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Abstract

Significance: Lupus nephritis (LuN) is a chronic inflammatory kidney disease. The cellular
mechanisms by which LuN progresses to kidney failure are poorly characterized. Automated
instance segmentation of immune cells in immunofluorescence images of LuN can probe these
cellular interactions.

Aim: Our specific goal is to quantify how sample fixation and staining panel design impact
automated instance segmentation and characterization of immune cells.

Approach: Convolutional neural networks (CNNs) were trained to segment immune cells in
fluorescence confocal images of LuN biopsies. Three datasets were used to probe the effects
of fixation methods on cell features and the effects of one-marker versus two-marker per cell
staining panels on CNN performance.

Results: Networks trained for multi-class instance segmentation on fresh-frozen and formalin-
fixed, paraffin-embedded (FFPE) samples stained with a two-marker panel had sensitivities
of 0.87 and 0.91 and specificities of 0.82 and 0.88, respectively. Training on samples with
a one-marker panel reduced sensitivity (0.72). Cell size and intercellular distances were
significantly smaller in FFPE samples compared to fresh frozen (Kolmogorov–Smirnov,
p ≪ 0.0001).

Conclusions: Fixation method significantly reduces cell size and intercellular distances in LuN
biopsies. The use of two markers to identify cell subsets showed improved CNN sensitivity
relative to using a single marker.
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1 Introduction

1.1 Clinical Motivation: Lupus Nephritis

Lupus nephritis (LuN) is a chronic inflammatory kidney disease that is a manifestation of sys-
temic lupus erythematosus (SLE). It is characterized by immune-mediated kidney damage driven
by both the damage from self-reactive antibodies and the infiltration of the kidney by various cell
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types (e.g., lymphocytes and dendritic cells) that comprise the immune system. Over the course
of the disease, this damage accumulates and can result in kidney failure or end stage renal
disease (ESRD). This requires either dialysis or transplant, resulting in substantial morbidity
and mortality for the approximately 40% of SLE patients that present with LuN.1,2 Less than
60% of patients with severe LuN will respond to current treatment protocols.3 Kidney biopsies
are a critical tool for diagnosing and grading LuN.4 One metric of disease severity is tubu-
lointerstitial inflammation (TII), which quantifies the infiltration of CD45+ immune cells into
the kidney. Notably, nearly half of patients with high TII score will progress to ESRD within
4 years.5,6

While large-scale evaluations of the spatial distribution of inflammation within the kidney
can be made, robust methods for characterizing that inflammation in terms of what cell types are
present and how they interact with each other are lacking. Because intercellular interactions are
at the core of all immunological phenomena, it is difficult to understand the inflammatory proc-
esses that are taking place within inflamed tissue without granular spatial information. A con-
sequence of this is that several treatment modalities that aim to address these immunological
processes have failed to live up to their promise.7–9

We previously demonstrated that multi-channel fluorescence confocal microscopy can be
used in conjunction with computer vision techniques to investigate the interactions between
different populations of lymphocytes within LuN biopsies.10,11 In this context, computer vision
allows for automated detection of immune cells in inflamed tissue, which will help to improve
understanding of autoimmune phenomena in diseases such as LuN. However, applying com-
puter vision to segment immune cells in inflamed human tissue remains a challenging task, due
to issues such as tissue autofluorescence and variable antibody uptake. Therefore, it is important
to understand how aspects of data collection impact the performance of computer vision appli-
cations. Here, we evaluate the robustness of these methods to automatically assess cell preva-
lence and shape in three separate datasets of LuN biopsies. Our goal is to inform decision-
making in future data collection so that we can use these techniques to further our understanding
of inflammatory disease.

