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Abstract. Ovarian cancer is the deadliest gynecologic cancer due predominantly to late diagnosis. Early detec-
tion of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection
techniques exist. Multiphoton microscopy (MPM) is a relatively new imaging technique sensitive to endogenous
fluorophores, which has tremendous potential for clinical diagnosis, though it is limited in its application to the
ovaries. Wide-field fluorescence imaging (WFI) has been proposed as a complementary technique to MPM, as
it offers high-resolution imagery of the entire organ and can be tailored to target specific biomarkers that are
not captured by MPM imaging. We applied texture analysis to MPM images of a mouse model of ovarian cancer.
We also conductedWFI targeting the folate receptor andmatrix metalloproteinases. We find that texture analysis
of MPM images of the ovary can differentiate between genotypes, which is a proxy for disease, with high stat-
istical significance (p < 0.001). The wide-field fluorescence signal also changes significantly between genotypes
(p < 0.01). We use the features to classify multiple tissue groups to over 80% accuracy. These results suggest
that MPM and WFI are promising techniques for the early detection of ovarian cancer. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.JBO.24.9.096010]
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1 Introduction

1.1 Burden of Ovarian Cancer

Despite concerted efforts to improve patient outcomes, ovarian
cancer remains the deadliest gynecologic malignancy in the
United States, with a five-year survival of <50%.1,2 Ovarian
cancer can become advanced before causing signs or symptoms,
and a large majority of patients have already experienced spread
of their disease to local or distant tissues at initial diagnosis,
resulting in a significantly poorer prognosis.3

Therefore, there is strong interest in ovarian cancer screen-
ing, with the ultimate goal of identifying early stage tumors,
while the patient is still asymptomatic, allowing more effective
treatment. Various screening modalities have been investigated
to reduce the burden of the disease including physical examina-
tion, transvaginal ultrasound, and serum tumor marker measure-
ment (most commonly CA-125).4,5 Other screening tests and
multimodal protocols have also been investigated; however,
at this time, no routine screening is recommended in aver-
age-risk patients.6 As such, there remains a strong need for a
high-quality, minimally invasive modality for effective detection
of early-stage ovarian malignancies.

1.2 Multiphoton Imaging

Several different optical imaging techniques have been used to
probe ovarian tissue health including fluorescence,7 multispec-
tral imaging,8 confocal imaging,9 photoacoustic imaging,10 and
optical coherence tomography.11 One technique that has shown
promise in the identification of abnormal ovarian tissue is multi-
photon microscopy (MPM).12,13 MPM is based on the molecules
in tissue interacting with more than one photon simultaneously,
allowing for signal generation at a higher energy than the illu-
minating light. One type of MPM is second-harmonic genera-
tion (SHG) in which contrast is formed by the nonlinear
scattering of noncentrosymmetric structures.14 The nonlinear
nature of the scattering in SHG results in emission light with
precisely twice the frequency of the excitation light.

Another form of MPM is two-photon excited fluorescence
(2PEF) in which an endogenous fluorophore absorbs two pho-
tons nearly simultaneously to generate fluorescence emission at
a higher frequency than the incident light. Due to vibrational
relaxations and other losses, the frequency of the fluorescent
light undergoes a Stokes shift to slightly less than twice the
illumination frequency. 2PEF can be generated by endogenous
fluorophores, eliminating the possibility of toxicity or other
side effects from exogenous contrast agents and simplifying
the imaging procedure. Endogenous fluorophores in the body
include proteins containing aromatic amino acids (tryptophan,
tyrosine, and phenylalanine), metabolic co-factors such as nico-
tinamide adenine dinucleotide and flavin adenine dinucleotide,
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structural proteins such as collagen and elastin, and a variety of
other molecules including vitamins and lipopigments.15,16

For both SHG and 2PEF, three-dimensional images are
formed by scanning the focused, short-pulsed excitation beam
across the tissue. The probability of two-photon interaction
scales with the square of the irradiance.17 Due to the irradiance
of the beam sharply decreasing with distance from the beam
focus, this effect allows for probing a small volume of the
sample, without exciting regions of the sample outside the focal
plane.18 The necessity of high numerical aperture to generate
efficient two-photon processes (probability of excitation) yields
lateral resolutions on the order of hundreds of nanometers.19,20

2PEF and SHG have the advantage of high resolution, depth-
resolved imaging, with an imaging depth greater than confocal
imaging. The increased depth of imaging is achieved using
near-infrared light, which penetrates deeper than the ultraviolet
or visible wavelengths typically used in single-photon tech-
niques such as confocal microscopy and surface fluorescence
imaging. Additionally, at near-infrared wavelengths, there is
minimal absorption and reduced tissue damage.

1.3 Wide-field Fluorescence Imaging

MPM imaging has a limited field of view, posing challenges for
application as a screening tool. One solution is to couple MPM
with a wide field-of-view modality, such as wide-field fluores-
cence imaging (WFI). WFI illuminates a large area of tissue, for
rapid imaging with little or no scanning. In the case of a mouse,
we are able to view the entire reproductive tract including uterus,
oviducts, and ovaries in a single image. The addition of targeted
fluorescent dyes can provide both qualitative and quantitative
information on desired markers in the tissue and overall tissue
composition.

