given test specimen, such as
Fig. 3(a), the models, Fig. 3(b), were fitted without the test data
point, and this process was repeated over all specimens. The
stoma, epithelium, and adipose fractions, shown in Fig. 3(d),
were simply calculated as the mean of the predicted values
from each of the three light scattering properties as shown in
Fig. 3(c).

From these optical property predicted histological fractions,
a simple threshold-based tissue classification scheme was

implemented. Pixels with adipose volume fractions >50%
were classified as fat. For pixels with adipose <50%, the
ratio of epithelium to stroma (Ep.: St. Ratio), shown in
Fig. 3(e), was used to classify remaining pixels as malignant
or benign based on whether there was more epithelium than
stroma or vice-versa. The epithelium to stroma ratio is displayed
from 0 to 2, where white represents equal fractions of epithelium
to stroma, pink represents no epithelium, and purple represents
twice as much epithelium as stroma. The motivation for this
manually selected classification scheme was to yield a simple
biological interpretation of the histological predictions. Fat tis-
sues were first classified from glandular components (both
benign and malignant) by the adipose fraction being greater
or less than the combined epithelium and stroma fraction.
Within the glandular tissues, malignant and benign components
were classified by the greater of the epithelium or stroma frac-
tions, under the hypothesis that greater cellularity versus con-
nective components was correlated to malignancy status. A
“soft” classification map is shown in Fig. 3(f), where the
color of each pixel is determined by the classification and
the color saturation is determined by the continuous histological

Fig. 3 (a) Optical property maps of a test specimen. (b) Each optical property model is fitted with all
specimens except the test specimen. This process is repeated over each specimen for the LOO-CV.
(c) The histological volume fractions are predicted from the three optical property models and averaged
together, resulting in the histology prediction maps in (d). A predicted epithelium to stroma ratio (Ep.: St.
Ratio) is calculated in (e), which is simply the ratio of the epithelium and stroma predictions. In (f), a soft
classification map is shown where each pixel is one of three colors for a classification of malignant,
benign, or fat based on a threshold of 1 for the epithelium to stroma ratio and 0.5 for adipose volume
fraction. The color saturation is varied based on how close the epithelium to stroma ratio and adipose
volume fraction are close to their respective thresholds. In (g), H&E sections are shown for areas within
the malignant lesion, on the border of the lesion, and for the background fat, confirming the optical prop-
erty predictions.
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fractions. From this classification map, regions of the malignant
lesion, the lesion bordering with fat, and a region of pure adi-
pose are confirmed from the H&E section. Furthermore, a small
false-negative region within the larger malignant lesion can
be seen.

Case examples for a typical invasive ductal carcinoma (IDc),
fibroglandular, and fat specimen are shown in Fig. 4. The color
images, along with the optical property predicted stroma, epi-
thelium, and adipose volume fraction maps, are shown in
Figs. 4(a)–4(d), respectively, for each specimen. As expected,
the IDc, fibroglandular, and fat specimens presented uniformly
high epithelium, stroma, and adipose volume fractions, respec-
tively. The resulting soft classification maps are shown in
Fig. 4(e), which broadly corresponded to each specimens’
known pathology as confirmed by the whole specimen digitized
H&E sections shown in Fig. 4(f). Representative regions within
each section are shown in Figs. 4(g)–4(j), highlighting
typical microscopic features associated with each pathology.
There was a small false negative region within the IDc soft
classification map, suggesting a stronger optical signal from
extracellular stroma than cellular epithelium, as noted by the

small pink region in the map indicating a predicted epithelium
to stoma ration <1, and thus a misclassification of benign.
Interestingly, the H&E section corresponding to this region,
shown in Fig. 4(h), revealed an increased proportion of stroma,
compared with the more cellular section, shown in Fig. 4(g),
despite both regions coming from the same invasive ductal
lesion. Thus, in this area of the lesion, despite a correct predic-
tion of elevated stroma, the epithelium to stroma ratio at a
threshold of 1 was an imperfect predictor of malignant tissue.
Additionally, a slight artifact can be seen in the fibroglandular
soft classification map between the transition fat to benign tissue
at the specimen periphery. This false positive region is purple
indicating a predicted epithelium to stoma ration >1, and
thus a misclassification of malignant.

3.2 Correlation between Optical Property Predicted
and H&E Segmented Metrics

The quantitative results of the LOO-CV analysis to test the
accuracy predicting stroma, epithelium, and adipose volume
fractions from optical property measurements are shown in

Fig. 4 (a) Color photographs of representative invasive cancer, fibroglandular, and fat specimens.
(b)–(d) Stroma, epithelium, and adipose volume fractions predicted from the optical property maps
are shown, respectively, (e) with corresponding classification maps shown. (f) Whole specimen digitized
H&E sections are shown, (g)–(j) while representative regions within each specimen are shown, which
confirm the prediction of malignant, benign, and fat, respectively.