1.2 Deep Learning in Cellular Images

High-throughput analysis of cellular imaging is a difficult and time-consuming task. Specifically,
there is no effective and efficient manual method for reliably quantifying cell location and shape,
a task that is important for understanding intercellular interactions. Since the emergence of deep
learning as a state-of-the-art computer vision technique, it has become an integral tool in the
identification, segmentation, and classification of cells and cell nuclei in microscopy images.12

For diagnosis and grading of pathology slides, deep learning models have shown high accuracy
in rapid classification of slides. Additionally, deep learning models currently outperform other
automatic segmentation methods in most tasks involving the segmentation of cell nuclei.
However, in dense aggregates of cells and multi-class images, individual cell classification and
segmentation remain difficult tasks.13

Multiple deep convolutional neural network (CNN) architectures have been developed to
improve automatic instance segmentation of cells, a computer vision task that identifies, seg-
ments, and classifies multi-object, multi-class images of cells. Multiple CNN architectures have
shown promising results in the task of instance segmentation of cell nuclei in fluorescence
images. In general, segmentation architectures, such as the U-Net, and region-based methods,
such as mask R-CNN, are commonly used or adapted to accurately segment cells in various
modalities of microscopy images.14,15 Narotamo et al.16 combined fast YOLO—an object detec-
tion network architecture—with a U-Net to segment individual nuclei in images while minimiz-
ing computational complexity. Network architectures have also been combined into ensembles
or cascades to improve performance for a given computer vision task. A mask R-CNN and U-Net
ensemble network was trained to segment cell nuclei in images from multiple modalities, bright-
field, fluorescence, and RGB wide-field histology.17 Unlike these examples, the task at hand
requires multi-class instance segmentation, and we need to be more specific than nuclear seg-
mentation as each class of cells is defined by the nuclear marker plus one or more immunological
markers. Liarski et al.10 developed a custom network for this task. Here, we implement mask
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R-CNN18 to segment and classify immune cells in three different datasets of fluorescence con-
focal images of human LuN biopsies. Mask R-CNN is computationally expensive but has been
shown to yield high accuracy for multi-class instance segmentation, so we have adapted this
architecture to work with 6-channel fluorescence confocal images to segment three to five
classes of cells in each image.

1.3 Dataset Variability and Probing in situ Immunity in LuN

The cellular markers investigated in this study were selected in order to investigate the inter-
actions between CD4+ T cells, CD4− T cells, and potential antigen presenting subsets in LuN,
including B cells, plasmacytoid dendritic cells (pDCs), and myeloid dendritic cells (mDCs).
Previous work in this field has shown that these cell types might play a role in the pathogenesis
of LuN.5,10 B cells have long been appreciated for their role in lupus, as it is an antibody-medi-
ated disease and B cells are antibody-producing cells. T cells make up a large proportion of the
infiltrating immune cells in this disease,19 and it is thought that they might modulate disease
progression both by providing “help” to the other infiltrating immune cells and by directly acting
on the tissue. Dendritic cells modulate the activity of T cells by presenting antigen to them,
leading to either their activation of suppression, depending on the context.4 Understanding the
complex interplay of these cell populations is therefore of great interest and motivates the devel-
opment of computer vision techniques for this purpose.

Using clinical samples is resource intensive, so it is vital to optimize data collection for the
chosen analytical method. Specifically, it is important to understand how technical choices
regarding sample preparation might influence the quality of data used in automated cell detection
algorithms.

There are two major considerations we wish to address here. First, does the method of sample
preparation influence our findings around cellular morphology? Our previous work was per-
formed on fresh-frozen samples. These are relatively expensive to store, and far less widely
available than formalin-fixed, paraffin-embedded (FFPE) tissue. Extending this technique to
FFPE samples would greatly increase the dataset of samples that are available. However, it
is well-established that formalin fixation can lead to gross tissue shrinkage,20–22 which could
lead to distortions in our findings around cell shape, size, and distance to other cell types.
In this work, we seek to understand whether these deformations cause differences in cell shape
and intercellular distances. Given no statistical difference between these two groups, it would be
appropriate to group fresh-frozen biopsies and FFPE biopsies for analysis of cellular features,
which would increase the availability of datasets. For this reason, we evaluated performance of
independently trained mask R-CNN networks in the task of multi-class instance segmentation of
cells in FFPE tissue samples relative to fresh frozen.

Second, we wanted to address the number of stains that are required to identify a cell type.
Our previous work utilized two markers to identify each type of dendritic cell. However, the
ability of a given microscope to resolve adjacent emission spectra limits the number of fluoro-
phores that are available for a staining panel to 5 or 6 markers. To the human observer, using
multiple markers to identify a cellular class results in better discrimination of cell classes. In
manual analysis of cells, this approach helps to identify true positives because tissue autofluor-
escence, stain quality, spectral bleed-through, and non-specific antibody binding can result in
ambiguous signal. However, due to the limitation in the number of fluorophores that can be
resolved in one imaging session, the choice to use multiple markers per cell type necessarily
means that fewer cell types can be investigated in a given panel. This is essentially a trade-off
between robustness and breadth. Here, we investigate whether single markers can be used in a
computer vision task to identify and segment cell types with high fidelity, allowing us to expand
the set of cell types we examine with a single panel.