A number of different light sources and filters can be used
to separate the excitation and emission of fluorophores related
to ligands of interest. In the scope of ovarian cancer, the folate
receptor is an interesting target, as folate binding protein is over-
expressed in advanced ovarian cancers.21 Knowing this trend
in late disease suggests that the protein may be altered with early
disease as well. In addition, matrix metalloproteinases (MMPs)
play a pivotal role in tumor growth and the multistep processes
of invasion and metastasis in general cancers.22

1.4 Image Analysis

Several different approaches have been applied for quantitative
analysis of MPM images. One of the most direct is to threshold
the images based on brightness to evaluate fibrosis of the col-
lagen network.23,24 Another common technique is to employ fre-
quency analysis, which quantifies the global spatial frequency
content of an image.25–27 Recently, techniques focusing on local
image features have been applied for tissue health classification.
These include wavelet28,29 and curvelet analysis30 and convolv-
ing the images with a set of filter patches at different scales and
orientations.31

MPM generates contrast that shows changes in endogenous
cellular fluorescence (2PEF) and collagen structure (SHG) as a
result of ovarian cancer.32–34 For example, SHG has been used
to show that normal ovaries have thin collagen fibers organized
in a net-like structure, whereas malignant ovaries have a denser,
wavy collagen structure, which may result from recruitment
of activated fibroblasts to the outer rim of the tumor.26,32,34,35

Therefore, analysis of MPM images is focused on quantitatively
assessing these structural differences.

One of the most promising approaches to quantitation of
MPM images of ovarian tissue is image texture analysis. Texture
analysis in image processing is a general method for describing
the local variations in image brightness. Texture characterizes
the spatial distribution of the tones in an image.36 A number
of techniques for texture analysis of images have been devel-
oped; these can be generally categorized into three groups: stat-
istical, spectral, and structural methods. Statistical methods are
based on analyzing image histograms by computing their stat-
istical moments and other properties.37 These approaches are
best suited to characterize features such as inhomogeneity and
contrast. Spectral methods apply autocorrelation and Fourier
analysis to evaluate periodic features of an image. Finally, struc-
tural approaches decompose the image into a set of subpatterns,
arranged according to certain placement rules.

Here we use MPM and WFI to image a mouse model of
ovarian cancer in vivo. WFI and MPM images are collected
for both the ovaries and the oviducts and features are extracted
from MPM using texture analysis and from WFI by calculating
the magnitude of the fluorescence emission. We find that these
features can differentiate between mouse groups with high
statistical significance. These features are then used to build
a tissue classifier. The results suggest that texture analysis of
MPM images and intensity of target fluorescence images may
be useful as an aid for ovarian cancer screening.

2 Methods

2.1 Mouse Model

For this experiment, we used a transgenic mouse model in which
females spontaneously develop bilateral epithelial ovarian
cancer using the TgMISIIR-TAg (TAg) transgene.38,39 This
mouse model has been shown to exhibit both genotypic and
phenotypic similarities with human ovarian carcinoma.40 Male
TAg mice were bred to female C57Bl/6 (wild type) mice. This
resulted in production of offspring that either harbor the TAg
transgene (TAg+) or are the wild type. Female offspring of both
genotypes were injected with the vehicle (sesame oil) or 4-vinyl-
cyclohexene diepoxide (VCD) dissolved in sesame oil at a
concentration of 80 mg∕kg for 20 days beginning at postnatal
day 7. VCD was used to destroy preantral follicles, resulting in
early ovarian failure. VCD has previously been used as a model
for menopause.41 The same cohort of mice was imaged at 4 and
8 weeks. For brevity, we refer to different groups in the figures
by abbreviating (age–genotype–treatment). For example, 4WV
refers to 4 weeks of age, wild type treated with VCD and 8TS
refers to 8 weeks of age, TAg+ treated with sesame oil.

With this procedure, we have eight different groups to com-
pare (2 × 2 × 2 for age, genotype, and treatment). This poses an
interesting challenge for class separation based on image analy-
sis, as we expect the structure of the ovary and oviduct to change
due to each of these three processes. A total of 53 mice were
imaged at both time points, yielding 13 samples per group
except for the wild type sesame-oil-treated mice, of which there
were 14 (Table 1).

2.2 Surgical Procedure

All procedures were performed according to an IACUC-
approved protocol. Prior to surgery, ketamine (60 mg∕kg)/

Journal of Biomedical Optics 096010-2 September 2019 • Vol. 24(9)

Sawyer et al.: Quantification of multiphoton and fluorescence images. . .



xylazine (7.5 mg∕kg) was administered to mice through intra-
peritoneal injection. The right dorsal side of the body was
shaved with clippers from the ribs to the hind limb and then
treated with Nair hair remover for less than one minute. Nair
was removed using water and cotton pads. Surgical scrub was
performed with three alternating scrubs of chlorhexidine and
alcohol with the final being a spray or wipe of chlorhexidine.