Fig. 5 Plots of the H&E segmented histological volume fractions versus the optical property predicted
volume fractions, calculated using a LOO-CV. Data points represent means of each specimen, while the
H&E segmented error bars represent one standard deviation within each specimens and the optical prop-
erty predicted error bars represent the standard deviation of the predicted values from each optical
property.
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Fig. 5. The optical property model and histological predictions
are plotted as a function of the corresponding H&E segmented
values, with data-points and error-bars representing the mean
and standard deviation within each specimen, respectively.
The resulting linear relationships provided evidence that the
optical property predictions were strongly correlated to the
values obtained from the digitized H&E slides, as quantified
by the Pearson’s correlation coefficients (stroma r ¼ 0.90,
p < 1 × 10−11, epithelium r ¼ 0.77, p < 1 × 10−6, adipose
r ¼ 0.91, p < 1 × 10−11).

A complete report of the distributions of both optical prop-
erty predicted and H&E segmented epithelium, stroma, and
adipose volume fractions stratified by invasive cancer, fibro-
glandular, and fat pathologies is shown in Fig. 6. This confirmed
that invasive cancer specimens presented a significantly higher
mean epithelium volume fraction than fibroglandular as mea-
sured from digitized histology (p < 10−8) and the optical prop-
erty model (p < 0.01) shown in Figs. 6(a) and 6(d), respectively.
Conversely, fibroglandular specimens presented a significantly
higher mean stroma volume fraction than invasive cancer as
measured by from digitized histology (p < 0.001) and the opti-
cal property model (p < 0.01) shown in Figs. 6(b) and 6(e),
respectively.

3.3 Benign Versus Malignant Classification
Performance

A summary of the quantitative performance analysis of the tis-
sue classification algorithm is shown in Fig. 7. The optical prop-
erty predicted adipose volume fraction boxplots in Fig. 7(a)
showed a clear separation between the fat specimens and the
aggregated invasive cancer and fibroglandular specimens at

a threshold of 0.5 (p < 1 × 10−14). But more importantly, the
optical property predicted epithelium to stroma ratio boxplots
in Fig. 7(b) showed a clear separation between the invasive
cancer and fibroglandular specimens at a threshold of 1
(p ¼ 0.007). For all boxplots, the means of each specimen
are plotted with error-bars representing one standard deviation
within each specimen, characterizing intraspecimen variation.

Confusion matrices tabulating the fraction of true versus pre-
dicted classifications of all specimens (left) and pixels (right)
are shown in Fig. 7(c). The values along the diagonals of
each matrix denote the fraction of correctly classified specimens
or pixels for a given class, while off-diagonal values denote
those incorrectly classified. The sensitivity, specificity, and
accuracy were quantified from these data and are tabulated in
Fig. 7(d). While the fraction of correctly classified malignant
specimens was 0.9 when specimen averaging is applied, the
fraction of correctly classified malignant pixels decreases to
0.63. Furthermore, when the specimens mean data are classified
versus all pixels within each specimen lesion, the malignant sen-
sitivity decreases from 0.9 to 0.63 and the benign specificity
decreases from 0.93 to 0.8. The apparent heterogeneity in cel-
lular versus stromal densities in malignant lesions suggests that
lesion-based averaging may increase robustness. Nevertheless,
the overall accuracy of correctly classifying a given pixel
was 0.75, whereas the overall accuracy of classify a given speci-
men was 0.84.

3.4 Spatial Quantification of Histological Metrics and
Tissue Classification

Side-by-side comparisons of the model predicted metrics and
digitized H&E data are shown for a heterogeneous specimen