For these two purposes, we collected three datasets from kidney biopsies of LuN patients:
(1) fresh frozen, stained with two markers per antigen presenting cell (APC), (2) FFPE, stained
with two markers per APC, and (3) FFPE, stained with one marker per APC. These findings will
allow us to optimize future data collection efforts for the application of computer vision, which
will enable rigorous quantification of immune cell subsets in tissue.
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2 Methods

2.1 Data Acquisition

For staining of fresh-frozen sections, the sections were removed from −80°C, washed with PBS,
blocked with serum and followed by antibody staining. Two distinct antibody panels were uti-
lized to stain the tissue sections: for pDC analysis—CD3 (Alexa Flour 546), CD4 (Alexa Flour
594), BDCA2 (Alexa Flour 488), and CD123 (Alexa Flour 647); mDC analysis—CD3 (Alexa
Flour488), BDCA1 (Alexa Flour546), CD4 (Alexa Flour594), and CD11c (Alexa Flour647).
4′,6-diamidino-2-phenylindole (DAPI) (Hoechst 33342, Invitrogen) was used with the above
to visualize tissue nuclei. Fresh-frozen tonsil sections served as controls. For staining of
FFPE sections, the sections were de-paraffinized, treated with citric acid buffer (pH 6.0) for
antigen retrieval, then blocked and stained with the same process of fresh-frozen samples.
Double staining on FFPE (FFPE-DS) was done with the same fluorophores as fresh frozen.
Single staining (FFPE-SS) was done with CD20 (Alexa Flour 488), CD3 (Alexa Flour546),
BDCA2 (Alexa Flour594), CD4 (Alexa Flour647), and CD11c (Alexa Flour700). FFPE tonsil
sections served as controls. Further details on selected antibodies are listed in Table S1 in the
Supplementary Material.

2.2 Lupus Nephritis Datasets

Three separate LuN datasets were used in this study to compare two tissue fixation methods
(fresh frozen and FFPE) and two staining panels (Table 1). The first dataset (fresh-frozen-
DS) was composed of images of fresh-frozen LuN biopsies, imaged on a Leica SP5 laser scan-
ning confocal microscope at 63×magnification. Resulting images were 1024 × 1024 pixelswith
a 0.1413-μm pixel size (Table 1). The samples in this dataset were stained with staining panel 1
(Table 2), using two markers per APC. As a result, a given sample was only stained for two T cell
populations and one APC population, either mDCs or pDCs, and each image consisted of three
cell classes: CD3+CD4+ T cells, CD3+CD4− T cells, and one type of dendritic cell (Fig. 1).

FFPE-DS and FFPE-SS datasets were composed of images of FFPE samples, imaged on
a Leica SP8 laser scanning confocal microscope at 63× magnification. Images remained
1024 × 1024 pixels; however, given the different imaging system, the resulting pixel size for
these two datasets is 0.1058 μm. The FFPE-DS dataset was also stained with panel 1, with three
cell classes per image (Fig. 2). The FFPE-SS dataset was stained with a single marker per APC
class. In addition to staining for both pDCs and mDCs in one panel, B cells were also probed in
this dataset, resulting in five cell classes: two T cell populations and three APC populations

Table 1 Defining descriptors of the three datasets used to assess DCNN performance on fixation
methods and staining panels.

Fixation method Staining panel Microscope Pixel size (μm)

Fresh-frozen-DS Fresh frozen Panel 1 Leica SP5 0.1337 to 0.1413

FFPE-DS FFPE Panel 1 Leica SP8 0.1058

FFPE-SS FFPE Panel 2 Leica SP8 0.1058

Table 2 Two staining panels were used to compare DCNN performance on single- to dual-marker
identification of APCs.