Mice were then placed on a custom-built heating pad where
they were given isoflurane, USP (Piramal, Mumbai, India)
anesthetic through a nose cone and draped with a sterile surgi-
cal drape. Isoflurane was initially set at 1% to 3% volume
(maintain oxygen at 0.6 to 0.8 L∕min) to ensure surgical level
of anesthesia prior to skin incision. Thereafter isoflurane level
was lowered to 1.5% volume (98.5% oxygen) for surgical
maintenance. Anesthesia levels were monitored by observing
the animals’ respiration rate and pattern during surgery and
imaging.

An 8-mm incision was made in skin followed by blunt dis-
section under the skin. Then a second incision was made in the
peritoneum. Directly under the incision, in the peritoneal cavity,
is an adipose pad attached to the ovary. A suture was placed
through the fat pad and the tissue gently placed so that the ovary
was facing upward (fat downward) on a sterile spoon and the
suture was secured in place using Tegaderm film (3M,
Maplewood, Minnesota). The opposite end of the spoon was
secured to stabilize the ovary and isolate the ovary from body
motion for imaging. Great care was taken to be gentle with the
adipose tissues to avoid damage to blood vessels, ovaries, and
surrounding tissue. Fluorescent dyes were applied, incubated,
and rinsed as described below. Then a small amount of sterile
Surgilube (HR Pharmaceuticals, York, Pennsylvania) was
placed on the ovary and the ovary covered with a sterile cover-
slip for imaging. Following imaging, the ovary was rinsed with
sterile saline, the suture clipped, and the ovary returned to the
anatomical position. Antiadhesion Seprafilm (Genxyme,
Cambridge, Massachusetts) was placed in the incision. The peri-
toneum was closed with absorbable catgut suture and the skin
closed with staples. Topical antibiotic was administered to the
wound. The surgical externalization and stabilization process
has been described in more detail previously.42

2.3 Dye Application and Wide-Field Fluorescence
Imaging

A number of commercial fluorescent dyes are available for
tissue characterization. We are most interested in tissue markers
that are potentially up-regulated in cancer so that we can under-
stand the expression of these markers in the mouse models that
we use. The tissue markers that were of highest interest to us

and had commercially available dyes including folic acid
(FolateRSense; Perkin Elmer, Waltham, Massachusetts),43 and
MMPs (MMPSense 680; Perkin Elmer).44 A preliminary study
prior to the work published here was conducted to confirm that
these dyes produced a detectable signal using the imaging sys-
tem described below.

Dyes were prepared according to package instructions and
kept in foil wrapped tubes to protect from ambient light.
Ovaries were surgically exposed in live animals and a sterile
pipette tip was used to place 50 μL of dye onto each ovary,
or 100 μL of dye into the body cavity (for control organs),
resulting in a total of 100 μL of dye per animals. Organs were
allowed to incubate with dye for 10 min in darkness.

WFI was then performed with an MVX10 microscope with
a DP80 digital camera (Olympus, Tokyo, Japan) and ImageX
software. Images were taken at exposure times of 2 s (for
MMPSense dye) or 0.1 s (for FolateRSense). Magnification was
set to 0.8. Each channel was set to un-gated and a frequency of
100,000. Light was filtered using the microscope’s CY5.5 filter
set, featuring a cut-on wavelength of 685 nm, excitation band
of 635 to 675 nm, and emission band of 696 to 736 nm. The
excitation spectrum of these dyes does not overlap with the
wavelength used for MPM, as described next; thus, there is
no cross interaction between fluorescence and MPM studies,
as confirmed by examining both stained and unstained tissues
with MPM.

2.4 Multiphoton Imaging

MPM imaging was performed with a single-beam multiphoton
microscope (TrimScope, LaVision BioTec, Bielefeld, Germany)
using a titanium:sapphire laser light source (Chameleon Ultra2,
Coherent, UK) that was coupled to the scanner unit, with a pulse
width of 120 femtoseconds at the sample. The laser intensity
was adjusted to 35 mW average power with an electro-optical
modulator (EOM 350-80; Conoptics, Danbury, Connecticut).
A water-immersion, coverslip-corrected, 20× magnification,
0.95-NA objective (MRD77200 Nikon, Tokyo JP) was used
for imaging. The excitation wavelength was set to 780 nm,
and SHG and 2PEF image data were recorded simultaneously.
A bandpass filter (FF01-377/50; Semrock, Rochester, New
York) and a dichroic mirror (Di01-R405-25X36; Chroma,
Bellows Falls, Vermont) were used to collect light for SHG, and
a bandpass filter (HQ450/100M-2p-25; Chroma) and a dichroic
mirror (505dcxr; Chroma) were used to collect light for 2PEF.
Images were taken at 5-μm depth increments from the surface
of the tissue to 50- to 100-μm depth. Imaging was completed
in less than 5 min per image stack. Images were collected at the
center of the ovary, at the proximal side of the ovary near the
oviduct, and at the oviduct. All images had a 400 μm × 400 μm
field of view and contained 1024 × 1024 pixels with 14-bit gray
scale resolution.

Note that with the limited field of view of MPM, it cannot
be determined whether the specific subregion of the organ cap-
tured by the image area contains active tumor tissue. Histology
indicated that mice with disease ranged from 2% to 50% tumor
coverage (see Sec. 5) Thus we cannot claim the comparisons
between genotypes are directly translatable to comparisons
between malignant and nonmalignant tissue. Although early
changes may still be observed in the entire organ, we continue
to refer to the genotypes as the two experimental groups for
correctness.

