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Abstract

Significance: Extremity injury represents the leading cause of trauma hospitalizations among
adults under the age of 65 years, and long-term impairments are often substantial. Restoring
function depends, in large part, on bone and soft tissue healing. Thus, decisions around treatment
strategy are based on assessment of the healing potential of injured bone and/or soft tissue.
However, at the present, this assessment is based on subjective clinical clues and/or cadaveric
studies without any objective measure. Optical imaging is an ideal method to solve several of
these issues.

Aim: The aim is to highlight the current challenges in assessing bone and tissue perfusion/
viability and the potentially high impact applications for optical imaging in orthopaedic surgery.

Approach: The prospective will review the current challenges faced by the orthopaedic surgeon
and briefly discuss optical imaging tools that have been published. With this in mind, it will
suggest key research areas that could be evolved to help make surgical assessments more objec-
tive and quantitative.

Results: Orthopaedic surgical procedures should benefit from incorporation of methods to mea-
sure functional blood perfusion or tissue metabolism. The types of measurements though can
vary in the depth of tissue sampled, with some being quite superficial and others sensing several
millimeters into the tissue. Most of these intrasurgical imaging tools represent an ideal way to
improve surgical treatment of orthopaedic injuries due to their inherent point-of-care use and
their compatibility with real-time management.

Conclusion:While there are several optical measurements to directly measure bone function, the
choice of tools can determine also the signal strength and depth of sampling. For orthopaedic
surgery, real-time data regarding bone and tissue perfusion should lead to more effective patient-
specific management of common orthopaedic conditions, requiring deeper penetrance com-
monly seen with indocyanine green imaging. This will lower morbidity and result in decreased
variability associated with how these conditions are managed.
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1 Introduction

A reliable assessment of tissue viability is critical to effectively treating patients who sustain
traumatic extremity injury. Despite their relatively inert appearance, bone, tendons, and liga-
ments are, physiologically speaking, highly active. Bones, specifically, receive ∼10% of the
entire cardiac output of blood volume.1 Dysvascular tissues have limited potential to regenerate,
heal, or fight infection due to insufficient delivery of inflammatory cells, growth factors, osteo-
progenitor cells, endogenous immune cells, and antibiotics. It is clear that, in orthopaedic injury,
nonviable or poorly perfused bone and soft tissue inhibits healing and increases the risk for
infection. Because of this, assessing bone and soft tissue viability is critical to making effective
treatment decisions, and the comparative translucency of these tissues to red and near-infrared
light makes optical methods feasible.

2 Current Paradigm and Challenges

To date, the eyes and hands of the surgeon remain the dominant “imaging modality” used to
make decisions regarding the health of soft tissue or bone. Methods currently used to assess
tissue and bone perfusion are subjective and entail non-quantitative clinical cues. These tech-
niques include clinical judgement based on the color and swelling of skin, presence of skin
wrinkles, color, and turgor of deep tissues, measurements of prior cadaveric studies (for example,
regarding perfusion of the meniscus in the knee),2,3 extent of soft tissue stripping off bone, and
the “paprika sign” (defined as scattered pinpoint bleeding on bone).4,5 The subjective or impre-
cise nature of these assessments leads to substantial variation in treatment and a lack of advance-
ment in objectively driven treatment protocols.

Imaging blood perfusion to soft tissue and bone can be done using traditional imaging modal-
ities, such as positron emission tomography/computed tomography (PET/CT)6,7 and contrast-
enhanced magnetic resonance imaging (MRI).8 These imaging modalities provide detailed and
accurate information of the fractured or diseased bony and soft tissue anatomical structure, yet
they have issues with limits to spatial resolution and artifacts from metallic implants. The logis-
tical limitations are the cost recovery, the need to schedule them as a separate procedure, and the
limits to using them for routine real-time assessment or repeated re-examination.6,7 MR-based
techniques are limited in orthopaedic patients due to metal artifact and signal dropout in asso-
ciation with metal implants. A limited number of studies have used PET/CT or MRI to measure
blood flow to bone for surgical indications, including infection, osteomyelitis, and nonunion.8–13

However, there is limited to no access to these imaging methods in real-time in the operating
room. At the present time, fluoroscopy and plain radiographs are used regularly in the operating
room to visualize bones and assess fracture alignment and/or hardware placement. In contrast to
these radiologic modalities, optical imaging can obtain metabolic information that provides
physiological abnormities of the tissue on microvascular perfusion and/or bone and tissue viabil-
ity. The main limitation of optical imaging is the inability to achieve both high spatial resolution
and high tissue penetrance: any added value, then, is either in high-resolution imaging at low
penetrance or more macroscopic assessment of tissue function at a more moderate to medium
penetrance. Thus, optical imaging can be a unique complementary imaging modality to the con-
ventional imaging modalities.
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3 Potential Optical Imaging and Sensing Needs