T cell
markers mDC markers pDC markers

B cell
markers

Nuclear
marker Other

Panel 1 (DS) CD3, CD4 CD11c, BDCA1 BDCA2, CD123 — DAPI DIC

Panel 2 (SS) CD3, CD4 CD11c BDCA2 CD20 DAPI —
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(Fig. 3). The FFPE-SS dataset lacks a differential interference contrast (DIC) channel in order
to accommodate an additional cell surface marker while maintaining a constant channel depth.
Conservation of channel depth was desirable for this study because keeping this variable
consistent preserves the number of trainable parameters in the network. In the DS datasets, the
DIC channel was intended to aid in the segmentation of cells, as it mainly contributes cell edge
information. Preliminary analysis of the FFPE-SS dataset determined that the pixel-level seg-
mentation was not adversely affected by eliminating this channel. Resulting image stacks were
1024 pixels × 1024 pixels × 6 channels, with each channel associated with a single marker.
Table 2 summarizes the key differences in the three datasets.

2.3 Manual Segmentation of Images for Ground Truth

For all datasets, a subset of images from each biopsy was selected on which to generate manual
truth. All manual segmentations and cell classifications were done using Fiji/ImageJ software to

Fig. 2 Example image from the FFPE-DS dataset. A single-APC population (pDCs) is probed with
two markers. This example shows a pDC image, but mDC images are also in this dataset, with the
markers listed in Table 2. T cells are stained for CD3 and CD4, and DAPI is used to identify cell
nuclei. All channels are merged in the rightmost panel, with colors corresponding to the above
label.

Fig. 1 Example image from the fresh-frozen-DS dataset. A single-APC population (mDCs) is
probed with two markers. This example shows a mDC image, but pDC images are also in this
dataset, with the markers listed in Table 2. T cells are stained for CD3 and CD4, and DAPI is
used to identify cell nuclei. All channels are merged in the rightmost panel, with colors correspond-
ing to the above label.
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generate free-hand outlines of the cells. For all three datasets, the ground truth was established
through two rounds of segmentation. The first round was performed by several researchers with
experience with evaluating microscopy data. The second round for all three sets was done by a
single final expert, a researcher in a rheumatology lab with extensive experience in reading and
analyzing multi-channel immunofluorescence images. Instructions for generating truth were to
outline each cell-based off of the surface marker(s) that defined each class, given the constraint
that nuclear signal was present in the DAPI channel within this outline. The second round of
segmentation by one expert was conducted to address the issue of reader fatigue and maintain
consistency. Because we were interested in how various aspects of data acquisition affected per-
formance, and we wanted to avoid the confounding variable of inter-observer variation. Cell
identification, classification, and pixelwise segmentation were all performed manually, such that
no automation was included in generating ground truth. In the FFPE-SS dataset, the higher num-
ber of channels resulted in greater spectral overlap between fluorophores, and some manual
classifications became ambiguous. To aid the generation of manual truth, the channels were
spectrally unmixed using the excitation and emission spectra of each fluorophore. The experts
were given the spectrally unmixed images to determine ground truth, but network training used
the raw image data.

2.4 Generation of Training Sets

Manually segmented images were split into training, validation, and test sets at a 90/5/5 ratio
(Table 3). Validation and test sets were small at the image level, but still contained over 300 cells
each, and network performance is measured at the cell level. The FFPE-DS dataset had a smaller
ground truth set due to the large number of cells per image in that dataset. The FFPE-SS manual
dataset contained more images with a relatively high density of cells. The large number of man-
ually segmented cells in the FFPE-SS manual truth set caused a 90% training set to exceed our

Fig. 3 Example image from the FFPE-SS dataset. Three APC populations (mDCs, pDCs, and
B cells) are probed with a single marker each. T cells are stained for CD3 and CD4, and
DAPI is used to identify cell nuclei. All channels are merged in the rightmost panel, with colors
corresponding to the above label.

Table 3 Training, validation, and test set splits for the manual segmentations in all datasets.

Total cells
in manual set

Total images
in manual set

Images in
training set

Images in
validation set

Images in
test set

Fresh-frozen-DS 5166 240 168 (90%) 12 (5%) 12 (5%)

FFPE-DS 7145 160 143 (90%) 8(5%) 8 (5%)

FFPE-SS 10611 342 293 (85%) 26 (7.5%) 26 (7.5%)
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GPU memory capabilities (4 nVidia K80 GPUs with 12 GB memory each). The ground truth for
this dataset was therefore split into training/validation/testing sets at an 85/7.5/7.5 ratio. Images
from a given biopsy were randomly divided up between the training/validation/test sets. This
means that, while there were unique sets of images in the training/validation/test sets, images
from the same biopsy could be in more than one of these subsets. This was done intentionally for
this study to ensure that differences in performance between the separately trained instances of
mask R-CNN were due to the staining panel or fixation method, and not differences between
patients in the training and testing sets.