Table 1 Number of mice for each experimental group imaged, total
mice are shown in brackets, if different. Some images were excluded
due to saturation, as described in Sec. 2.6.

Age

VCD Sesame oil

TAg+ Wild type TAg+ Wild type

Week 13 13 12 (13) 14

Week 11 (13) 13 13 14
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2.5 Histology

Following imaging at 8 weeks of age, mice were euthanized via
CO2 and the entire reproductive tract was removed. Because
the mice survived beyond their first imaging session, no histol-
ogy is available for comparison with 4 week images. Histology
from a separate cohort of mice euthanized at 4 weeks (n ¼ 47,
at least 10 in each combination of genotype and treatment)
was instead utilized for comparison. The organs were fixed
in neutral-buffered formalin and paraffin embedded and sec-
tioned for analysis. Immunohistochemical (IHC) staining of
mouse reproductive tract tissue sections was performed with
antibodies recognizing SV40 TAg, PAX8, and α-inhibin.
Tissues were stained with the above antibodies using established
protocols for immunoperoxidase-based detection of antibody
binding [described previously in Connolly 2003 (TAg and
α-inh)38 and Gabbasov 2018 (PAX8)45].

Algorithms were developed to quantify TAg or PAX8 stain-
ing across all mice. The IHC stained sections were scanned
and images acquired using the Vectra Multispectral Imaging
system (Version 2.0.8, Perkin Elmer, Waltham, Massachusetts).
For quantification of IHC staining, images were captured with
a 40× objective and analyzed using InForm software (Version
2.1.1, Perkin Elmer, Waltham, Massachusetts). Algorithms to
segment the tissue compartments (ovary, nonovary, oviduct,
nonoviduct, and nontissue) and for subcellular compartment
separation were created by machine learning using InForm
Software. For tissue segmentation training, a small batch of
∼20 test images were manually identified as ovary, oviduct,
or other tissue, as well as nontissue elements including glass
histological artifacts. The cells in ovary or oviduct segments
were scored to quantify IHC staining for TAg and PAX8 in the
nuclei only. The Inform software scores these cells according to
DAB intensity (0 to 3) and extent (0% to 100%) to compute a
composite H-score. When the algorithm template of segmenta-
tion and scoring for the test cases was sufficiently accurate
(>95%), it was run on all images and compared with manual
scoring as a confirmation. Then entire image H-scores were
exported to excel for analysis. Prism statistical analysis software
(Graphpad, San Diego, California) was then used to determine
age- and treatment-specific differences in staining across all
groups.

The H&E, Tag, and α-inhibin stained reproductive tract tis-
sue sections were reviewed and evaluated for the presence and
extent (percent) of tumor based on cell morphology and the
presence of TAg protein. The α-inhibin staining was evaluated
to confirm the absence of α-inhibin protein in tumor tissue and
its presence in residual normal follicles. The ovaries of 4- and
8-week-old wild type and MISIIR-TAg transgenic mice, treated
with the vehicle (soybean oil) or VCD were evaluated to assess
the number of follicles, corpora lutea, and atretic follicles in
each case.

2.6 Image Processing

2.6.1 Wide-field fluorescence imaging

Images were examined by eye and excluded from analysis if
saturation occurred. Analysis was performed using ImageJ
software.46 For each organ, a 40 × 40 pixel square was placed
in the center of the organ and the mean signal intensity in the
region was recorded. Each pixel was 6.45 μm in width, so the
analyzed area was 258 μm × 258 μm.

2.6.2 Texture analysis of multiphoton images

We selected MPM images for analysis by selecting the image
with the highest average signal throughout the image stack in
the depth (z) direction, which did not show signs of saturation.
Three image stacks saturated throughout the majority of the
depth (80%) were excluded from analysis, as indicated in
Table 1. Analysis was performed by an observer who was
blinded to the classification of the mice.

We applied two methods of texture analysis to extract fea-
tures from the acquired MPM images. The first is based on
constructing and analyzing the gray-level co-occurrence matrix
(GLCM).36 The GLCM is a spatial histogram that describes the
distribution of gray-level values in an image. Each entry in the
GLCM pði; jjd; θÞ corresponds to the probability of a pixel with
a gray level of (i) being a distance (d) pixels away from a neigh-
boring pixel with a gray level of (j) in the (θ) direction. With an
image quantized into Ng gray levels, the GLCM is an Ng × Ng
matrix. For a two-dimensional (2-D) image, four directions for
(θ) are possible: 0 deg, 45 deg, 90 deg, and 135 deg. In this
study, we fixed (d) at one pixel (3.9 μm in object space) and
computed the GLCM for the four possible directions. All images
were normalized and quantized to 8-bit (intensity ranging be-
tween 0 and 255). From the GLCM, we then computed 13 tex-
ture features introduced by Haralick et al.,36 averaged over the
four directions for θ.