3.1 Surgical Timing/Skin Assessment

High energy fractures are frequently associated with significant insult to the soft tissues sur-
rounding bone. Historically, immediately performing open reduction and internal fixation of
injuries such as tibial plafond, tibial plateau, and calcaneus fractures has been associated with
unacceptably high rates of infections and wound complications.14–17 Based on these experiences,
staged protocols in which fractures were temporized in traction, splints, or external fixators until
the soft tissue envelope had recovered enough to undergo open reduction internal fixation were
introduced.18–21 Unfortunately, no objective definitive clinical signs exist to determine the timing
for definitive fixation.22 Surgeons frequently use clinical clues such as the presence of skin wrin-
kles or epithelialization of fracture blisters, but there are no evidence-based objective signs or
thresholds to indicate that the soft tissues are appropriate for a surgical incision and open fracture
fixation. Staged protocols have resulted in decreased wound complications; however, they have
recently been challenged with a resurgence of early fixation for a variety of reasons. For exam-
ple, there are valid concerns regarding quality of reduction (which becomes increasingly difficult
the longer the delay to internal fixation), increased operative time, increased healthcare costs,
and pin site infections associated with the use of external fixators, and these have led a number of
surgeons to question whether acute definitive internal fixation might be more appropriate in
certain patients. While this view is supported by multiple recent studies showing that fractures
treated within 72 h of surgery have comparable outcomes compared with staged fixation,23–25

these studies were all retrospective reviews, and the criterion for early fixation was surgeon or
facility dependent. It is clear that not all soft tissues are appropriate for acute fixation. Therefore,
an objective tool that could effectively measure the soft tissue recovery with thresholds identified
in association with appropriateness for definitive internal fixation may significantly improve the
current practice. Optical imaging tools that image tissue perfusion of indocyanine green (ICG)
have longstanding success regarding assessment of soft tissue viability and perfusion in the set-
ting of plastic surgical indications such as free osseous flap perfusion26,27 or breast
reconstruction.28,29 They are, therefore, well suited for this application.

3.2 Assessing the Viability of Deep Tissue in Traumatic Wounds

High-energy open fractures, with bone and deep soft tissue exposed to environmental
contamination, can be at an extraordinarily high risk of a complication, such as infection and
nonunion, occurring in 10% to 60% of patients.30–36 Complications convert a difficult 6-month
recovery into a several-year (or longer) recovery that may include unplanned surgical
procedures, prolonged morbidity, loss of function, and loss of limb. Bone and soft tissue
devitalization is believed to be a critical determinant in the development of complication
following traumatic injury. Deficient perfusion or blood flow prevents delivery of inflamma-
tory cells, growth factors, osteoprogenitor cells, endogenous immune cells, and systemically
delivered antibiotics,37–43 which limit the potential of the injured extremity to regenerate,
heal, or fight infection. Because of this, the cornerstone of management of these injuries
includes surgical debridement of all devitalized bone and soft tissue. However, the subjective
clinical signs (such as color, turgor, and soft tissue stripping) remain the only signs surgeons
can currently use to evaluate bone or soft tissue perfusion or viability. These highly subjective
signs lead to substantial variation in the extent of debridement and a high potential for
either under- or overdebridement, both of which have potentially catastrophic downstream
consequences. What is needed is an intraoperative system that can assess vascular perfusion
of bone in the surgical field in real-time, which could guide surgeons in the right amount
of bone and soft tissue to debride. Although there are challenges in association with the
three-dimensional (3-D) nature of traumatic wounds and open fractures, optical imaging
techniques44,45 are uniquely suited to collect data on the inflow/outflow kinetics of complex
tissues.
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3.3 Assessing Perfusion of Deep Tissue in Infection