2.5 Network Architecture and Training

Three separate instances of a mask R-CNN architecture18 were trained to conduct instance seg-
mentation on each of the three datasets. Mask R-CNN is part of a family of region-based CNNs
that are designed for instance segmentation.18,23,24 The overall architecture is described in Fig. 4.
A feature pyramid network (FPN) is used as a feature extractor. The backbone of this FPN in this
paper is a ResNet101 architecture.25 The average-pooling layer, fully connected layer, and soft-
max layer normally found at the end of a ResNet101 are left off, as the network is used to
generate feature maps rather than classify full images. In the FPN structure, feature maps are

Fig. 4 Each network trained to segment and classify immune cells is a mask R-CNN architecture.
Object proposals are performed on feature maps from the DCNN, and then single objects (cells)
are semantically segmented and classified.
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pulled out of the ResNet blocks at all scales and run through a 1 × 1 convolutional layer. Higher
level (lower resolution) feature maps are upsampled and summed with lower level (higher res-
olution) feature maps. These “multiscale” feature maps are passed through 3 × 3 convolutional
layers in preparation for input into the region proposal network (RPN). Predetermined anchor
boxes of various sizes and aspect ratios are pulled from each position of the feature maps for
input into the RPN. The RPN is a small network that operates on these anchors to propose
objects and is comprised of a single 3 × 3 convolutional layer and two “sibling” 1 × 1 convolu-
tional layers for (1) determining whether a given proposal is in fact an object and (2) bounding
box regression. The object proposals from this RPN are converted to fixed-size proposals and
aligned with feature maps, then each object progresses in parallel through (1) fully connected
layers for classification and further bounding box regression and (2) mask generation.

Hyperparameters were tuned to optimize accuracy on multiple class sets. The networks were
trained with a learning rate of 0.01 using stochastic gradient descent with momentum. Cells in
dense regions were detected with higher accuracy by reducing hyperparameter of the RPN sec-
tion of the network, anchor stride length. Training was monitored using Tensorboard and was
stopped once the mean average recall for all cell classes stopped increasing. A cell was kept for
analysis if the network confidence in the prediction was above 0.3.

All image preparation, network training, and inference were performed using the Midway2
compute nodes of the University of Chicago Research Computing Center. Each network was
trained separately on each dataset, with a batch size of 4 distributed across 4 Nvidia K80 GPUs
(12 GB memory each) using Horovod distributed deep learning framework.26 Data augmentation
included random flips and rotations, and brightness and gamma augmentation.

2.6 Evaluation of DCNN Performance

DCNN performance was measured by calculating sensitivity, specificity, and Jaccard index,
also known as intersection over union (IOU), for a test set. The manual segmentations provided
ground truth at the cell level. A cell prediction was considered a true positive if it had an IOU of
at least 0.25 with a manual segmentation of a cell of the same class. Sensitivity and specificity for
cell detection and classification were calculated at the cell class level. In addition, IOUs were
calculated on a per cell basis and averaged across all cells within a given cell class. Sensitivity,
specificity, and IOU were averaged across all cells to provide overall performance metrics for the
networks.

2.7 Cell Shape and Distance Metrics

After analyzing the detection and segmentation performance of each network on the correspond-
ing test sets, each network was used to predict cell types in larger sets of unlabeled images.
Population ratios of each cell type were calculated for each unlabeled dataset and compared
to the corresponding ratios in the ground truth dataset. After analyzing the performance of the
three trained networks, each network was used to predict cell types in unlabeled images. Cell
size, shape, and distance features, specifically cell area, cell perimeter, and T cell minimum
distance to a DC, were calculated for each cell detected by the networks. These shape features
were compared across datasets to determine whether the tissue preparation method, stain speci-
ficity, or network performance affected cellular features.