We computed a second set of features by analyzing the dis-
crete fast Fourier transform (FFT) of the image in 2-D, which
describes the distribution of spatial frequencies present in an
image. After applying the FFT, the image was normalized so
that all pixel values summed to one. Then we summed the pixel
values in a small disk centered at the origin and recorded the
result. The radius of this disk was iteratively increased, and the
summed pixel value within its area was recorded until the disk
radius had reached 80% of the image half-width, beyond which
primarily noise remains. This was effectively the cumulative
distribution function (CDF) of the energy density as a function
of radial spatial frequency; taking the difference between the
values of this curve for any two radial frequencies gives the pro-
portion of energy contained within a specific frequency band.
Images that were highly homogenous had higher energy density
associated with lower spatial frequencies. On the other hand,
images with more inhomogeneity had more energy density cor-
responding to higher spatial frequency. We then parameterized
the distribution by fitting the CDF curve to the following equa-
tion, which we qualitatively found to fit the curve well:

EQ-TARGET;temp:intralink-;e001;326;251y ¼ αxβ þ γ; (1)

where y is the value of the CDF for a given spatial frequency x.
The frequency distribution was thus described by the three
features: α, β, and γ, which were used to differentiate between
the different experimental groups. Combining these with the
13 Haralick features gave a set of 16 total texture features.
The analyses were completed in Python using a computer with
an Intel Core I-4710HQ CPU (2.50 GHz) and 16 GB DDR3L
memory.

2.7 Feature Selection and Classification

Once feature vectors were created, redundant features were
removed by calculating the correlation matrix for the feature
set. For each pair of features that were highly correlated
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(correlation > 0.85),47 one feature from the set was removed
(the feature which yielded a lower average p-value using the
statistical test described above). Note that the WFI image data
were not used in the classification process, as these would be
more appropriate to flagging suspicious areas, which then could
be further probed with MPM.

We exhaustively tested the classification performance of fea-
ture subsets consisting of six or fewer features, as the literature
suggests that high performance can typically be achieved with
two to five features.47–49 To evaluate how well a set of features
could separate different classes, we used the trace of the ratio
of the between-class scatter (SB) and within-class scatter (Sw),
which has successfully been applied in similar scenarios.11,47

To classify the data, we used linear discriminant analysis
(LDA),50 which has been applied frequently in the scope of
medical image classification.11,51,52 For our classification, we
reduced the dimension to the linear discriminants that account
for 99% of the variance in each case, before generating the
optimal decision boundary. To validate the model, we used
leave-one-out cross validation. Additional details regarding our
classification process have been previously described.11

2.8 Statistics

Statistical analysis for the texture analysis for MPM and WFI
images was completed using one-way analysis of variance
(ANOVA) to test differences between individual groups, as well
as using a linear mixed effects (LME) model with random inter-
cepts to account for within-subject and three-way interactions
between age, genotype, and treatment. The latter is used to
attempt to offset the confounding effects of the multiple exper-
imental groups, e.g., heteroscedasticity, or unequal variance
among groups. It is also a tool to assess an overall influence

of age, treatment, or genotype that may not be apparent between
two individual groups. The Python statsmodel library (Python
Software Foundation, Delaware) was used to construct the
LME model. The resulting model produced postestimation
inference via Wald tests and confidence intervals on the varia-
bles, profile likelihood analysis, likelihood ratio testing, and the
Akaike information criterion to assess the quality of the model.
Results from LMEmodels that did not converge were discarded.
Note that the Wald test statistic assesses the Fisher information
of a variable at the maximum-likelihood estimation point.
Essentially, the Wald test evaluates whether an explanatory
variable is significant in the construction of the model.53 This
is fundamentally different than a t-test, which tests the likeli-
hood of whether two means are different.

An argument could be made for conducting a paired statistical
comparison between age groups, as the same mice were imaged
at both time points. However, it is not guaranteed that the same
region of the organ was imaged at both time points. Therefore,
it is possible that inhomogeneity in the tissue could result in
variations in the texture features. Thus we conducted unpaired
statistical tests. Histology results were analyzed by one-way
ANOVA and the nonparametric Kruskal–Wallis test followed
by Dunns posttest. Differences were considered statistically
significant for p < 0.05 (denoted *), p < 0.01 (denoted **),
p < 0.001 (denoted ***), and p < 0.0001 (denoted ****).

3 Results and Discussion

3.1 Histopathology Analysis

H&E stained sections of an ovary are shown for a wild type
[Fig. 1(a)] and a TAg mouse [Fig. 1(b)]. Higher power magni-
fication images are shown for the same wild type [Fig. 1(c)] and

Fig. 1 H&E staining of an ovary at 4× for (a) WT and (b) TAg mouse, and at a magnification of 10× for the
same (c) wild type and (d) TAg mouse. Follicles (f), corpora lutea (cl), and tumor (T) are labeled as
indicated.
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TAg [Fig. 1(d)] tissues. The wild type ovary has normal appear-
ance, with well-structured follicles and corpora lutea [Figs. 1(a)
and 1(c)]. In contrast, the TAg ovary has obvious infiltration
of neoplastic cells [Figs. 1(b) and 1(d)] with hyperchromatic
nuclei and eosinophilic cytoplasm. Overall, much of the normal
structure of the organ has been replaced by neoplastic cells.
IHC staining for TAg shows the presence of the TAg protein
(Fig. 2), confirming the expression of the TAg transgene in the

mice with tumors. Staining for PAX8 also confirms the onset of
disease in TAg mice (Fig. 3). Results from the segmentation and
scoring process are shown in Fig. 4 for a TAg and wild type
mouse at 8 weeks of age, treated with sesame oil.