In the setting of bone infection, or osteomyelitis, it is clear that there are two interconnected
problems with regards to effective treatment: (1) location and debridement of all devitalized
or poorly perfused bone and (2) location and debridement of all infected bone. In the current
paradigm, MRI may be used to assess the extent of bony edema on T2-weighted sequences and
marrow replacement on T1-weighted sequences when there is not pre-existing hardware in place.
However, more commonly, metallic hardware prevents MRI from providing useful information
due to signal dropout around metallic implants. Furthermore, there is not a one-to-one relation-
ship between either vascular perfusion or microbial infiltration in bone and bony edema on
T2-weighted sequences or marrow replacement on T1-weighted sequences. The standard of care
is otherwise removal of hardware, surgical debridement, and, in the setting of unhealed fracture,
staged fracture stabilization using either antibiotic coated or non-antibiotic coated implants.
Surgical debridement is carried out using the previously described signs including the color
of bone/tissues, turgor, and “paprika sign” or using a burr to assess for bony bleeding. The failure
rate of treatment of these issues is unacceptably high, resulting in reoperation and/or amputation
30% of the time in the setting of fracture or fusion.46–48 Because, to date, there are no methods
available to measure bone perfusion or bacterial penetrance in vivo, there is very little under-
standing of which of these variables is necessary to guide debridement. Further, there are no
intraoperative tools to assess how effective performance is in these debridement procedures.
Similar to issues associated with evaluating vascular perfusion of open fractures, the 3-D nature
of infected wound beds presents challenges. However, optical imaging systems are uniquely
suited to assess perfusion of bone and deep soft tissues in operating room settings in
real-time.27,44,45,49

3.4 Assessing Soft Tissue for Healing Potential

All injured tissue requires adequate perfusion to deliver growth factors necessary for healing.
This is true for skin and bone (described above) as well as soft tissue injuries, such as ligament
ruptures, meniscal tears, and cartilage injury. This is the rationale for the high failure rate of
primary repair of the anterior cruciate ligament (ACL). This unacceptable failure rate led to the
abandonment of primary repair in favor of ACL reconstruction using autograft or allograft such
as patellar tendon or hamstring.50–56 However, ACL reconstruction is not without issues, and
some continue to advocate for primary repair to preserve the native ligament, which maintains
proprioception57,58 and prevents complications in graft harvesting, tunnel widening, and
revisions.59,60 These issues with reconstruction have led to methods to support a primary repair,
including the design of an extracellular matrix scaffold activated with the patients’ blood as an
alternate way to deliver growth factors and promote tissue healing.61 Several authors have noted
that the location of the tear may play a role in outcomes following primary repair, with primary
repair of more proximal tears performing better than mid-substance or distally based ACL
tears.62–67 Likely, this differential rate of healing of a primary ligament repair between proximally
located and other tears is associated with the vascular perfusion of the ligament. Given this, if
there was a way to assess vascular perfusion and therefore healing potential arthroscopically, it
may be possible to preserve the native ligament in appropriate patients and more effectively
manage this increasingly common injury.

Similarly, the standard treatment for a meniscal tear is based on cadaveric studies evaluating
the vascular penetrance or vascular perfusion of the meniscus.2,3,68 From these cadaveric studies,
the meniscus was divided according to vascularity into red–red (well perfused), red–white
(marginally perfused), or white–white (poorly perfused) zones.2,3,69,70 This classification, based
on perfusion assessed in cadaveric menisci, is used to indicate whether there is adequate perfu-
sion to allow the meniscus to heal after repair versus location where perfusion is not adequate
and whether the area with the meniscal tear should be debrided or removed surgically. However,
it is clear that meniscus preservation is the first choice when there is adequate perfusion to pre-
vent the risk of secondary osteoarthritis.71–74 Furthermore, several papers have noted that there is
variability in the extent of meniscal perfusion in association with age and other patient-specific
variables and that the zones described above are not universally accurate.75–80
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In both of these injury types, as well as other soft tissue orthopaedic injuries, the translation
of optical imaging techniques to an arthroscope could inform appropriate surgical management
(repair versus reconstruction or debridement) in a patient-specific manner rather than basing this
decision on vascular perfusion of the average cadaveric specimen. This advancement could
simultaneously expand the number of patients eligible for repair, reduce failure rates, and pro-
vide both patients and surgeons with reassurance that the correct surgical procedure was
performed.

4 Optical Tools Utilized to Date

When optical imaging is used for maximum benefit, light of different wavelengths or different
interaction mechanisms can be used to capture biophysical changes in the tissue, occurring in
the vascular as well as extravascular and cellular matrix compartments.81–83 The key to most of
the applications, as with all imaging systems, is to have a good biophysical understanding of the
compartmentalization of the endogenous or exogenous chromophores that contribute to each
image so that the images can be interpreted appropriately. When compared with conventional
medical imaging modalities, such as MRI, PET, or x-ray CTCT, optical imaging detects changes
in light reflectance, absorption, and scattering of the tissue and thus offers advantages of non-
ionizing, low-cost, and portable imaging for routine, low-cost, longitudinal monitoring of
response to therapy or during human surgery.81–83 The logistics of use of optical imaging, being
real time and at the point of care, make it more comparable to C-arm x-ray or ultrasound.
Therefore, any determination of the value of optical imaging in tissue injury care needs to
be done within the context of what information can be assessed at the point of surgery decision
making.