3 Results

3.1 Network Performance on Test Sets

Deep CNNs with mask R-CNN architectures were trained for each of the three separate datasets.
Both instances of mask R-CNN trained on the fresh-frozen-DS and FFPE-DS datasets met the
stopping criteria at 64k iterations with a batch size of 4 or 16k epochs. Performance metrics on
test sets for these two datasets are detailed in Table 4. It is important to note that while DC
sensitivity is high, we do not necessarily expect to detect every DC in an unlabeled dataset.
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These test sets are relatively small at the image level, and DCs are the least prevalent populations,
but there are still over 50 DCs in each test set. Each network trained on a double-stain dataset
detected all DCs in the corresponding test set, regardless of sample fixation method.

The instance of mask R-CNN trained on the FFPE-SS dataset required longer training time
(72k iterations or 18k epochs), and network sensitivity was poor for mDCs and marginal for
pDCs (Table 5). The poor performance on DCs may be due to the fact that they are more amor-
phous than lymphocytes such as T cells and B cells, which have relatively little cytoplasm and
therefore have surface stains that coincide with their nuclei. In contrast, dendritic cells have long
extensions from their cell bodies called dendrites,27 which can reach in and out of the image
plane, producing positive signal where there may not be a nucleus to assign it to. Therefore,
assigning ground truth to these cells is inherently harder. In the fresh-frozen-DS and FFPE-
DS datasets, DCs are identified with two markers, whereas in the FFPE-SS dataset, each
DC population is identified with a single marker. With this dataset, we tested the hypothesis
that using multiple stains to identify DCs bolsters performance, and that using only one marker
would impose a cost. The decline of network performance on these cells is likely due to a com-
bination of low signal-to-noise ratio, variable cell shape, and ambiguous ground truth.

The three trained networks described above were used to generate cell predictions on larger
unlabeled datasets. Table 6 describes the manual and automatic segmentations for each of the
three datasets. Each trained instance of mask R-CNN was used to generate cell predictions on
all images in its corresponding dataset, which included unlabeled versions of all images that
had been manually segmented and images that were never manually segmented by an expert.

Table 4 A network was trained and tested on each dataset as described in Tables 1–3.
Sensitivity, specificity, and Jaccard index (IOU) are shown for the test sets corresponding to the
two networks trained on the double-stain datasets.

CD3+CD4+ T cells CD3+CD4− T cells DCs All (average)

Sensitivity

Fresh-frozen-DS 0.77 0.85 1.0 0.87

FFPE-DS 0.89 0.84 1.0 0.91

Specificity

Fresh-frozen-DS 0.82 0.84 0.80 0.82

FFPE-DS 0.84 0.83 0.96 0.88

IOU

Fresh-frozen-DS 0.79� 0.21 0.75� 0.24 0.83� 0.19 0.80� 0.21

FFPE-DS 0.77� 0.22 0.80� 0.19 0.86� 0.15 0.79� 0.20

Table 5 A network was trained on the FFPE-SS dataset. Sensitivity, specificity, and Jaccard
index (IOU) are shown for the FFPE-SS test set.

CD3+CD4+
T cells

CD3+CD4−
T cells mDCs pDCs B cells

All cells
(average)

Sensitivity
FFPE-SS

0.90 0.85 0.38 0.69 0.75 0.72

Specificity
FFPE-SS

0.86 0.89 0.97 0.95 0.91 0.92

IOU
FFPE-SS

0.81� 0.17 0.82� 0.18 0.63� 0.21 0.74� 0.20 0.75� 0.21 0.78� 0.19
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The average number of cells per image is similar between the manual segmentations and auto-
matic predictions for each dataset. Assuming patients in these larger datasets have similar preva-
lence of each cell type, the manual and automatic segmentation sets should maintain similar
ratios of cell types across cell types. Cell types with lower sensitivity values in Tables 4 and
5 are expected to have lower prevalence in the automatic sets compared to the manual counter-
parts, whereas cell types with lower specificity are expected to have an increased prevalence in
the automatic sets. Absolute numbers and relative amounts of each cell type are listed in Table 6
for both manual segmentations and automatic predictions for all three datasets.