Fig. 6 (a)–(c) Boxplots of H&E segmented epithelium, stroma, and adipose volume fractions are
shown, respectively, (d)–(f) while corresponding boxplots of optical property predicted epithelium,
stroma, and adipose volume fractions are shown, respectively. Data points represent means of
each specimen, while the H&E segmented error bars represent one standard deviation within each
specimen and the optical property predicted error bars represent the standard deviation of the pre-
dicted values from each optical property. For each pair of classes, a p-value range is shown calculated
from two-sample student’s t-tests.
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in Fig. 8. Spatially resolved maps of H&E segmented and opti-
cal property predicted epithelium, stroma, and adipose volume
fractions are shown side by side in Figs. 8(a)–8(c), respectively.
Soft classification maps, shown in Fig. 8(d), were calculated
from both the H&E segmented and optical property predicted
histological metrics. For both the soft classification and histo-
logical metrics, similar spatial features were seen in both the
H&E segmented and optical property predicated maps, despite
the notable difference in spatial resolution and expected minor
co-registration differences arising from specimen dehydration,
fixation, and sectioning. The whole digitized H&E slide is
shown in Fig. 8(e), with malignant, benign, and fatty regions
outlined. The presence of these outlined lesions can be seen
in both of the soft classification maps, albeit with some spatial
noise. Representative sections of the malignant invasive lesion
and benign fibroglandular region are shown in Fig. 8(f), the
locations of which are marked by red and green asterisks,
respectively in both the soft classification maps, Fig. 8(d),
and the annotated H&E slide, Fig. 8(e). A simple overlay of
the optical property predicted soft classification map onto the
white light image is shown in Fig. 8(g). The two image sets
are inherently coregistered as they were acquired with the
same imaging system. The original specimen color image
along with the graph of the overlay transparency is shown in
Fig. 8(h). When epithelium and stroma have a similar predicted
strength, and thus the classification is less certain, the overlay
becomes transparent. The adipose volume fraction was not over-
laid as fat is distinguishable by inspection.

4 Discussion and Conclusions
Label-free light scattering measurements have shown sensitivity
to morphological changes between malignant and benign tissues
through a multitude of studies across a myriad of optical sensing
devices over the last 20 years.12–16,27–36 However, in all of these
studies, light scattering is quantified either empirically or with
physical radiative transport terms, both of which lack biological
or clinical meaning. Therefore, the aim of this study was to
determine if quantitative light scattering measurements could
be related to and predictive of clinically relevant histological
metrics, specifically the volume fraction of stroma, epithelium,
and adipose. This hypothesis was systematically tested by inves-
tigating the relationship between optical scattering properties of
freshly resected breast tissue determined from SFDI to histology
metrics segmented from coregistered and digitized H&E sec-
tions of whole specimens. Logistic and Gaussian responses
were observed between the optical scattering properties and vol-
ume fractions of stroma, epithelium, and adipose. From these
observations, a simple model demonstrated that in fact common
optical properties could explicitly predict and spatially map vol-
ume fraction of stroma, epithelium, and adipose, which in turn
provided diagnostic accuracy in predicting malignant from
benign lesions.

Previous studies utilizing spatially constrained spectroscopic
reflectance measurements have revealed the sensitivity of light
scattering to breast tissue morphologies. Laughney et al.14 have
measured 47 BCS specimens with diffuse SFDI, which yielded

Fig. 7 (a) Boxplot of the optical property predicted adipose volume fraction between glandular speci-
mens (both malignant and benign) versus fat specimens. (b) Boxplot of the optical property predicted
epithelium to stroma ratio between malignant and benign specimens. Thresholds used for classification
are shown in magenta and p-values of a two-sample t-test are shown in black. (c) Confusionmatrices that
display the fraction of correctly classified data points in green and those incorrectly classified in red.
(d) Performance tables listing classification performance metrics. In (c) and (d), the left table represents
specimen averaged classification, whereas the right table represents classification over all individual
pixels. Values in parenthesis represent Clopper–Pearson 95% CIs, while no parenthesis represents
95% CIs are within �1%. All prediction and classification data were obtained with LOO-CV.
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chromophore concentration and scatter parameter maps, and
demonstrated that the scatter slope and amplitude were the
most discriminating features in their classification algorithm.
Furthermore, Wilke et al.37 demonstrated in a cohort of 55
BCS specimen margins measured with diffuse reflectance spec-
troscopy, that the ratio of the spectrally averaged scattering
to beta-carotene, a chromophore giving adipose its yellow
color, was the most diagnostically discriminate parameter.
Interestingly, hemodynamic parameters were less sensitive,
with the possible explanation that superficial blood on the speci-
men margin may originate from the surgery and be nonspecific
to the tumor. Additionally, simple RGB imaging has shown sen-
sitivity to murine tissue morphology, if specular reflections are
removed with cross polarizers,38 but a full analysis is yet to be
conducted in human breast tissue. Similarly, the presence of sur-
face blood could likewise hinder RGB sensitivity during
surgery.