Summary statistics of the H-score for TAg and PAX8 stain-
ing for wild type and TAg transgenic mice dosed with both the
vehicle (sesame oil) and VCD are shown in Fig. 5. We see sig-
nificant differences primarily between genotype and age and

Fig. 2 TAg staining of an ovary at 40×; (a), (b) a WT mouse; (c), (d) a TAg mouse.

Fig. 3 PAX8 staining of an ovary at 40×; (a), (b) a WT mouse; (c), (d) a TAg mouse.
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some significant differences between treatments. Analysis of the
% tumor, follicles, corpora lutea, and atretic follicles is included
in Sec. 5.

3.2 Wide-Field Fluorescence Imaging

Sample images for WFI of MMPSense are shown in Fig. 6 for
8-week wild type (a) and TAg (c) mice dosed with sesame oil.
There is a demonstrable increase in the fluorescent signal for
the TAg mouse. This is also observed for other experimental
groups, such as 4-week mice dosed with VCD, as shown in
Figs. 6(b) and 6(d). Results from the image analysis are sum-
marized in Fig. 7. Consistent with our previous work,54 the sig-
nal generated by the MMPSense dye shows significant changes
between wild type and TAg mice both in the ovaries and the

oviducts. In addition, we see that the signal collected while
using the FolateRSense dye is also significant for the oviduct
between wild type and TAg mice. We also see that the fluores-
cence signal for MMPSense applied to the oviducts changes
between mice treated with sesame oil and those treated with
VCD at both 4 and 8 weeks of age. MMPs have been shown
histologically to be relevant for human ovarian cancer,44,55 and
targeting of the folate receptor has been demonstrated in human
metastatic ovarian cancer in vivo.8,56 Therefore, we believe our
results in the mouse model of early ovarian cancer are likely to
also be relevant to a human population.

These results are consistent with expectations. We expect
that there would be more MMPs with the presence of disease
because cancer cells will need to break down the matrix to
make space as they grow. The folate receptor is commonly

Fig. 4 Tissue segmentation and IHC stain scoring. The images shown depict sections of ovaries from
8-week sesame-oil-treated (a) MISIIR-TAg and (b) wild type mice that were subjected to IHC staining
for TAg (brown staining) and counterstained with hematoxylin (blue). The same tissue sections were
subjected to tissue segmentation to define ovary (pink), nonovary tissue (green), glass (blue), and junk
(yellow). The ovary segment of the tissue sections were subjected to scoring of TAg staining in the
nuclear compartment. The intensity of nuclear TAg staining was scored 0 to 3+, where blue = 0 (no
staining), yellow = 1+ to 2, orange = 2+ to 3, and brown = 3+.
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Fig. 5 Differences in H-score between mouse groups for the oviduct and ovaries for both TAg staining
and PAX8 staining.

Fig. 6 Example images using WFI with MMPSense for the ovaries of (a) a wild type and (c) TAg mouse,
both dosed with sesame oil at 8 weeks; (b) a wild type and (d) TAg mouse, both dosed with VCD at
4 weeks. Pathology indicated that the wild type mice were normal and the TAg mice had over 50% tumor
cell percentage for both the ovaries and oviducts.
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over-expressed in ovarian cancers, so we would expect that the
TAg animals, which have developed cancer by 8 weeks, would
have more folate receptors and hence more fluorescent signal
from the FolateRSense.

3.3 Multiphoton Images

Representative SHG and 2PEF images for the oviducts and
ovaries are shown in Fig. 8 for a wild type mouse at 8 weeks,
as well as for a TAg mouse at 8 weeks, where histopathology
analysis confirmed that ∼50% of the volume of the ovaries and
oviducts was occupied by malignancy. In particular, the struc-
ture of the ovaries for both SHG and 2PEF is visibly more
irregular compared with the wild type mouse. Furthermore, the
collagen structure of the oviducts appears disordered in the TAg
mouse compared with the wild type.

3.4 Texture Analysis of Multiphoton Images

Selected results for features from the GLCM analysis are shown
in Fig. 9. Using the features to perform pairwise comparison
tests between different mouse groups, multiple features are
significant in all four imaging situations: SHG and 2PEF for
both the ovaries and oviducts. Given the large number of fea-
tures and comparisons, we select a subset for display. In the
following section, however, we conducted an aggregated com-
parison between age, genotype, and treatment using a linear
mixed model. The most sensitive features are correlation-based
features of SHG and 2PEF imaging of the ovaries [Figs. 9(a) and
9(b)]. However, we also find that other complementary features
such as variance and entropy-based features for SHG and 2PEF
imaging of the oviducts [Figs. 9(c) and 9(d)] provide high stat-
istical significance for separating groups. In general, age tends
to yield the highest differences between features, indicating
that this may be a particularly challenging effect to overcome.
This dependence on age seems consistent with tumor pheno-
type, both in terms of organ and age. In this model, there are
neoplastic changes in the oviduct at 4 and 8 weeks. At 4 weeks,
some TAg+ tumor cells are observed in the ovary, but the tissue
is predominantly normal. At 8 weeks, the number of TAg+ cells
has increased to a significant degree.