3.2 Fixation Method Affects Cell Shape and Network Performance

It is widely documented that the processes of fresh freezing and formalin fixation cause different
deformations to tissue. Formalin fixation will dehydrate the tissue, causing a contraction.20–22

Figures 5(a)–5(c) show that this phenomenon is consistent across all cell types. T cells and
mDCs show a markedly reduced area in FFPE samples compared to their fresh-frozen counter-
parts [Figs. 5(a) and 5(b)]. However, while pDCs are also much smaller in FFPE than fresh-
frozen samples, the change in area is less than that of T cells and mDCs [Fig. 5(c)]. In
FFPE samples, pDCs showed a 31.4% reduction in mean area compared to 54.8% and
55.5% reductions in the mean area of mDCs and T cells, respectively. Similarly, a contraction
of cellular perimeter was observed for all classes [Figs. 5(d)–5(f)]. This shrinkage is not only
found at the cellular scale but remains consistent at the tissue level. Figure 5(g) shows the dis-
tribution of minimum distances of T cells to the nearest DC. T cells in FFPE samples show
shorter distances to DCs than in fresh-frozen samples (p ≪< 0.0001). The fixation method
therefore influences not only measurements of cell size and shape but of spatial relationships
between cells. Both networks exhibited high confidence in the classifications, as measured by
the distribution of probabilities assigned by the network, with the FFPE-DS network showing
increased prediction probabilities relative to the fresh-frozen-DS network [Fig. 5(h)].

3.3 Staining Panel Affects Automated Detection of Cells

Separate staining panels were used on the two FFPE datasets to test the feasibility of using a
single marker to identify APC populations. This would allow us to analyze a more diverse set of
cells in a given biopsy, overcoming the technical limitations of antibody species and available
microscope laser lines. For example, the FFPE-DS dataset can probe a single APC population—
either mDCs or pDCs—in a given image, whereas the FFPE-SS dataset probes three APC

Table 6 Cell counts for manual segmentations and automatic predictions in all datasets.

Total cells
(images)

Average
cells/
image

CD3+CD4+
T cells (%)

CD3+CD4−
T cells (%) mDCs (%) pDCs (%)

B cells
(%)

Manual

Fresh-frozen-DS 5166 (240) 21.5 2688 (52.03) 1161 (22.48) 292 (5.65) 1025 (19.84) N/A

FFPE-DS 7145 (160) 44.7 4104 (57.44) 2041 (28.57) 483 (6.76) 517 (7.23) N/A

FFPE-SS 10,611 (342) 31.0 3714 (35.00) 2846 (26.82) 768 (7.24) 847 (7.98) 2436
(22.96)

Automatic

Fresh-frozen-DS 16,666 (673) 24.8 8216 (49.30) 4047 (24.28) 2160 (12.96) 2243 (13.46) N/A

FFPE-DS 16,396 (380) 43.1 8351 (50.93) 5340 (32.57) 1186 (7.23) 1519 (9.27) N/A

FFPE-SS 38,594 (1332) 29.0 11126 (28.82) 14962 (38.76) 2573 (6.66) 2436 (6.31) 7506
(19.45)
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populations—B cells, mDCs, and pDCs—in single image. The use of the single-stain system
compared to the double-stain system diminished the accuracy of the network for DC populations
(Fig. 6). Compared to the network trained on a panel with double-stained DCs, the network
trained on the panel with single-stained DCs yielded worse confidence overall in cell detection
and classification, as shown by the distribution of probability scores for the DC classes
[Figs. 6(a)–6(c)]. This is consistent across all cell types, but particularly noticeable in mDCs
[Fig. 6(c)], which corresponds with the poor sensitivity to mDCs with the network trained
on the FFPE-SS dataset (Table 5). Furthermore, neither mDC nor pDC area remains consistent
[Figs. 6(e) and 6(f)], suggesting that the decrease in sensitivity to these cells skews the distri-
bution of cell features.

4 Discussion

Automated instance segmentation of LuN biopsies revealed quantifiable differences between
cells and intercellular distances in fresh-frozen and FFPE biopsies. Additionally, staining panel
design was found to affect the performance of automated instance segmentation of LuN biopsies
with mask R-CNN.