The physical origins of light scattering arise from spatial
fluctuations in the refractive index over size scales both smaller
and larger than the wavelength of light, each of which uniquely
contribute to the spectral and angular intensities of light
scattering.22,23,39–41 Although these fluctuations cannot be
resolved with a conventional microscope, the staining of hema-
toxylin and eosin allows for an estimate of the relative propor-
tions of stroma, epithelium, and adipose, each of which have
very unique ultrastructural size-scale features. This has been

demonstrated in previous studies where fibroglandular tissues
have presented both increased scattering intensity and increased
collagen content when compared with more cellular malignant
lesions as measured in human breast tissue with phase contrast
microscopy33 and dark-field microscopy,29 as well as in human
ovarian tissue measured with optical coherence tomography.32

Furthermore, weak positive correlations have been reported
between spectroscopic scattering and the fraction of stroma
or collagen measured by spatial frequency domain imaging14

and diffuse reflectance spectroscopy.34 However in this study,
light scattering was further decoupled into spectroscopic and
angular components, which was achieved by increased signal
localization with high spatial frequency illumination, allowing
for more sensitive measurements.15,19

Although strong correlations between optical property pre-
dicted and H&E segmented histology metrics were found and
shown to be diagnostically relevant, there are a few notable lim-
itations with this technique. First the spatial correlations
between the optical images and the H&E slide are not exact,
as the tissue shrinks during the fixation process. Although
lesion-based averaging was used to overcome this common limi-
tation, a further issue is depth coregistration, as the H&E section
represents a superficial slice of the tissue only a few microns in
thickness, while the optical measurements have a depth sensi-
tivity of a few hundred microns. The inexactness of the depth
coregistrations was likely the dominant source variability in the

Fig. 8 Side-by-side comparisons of H&E segmented and optical property predicted epithelium, stroma,
and adipose volume fraction maps in (a), (b), and (c), respectively, for a specimen with malignant
and benign regions. In (d), H&E segmented and optical property predicted classification maps are
shown, and a corresponding H&E section of the entire specimen is shown in (e) with outlined malignant,
benign, and fat regions. (f) Zoomed in H&E sections of invasive ductal carcinoma and benign connective
tissue regions are shown. (g) An overlay of the epithelium to stroma ratio onto the photograph of the
specimen is shown, (h) with a graph of the overlay transparency and original photograph of the specimen.
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model. Second, the endpoints of stroma, epithelium, and adi-
pose volume fractions are imperfect for both the description
for origins of scattering signals and the metrics to classify
benign from malignant lesions. This imperfection was high-
lighted in Figs. 3(f) and 4(e), as regions of stromal proliferations
within malignant lesions lead to erroneous false negative clas-
sifications. Additionally, the color-based stain segmentation to
estimate the relative fractions of epithelium, stroma, and fat,
assumes that the breast specimens are comprised of these com-
ponents, when in fact other pathologies exist. However, this sim-
plification enables an estimation of scattering contributions from
collagen, cellular features, and adipose, which have very distinct
scattering features.

As mentioned previously, there are many ultrastructural fea-
tures not quantified through histology, such as chromatin pack-
ing, mitochondria density, and collagen reformation, which
could greatly affect both the light scattering properties and
pathological diagnosis. One such example is that benign asso-
ciated stroma in human breast tissue was shown to be more
strongly scattering than tumor associated stroma.33 However,
further studies could stratify benign and malignant regions
into levels of organization or grade as a proxy for neoplastic
architectural changes. Furthermore, classification thresholds
were manually chosen for biologic simplicity to be the largest
fraction of adipose or glandular components to segment fat, and
the greatest fraction of epithelium or stroma within glandular
components to segment malignant from benign tissue. But in
the future, more complex classification schemes could be auto-
mated and may result in improved performance. A practical
limitation to clinical translation is the processing time to
spatially map optical properties, which is currently ∼1 s∕pixel
on a laptop. However, a recently published method has demon-
strated mapping times of ∼10 ms∕pixel using dense lookup-
tables, which could be implemented in the future.42

Additionally, SFDI does require a projector to create the struc-
tured illumination, but SFDI studies have been performed with
an off-the-shelf, inexpensive commercial projector, which could
lower the cost and complexity of the imaging system.38,43

Despite these limitations, this study was able to show that
these scatter parameters acquired from fresh, unprocessed,
and unlabeled tissue could be used to quantified morphological
parameters, which can currently only be obtained through
timely histopathology processing.

In conclusion, it was shown that label-free light scattering
measurements of freshly resected human breast tissue acquired
with SFDI were explicitly related to and predictive of clinically
relevant histology metrics, as quantified from digitized, whole
specimen H&E slides. Three optical properties related the scat-
ter density, spectroscopic scattering intensity, and directional
scattering intensity were found to have a logistic relationship
to the stroma and adipose volume fraction and a Gaussian rela-
tionship to the epithelium volume fractions. From these relation-
ships, a predictive model was created and validated with LOO-
CV, which demonstrated that the optical property predicted epi-
thelium to stroma ratio was diagnostically relevant in distin-
guishing malignant from benign glandular tissue. With future
development, this technology may aid in the surgical triaging
of large, freshly resected BCS specimens.
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