Select frequency features are shown for SHG and 2PEF
imaging for the ovaries [Figs. 10(a) and 10(b)] and the oviducts
[Figs. 10(c) and 10(d)]. Not all statistical comparisons are
shown for the sake of legibility; however, Tables 3–5 in Sec. 6
summarize whether the individual features are significant for
each comparison. The results show that the parameters alpha
and beta provide significant power for differentiating between
experimental groups. The constant offset parameter gamma does
not show statistical significance between experimental groups.

3.5 Variations by Group

The results using a linear mixed model to determine significance
for texture features in MPM images are shown in Tables 3–5
in Sec. 6 for age, genotype, and VCD dosing, respectively. The
second of these groups has the most diagnostic relevance, as
pathology indicates all TAg mice develop ovarian cancer by
8 weeks of age. 2PEF imaging of the ovaries produces six fea-
tures that have high statistical significance for modeling the
genotype. The confounding effects of age and treatment may
reduce the fidelity of the feature discrimination for genotype.
However, assessing the influence of age and reproductive status
is more realistic, as cancer can develop at any stage of life,
though the highest risk does occur in older women who are post-
menopausal. SHG imaging shows no significant features for
differentiating genotype; however, several features are sensitive
to both VCD dosing and age. Previous studies have shown that
VCD dosing is a good analog for menopausal status, with over
50% of 8-week mice dosed with VCD having undergone ovar-
ian failure or impending ovarian failure, compared with less than
20% of 8-week mice that are dosed with sesame oil.57

Although these results are encouraging, note that the statis-
tical test used here (Wald test) assesses whether each texture
feature is significant in building a linear model of the experi-
mental variable using the features as explanatory variables.
This is not equivalent to an ANOVA test, which is used for
individual group comparisons, e.g., those shown in Figs. 9 and
10. However, quantitative tissue classification is often accom-
plished using a linear model, as we demonstrate in Sec. 3.6.
Hence, using the linear model approach shown here is relevant
for assessing diagnostic potential.

Fig. 7 Fluorescence signal collected for TAg and wild type mice at 8 weeks dosed with sesame oil with
(a) MMPSense and (b) FolateRSense applied.
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Although histology indicates that genotype is a good proxy
for disease, we did not observe predictable trends in the features
as the degree of tumor percentage increases in the mice. The
limited sample size poses a challenge for detecting trends in the

observed results; for example, only six mice exhibited more than
10% tumor percentage. Furthermore, only portions of the organs
contained tumor cells; given that MPM does not cover the entire
organ, the imaging data may contain both healthy and diseased

Fig. 8 Example images using SHG and 2PEF for the ovaries and oviducts collected for a wild type and
TAg mice. Pathology indicated that the wild type mouse was normal and the TAg mouse had over 50%
tumor cell percentage for both the ovaries and oviducts.
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Fig. 9 Selected GLCM texture features for (a) SHG ovaries, (b) 2PEF ovaries, (c) SHG oviduct, and
(d) 2PEF oviduct. We see wide significance for using GLCM features to differentiate between different
experimental groups. [W, wild type; T, Tag; S, treated with vehicle (sesame oil); and V, treated with VCD].

Fig. 10 Selected frequency-based texture features for (a) SHG ovaries, (b) 2PEF ovaries, (c) SHG ovi-
duct, and (d) 2PEF oviduct. [W, wild type; T, Tag; S, treated with vehicle (sesame oil); V, treated with
VCD; and 4/8, weeks of age].
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tissue. However, there may still be early changes in the sur-
rounding healthy tissue that could be reflected using MPM.
Conducting a more in-depth investigation into whether trends
exist in the features as a function of disease progression and
tumor cell percentage is an objective for future work.

3.6 Classification

The classification results are summarized in Table 2, where the
average classification accuracy for each type of comparison
(age, genotype, and treatment) is shown for different feature sets
(SHG and 2PEF images of the ovary and oviduct). This classi-
fication is done using MPM features only. We see that combin-
ing the four individual feature sets into a single large set yields
overall higher classification accuracy, with 87.50%, 66.66%,
and 62.50%, for age, genotype, and treatment, respectively.
This is not surprising, as it was shown in the individual com-
parison that the different modalities are sensitive to different
types of changes. This finding validates the expectation that
combining morphological and functional information can en-
hance accuracy for tissue characterization. We also see that
only a small subset of features is required to achieve maximum
classification accuracy: in each case, six features or less yielded

the best accuracy. This validates the expectation that some fea-
tures are only relevant for separation when combined with other
complementary features, further motivating the use of dimen-
sion reduction techniques such as LDA or principal component
analysis.

Example results for the LDA are shown in Fig. 11 for a com-
parison between genotype [Fig. 11(a)] and age [Fig. 11(b)].
Although encouraging, a linear model is limited in its capabil-
ities and better performance may be accessible when using more
complex techniques such as machine learning. Generally, with
a small number of samples, the complexity of the model is like-
wise limited; however, extending the classification to a more
advanced algorithm is a focus of ongoing work. Additionally,
future work is focused on applying these modalities (MPM and
WFI) to probe tissue changes in the oviducts that may occur
with the early onset of ovarian cancer in humans.