The challenge of applying optical tools to bone and soft tissue assessment has been the high
scattering nature of both tissues, limiting the spatial depth dependence of the information.
Clearly surface camera-based imaging tools interrogate a range of depths in the millimeter
to centimeter range,45 with rapidly decreasing sensitivity and spatial resolution with small
increases in depth. So, the two major attractions to optical tools come in the categories of one
of three rough regimes:

(1) microscopic imaging and sensing (micron sampling depth and spatial resolution),
(2) surface imaging during surgery (micron-mm sampling depth and spatial resolution),
(3) deep tissue sensing during surgery (mm-cm sampling depth and spatial resolution).

These regimes are defined by the type of tool used and dictate what information can be
obtained during imaging. The matching of the capabilities of each tool with the needs in each
application are essential to evaluate.

Table 1 presents an overview of the tools that have been tried in soft and hard tissue trauma
and disease studies. The engineering aspect of the contrast mechanism is used to categorize the
tools in column 1. However, in terms of utility and function for trauma surgery, it is likely much
more functional to consider the depth of interaction, column 3, because this is the factor that will
determine what biomedical information the tool can supply. For example, optical coherence
tomography (OCT) has been widely used91,92 in bone imaging but with penetrance on the order
of <1 mm, thereby allowing its use only for largely research studies and unlikely as a major
surgical tool. Similarly, ultraviolet (UV) fluorescence imaging provides information bone
necrosis, and the addition of antibiotics has been shown to enhance the ability of this fluores-
cence to provide diagnostic value about osteonecrosis. However, the penetrance of both UVand
antibiotic fluorescence to just tens to hundreds of microns (μm) does limit their use to situations
in which the imaging is directly on the bone surface in question.

In terms of molecular information about bone, perhaps no other measure has the potential to
provide high feature information than Raman spectroscopy.99–105 The measures of bone regrowth
have been well studied, and measurements through even centimeter thick tissues have been dem-
onstrated with spatially offset Raman or Raman near-infrared (NIR) tomography.106,109 However,
practical issues in the very low signal strength and the specificity of the signal have limited the
routine application of this technique to research studies to date. More exotic methods such as
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Table 1 Listing of optical imaging tools utilized in soft and hard tissue trauma and disease studies,
categorized by the type of contrast, depth regime, and a brief strengths and weaknesses list.

Contrast
mechanism Probe technology

Depth
regime Strengths/weaknesses References

Endogenous
signals

UV fluorescence μm No exogenous contrast needed; 84, 85
assessment of bone necrosis;

superficial tissues only.

Scatter, dichroic,
polarization, OCT

μm to
1 mm

No exogenous contrast needed; 86–92
high spatial resolution;

matrix structures and flow;

superficial tissues only.

NIRS (absorption and
scattering)

Several
mm to cm

No exogenous contrast needed; 93–96
functional information of
hemodynamics and tissue
oxygenation;

need to scan probe over region.

NIR imaging (reflection) Several
mm

No exogenous contrast needed; 97, 98
3-D-model-based surface-shape
tracking.

Raman, NIR-hyperspectral
and infrared (IR)

μm to cm High molecular specificity; 99–109
very low signal levels;

specificity/sensitivity tradeoff.

Terahertz (THz) μm Superficial sensing; 110, 111
largely water content based.

Contrast agents Antibiotics μm Sensing of osteonecrosis or bone
growth; well-tolerated;

112–116

multiday use for contrast.

Fluorescence recovery
after photobleaching

μm to mm Intercellular solute flow sensing;
used with standard contrast
agents;

117–120

superficial imaging assessment.

ICG Several
mm to cm

Vascular/tissue perfusion; 27, 121,
122often used qualitatively but can be

provide a binary diagnostic;

can provide flow kinetics.

Molecular contrast and
nanoparticles

μm to cm Matrix and biology targeting; 123–126
limited to largely preclinical to date,
although evolving rapidly.

Hybrid imaging
modalities

Optical/ICG Several
mm to cm

Commercially available and
growing in usage;

27, 121,
122

primarily used for soft tissue due to
higher perfusion.

Photoacoustic/
optoacoustic

Several
mm to cm

Primarily studied in soft tissues; 127, 128
some potential for cancellous
bone;

high degree of image artifacts.