4 Conclusion
In this paper, we assessed the potential of MPM and fluores-
cence imaging for evaluating ovarian tissue health. We imaged
a transgenic mouse model that spontaneously developed ovarian
cancer in vivo using both SHG and 2PEF imaging, as well as
WFI to target dyes that bound to the folate receptor and
MMPs. Using texture analysis of multiphoton images based
on the GLCM as well as features describing the frequency con-
tent of these images, we showed that it is possible to differentiate
between experimental groups (age, genotype, and reproductive
status) with high statistical significance (p < 0.001). We also see
significant changes in the signal collected by wide-field fluores-
cent imaging between experimental groups (p < 0.01). We then
used these features to build a classification algorithm using
LDA, showing that we can classify different ages, genotypes,
and treatments with accuracies of 87.50%, 66.66%, and
62.50%, respectively. Although these results are promising, the
next steps include implementing a more complex a classification
scheme using methods such as machine learning. Furthermore,
we used the TAg genotype as a proxy for disease. Although
histology showed that all TAg mice developed some degree
of disease by 8 weeks, conducting a further experiment with
histopathology results is of particular interest to determine
whether trends can be established between the tissue changes
observed and tumor percentage.

Table 2 Average classification accuracies for age, genotype, and
treatment group comparisons, as well as optimal number of features
to achieve this accuracy. The results are shown for individual feature
sets corresponding to each imaging modality and organ, as well as
using all features together.

Features
selected

Optimal #
of features Age Genotype Treatment

SHG ovary 6 0.6490 0.3933 0.5185

PEF ovary 4 0.8099 0.6289 0.4593

SHG oviduct 6 0.6547 0.5079 0.5178

PEF oviduct 5 0.6696 0.4206 0.5937

All 5 0.8750 0.6666 0.6250

Fig. 11 An example of separating two groups based on the first two linear discriminants using features
from (a) SHG imaging of the ovaries and (b) 2PEF imaging of the ovaries. (W, wild type; T, Tag; and S,
treated with sesame oil).
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5 Appendix I: Additional Histological Analysis
This appendix contains histological results for the mouse tissues. Figure 12 illustrates the assessment for the different experimental
groups, including % tumour cells [Fig. 12(a)], follicles [Fig. 12(b)], corpora lutea [Fig. 12(c)], and % atretic follicles [Fig. 12(d)].

Fig. 12 Histology results for complete mouse study, organized by mice treated with MMPSense (first
column) and FolateRSense (second column); 1SO, treated with sesame oil; 2VCD, treated with VCD;
3WT, wild type mice; and 4TAg, TAg transgenic mice. The analysis indicated% (a) tumor cell, (b) follicles,
(c) corpora lutea, and (d) % atretic follicles.

Journal of Biomedical Optics 096010-13 September 2019 • Vol. 24(9)

Sawyer et al.: Quantification of multiphoton and fluorescence images. . .



6 Appendix II: Feature Significance for Group
Comparisons

This appendix contains the individual performance for each tex-
ture feature when differentiating between experimental groups
using a linear mixed model. Table 3 shows results for differen-
tiating by age group, Table 4 for differentiating by genotype, and
Table 5 for separating based on treatment status.

Table 3 Significance of features for each imagingmodality and organ
for differentiating mice by age using a linear mixed model.

Feature

Ovaries Oviducts

SHG 2PEF SHG 2PEF

Angular second moment — — ** —

Contrast — * — —

Correlation — *** *** *

Sum of squares: variance — — — —

Inverse difference moment — — — **

Sum average — — — **

Sum entropy — * — —

Sum variance — — * **

Entropy — — — **

Difference variance — * — —

Difference entropy — — — ***

Info. measure of correlation 1 * — *** ***

Info. measure of correlation 2 — *** *** —

α — *** — —

β ** *** *** —

γ — — — —

Table 4 Significance of features for each imaging modality and
organ for differentiating mice by genotype using a linear mixed
model.

Feature

Ovaries Oviducts

SHG 2PEF SHG 2PEF

Angular second moment — — — —

Contrast — — — —

Correlation — *** — *

Sum of squares: variance — * — —

Inverse difference moment — — — —

Table 5 Significance of features for each imaging modality and
organ for differentiating mice by VCD dosing using a linear mixed
model.

Feature

Ovaries Oviducts

SHG 2PEF SHG 2PEF

Angular second moment — — — —

Contrast — — — —

Correlation ** * — —

Sum of squares: variance — — — —

Inverse difference moment — — — —

Sum average — — — —

Sum entropy — — — —

Sum variance — — — —

Entropy — - — —

Difference variance — — — —

Difference entropy — — — —

Info. measure of correlation 1 ** * — —

Info. measure of correlation 2 ** * — —

α — — — —

β — — * —

γ — — — —

Table 4 (Continued).

Feature

Ovaries Oviducts

SHG 2PEF SHG 2PEF

Sum average — * — —

Sum entropy — * — —

Sum variance — — — —

Entropy — — — —

Difference variance — — — —

Difference entropy — — — —

Info. measure of correlation 1 * — — —

Info. measure of correlation 2 * — — —

α — ** — —

β — ** — —

γ — — — —
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