X-ray/Raman Several
mm to cm

High potential for chemical
specificity and contrast agents;

129

very low signal levels.
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terahertz imaging have been tried, although their specificity to biological information beyond
water content of the tissue is unclear and they are constrained to fairly superficial tissue thick-
nesses (μm to mm).

At the other end of the penetrance scale (mm to cm), near-infrared spectroscopy (NIRS) can
be used through several centimeters of tissue, albeit with very limited spatial resolution, for deep
tissue sensing of absorption and scattering features. Time-resolved NIRS, which measures pho-
ton time-of-flight allowing for selection of late-arriving photons to increase depth sensitivity,
may offer improvements in resolution and quantification and has been used recently in joint
imaging.96 So, while NIRS has its limitations, it is likely a more useful tool for macroscopic
tissue assessment and is largely limited to the measurement of blood, oxygen saturation, water,
and lipid content of the tissue or scattering features related to the tissue matrix composition.
Thus, it can be used in conjunction with ICG as a dynamic contrast-enhanced NIRS.130 Future
work might examine the value of NIRS for osteonecrosis assessment or flow. The assessment of
blood flow can be done microscopically with OCT imaging. However, macroscopic bone blood
flow has been one of the challenges. Recently, the flow assessment of imaging the fluorescence
from ICG has been shown to provide predictive value for flow and even potentially differentiate
between endosteal and periosteal flow.27,44,45,49

Perhaps the most promising tools are ones in which there is a hybrid approach to imaging
information, so the tool is not being evaluated as a single diagnostic, but rather is complementary
to existing clinical tools or as a combination of more than one tool. The most obvious of these is
the use of ICG fluorescence imaging in which it has been added onto color laparoscopy imaging,
and the two can be codisplayed on a video monitor for the surgeon to use.131 This technique has
high penetrance, with several commercial systems approved for use.132 The creation of new
molecular-specific optical contrast agents is evolving rapidly with many clinical trials ongoing.
These should be eventual contrast agents for fluorescence-guided surgery in trauma, even if
many of the initial studies are devoted to diseases such as cancer or cardiovascular disease.

Photoacoustic imaging exists as a hybrid optical-ultrasound tool, which can in some cases
provide both optical contrast as well as ultrasound images, although like ultrasound it has its
strengths in soft tissue imaging and can have large artifacts from the interfaces between hard and
soft tissues or voids within either tissue. Still, the photoacoustic mode of imaging vascularity and
even flow can be significant and provide exquisite detail on vascular patterns and function when
deployed appropriately.127,128,133 The clinical utility of these systems is evolving rapidly, and
evaluating their use in trauma surgery should be a high priority.

Figure 1 shows an overview of the needs in trauma surgery, based upon the depth of pen-
etrance of the imaging tool and the biological timeline of the disease. This figure provides a basic
template from which to think about the tools and their value to trauma or disease diagnostics.
While fine structured fractures might be seen with high-resolution tools, this is the realm of x-ray
imaging or microscopy with optics such as OCT.91,92 Vascular function such as flow or perfusion
to the tissue can be assessed microscopically or macroscopically, based upon the scope of the

Fig. 1 The matching process of the capabilities of each optical tool with the needs in each
application.
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problem, but most clinical evaluations would require macroscopic sensing such as with NIRS,
fluorescence, or photoacoustics. Biological functions such as regrowth or necrosis have two very
different sampling scales, either microscopic methods such as UVand antibiotic fluorescence or
macroscopic tools such as NIRS and contrast agent fluorescence.27,44,45,49 Again, for most clini-
cal issues, the sampling of macroscopic signals is likely needed, and the combination with
existing clinical tools such as ultrasound or x-ray would be beneficial.

5 Conclusions

Research is needed to optimize optical imaging techniques for tissue trauma surgical applica-
tions, and the developments described in Sec. 4 are each important to test. Based on the safety
profile and previous implementation success to other surgical domains, the barriers to the trans-
lation of these techniques to orthopaedic surgery are relatively low. We believe that using optical
imaging to provide surgeons with real-time objective data regarding bone and tissue perfusion
will lead to more effective patient-specific management of common orthopaedic conditions with
lower morbidity and will result in decreased variability associated with how these conditions are
managed. Information provided should go beyond the basic soft and hard tissue structures avail-
able with x-ray imaging and incorporate functional flow and perfusion or tissue metabolism
features that are likely to have a higher specific correlation to the outcome of the procedure.
Optical tools have the best opportunity to impact surgery because of their inherent point-of-care
use, their relatively low capital costs, and their compatibility with intraprocedure measurement.
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