Fig. 5 Shape and distance differences exist between cells of the same population when different
fixation methods are used. Area of (a) T cells, (b) mDCs, and (c) pDCs is significantly smaller in
FFPE samples than fresh-frozen samples. Perimeter of T (d) cells, (e) mDCs, and (f) pDCs is
significantly smaller in FFPE samples than fresh-frozen samples. (g) The minimum distance
between a T cell and the nearest DC is significantly smaller in FFPE than fresh-frozen samples.
(h) Both networks show high confidence in the automatic predictions, although the FFPE prob-
abilities are significantly higher. For all plots, a Kolmogorov–Smirnov test shows a statistical differ-
ence between distributions (p ≪< 0.0001).
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4.1 Network Performance and Interpreting Observations from Unlabeled
Datasets

Networks trained on samples stained with panel 1 had better overall sensitivity than samples
stained with panel 2 (Tables 4 and 5), particularly for DCs. This indicates that a dual-marker
system for identifying DCs is more effective for training an automatic cell detection and seg-
mentation algorithm than a single-marker system. This is likely due to multiple factors. Having
two markers for a given cell type provides a more stringent criteria for ground truth. Therefore,
the ground truth for the double-stain DCs is less ambiguous, which translates into network per-
formance. In generating ground truth, calling cells in the fresh-frozen samples was reported to be
more difficult than calling cells in the FFPE samples, given the same staining panel. This likely
contributes to the better overall sensitivity and specificity of an FFPE-trained network relative to
fresh-frozen-trained network (Table 4).

In general, cell segmentation is particularly difficult in dense regions of cells. The three data-
sets interrogated in this paper have different average cell densities, ranging from 21 to 45 cells
per image on average. The most densely packed dataset was the FFPE-DS dataset (45 cells per
image). A network trained to segment cells in this dataset outperformed a network trained to
segment cells in the least densely packed dataset, fresh-frozen-DS (21 cells per image) (Table 4).
This further supports the notion that sample preparation affects the performance of these cell
segmentation algorithms. The FFPE-SS dataset has an average of 31 cells per image compared to
an average of 45 cells per image in the FFPE-DS dataset. T cells in these two datasets are stained
with the same markers. There is a slight decrease in all performance metrics for a network trained
on FFPE-DS images (most dense) compared to a network trained on FFPE-SS images (less
dense) (Tables 4 and 5). These results suggest that the image quality variables associated with

Fig. 6 Number of stains used to probe a DC population affects the network performance.
(a) Network confidence in cell classification for all cells is compared between a network trained
on a single-stain DC panel and a network trained on a double-stain DC panel. The network trained
on the double-stain panel was statistically more confident in its predictions (p ≪< 0.0001).
(b) Probabilities of cells classified as pDCs by networks trained on single- and double-stain
DC panels. (c) Probabilities of cells classified as mDCs by networks trained on single- and
double-stain DC panels. (d) Probabilities of cells classified as either T cell population by net-
works trained on single- and double-stain DC panels. (a)–(d) Have a lower bound of 0.3
because cells below this threshold are automatically rejected by the network. (e) Cell area
of pDCs detected by networks trained on single- and double-stain panels. (f) Cell area of
mDCs detected by networks trained on single- and double-stain panels. For all plots in this
figure, a Kolmogorov–Smirnov test shows a statistically significant difference between the two
distributions (p ≪< 0.0001).
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sample fixation, such as changes in tissue background and non-specific antibody binding, affect
algorithm performance more so than cellular density.

The DC populations in the two DS datasets comprise a larger portion of the automatic cell
predictions than manual (Table 6). This is because of the high sensitivity and moderate speci-
ficity (Table 4). Most DCs are detected, and false positives bolster the prevalence. Also, in the
fresh-frozen-DS dataset, mDCs appear to increase in prevalence. However, this increase is due to
a higher number of mDC images in the unlabeled fresh-frozen-DS dataset. While mDC images
only comprised 30% of the ground truth set (training, validation, and testing), the unlabeled
dataset was comprised of nearly 50% mDC images. Interestingly, in both FFPE datasets, the
ratio CD3+CD4− T cells to CD3+CD4+ T cells increased in the automatic predictions (Table 6);
however, the overall cell density per image remained fairly consistent between the manual and
automatic segmentations (Table 6). This combined with the sensitivity and specificity for T cell
populations in Tables 4 and 5 suggest that both FFPE-trained networks are misclassifying
a fraction of CD3+CD4+ T cells as CD3+CD4− T cells. However, both of these networks
detect and classify T cells well, with sensitivity and specificity values of 0.83 or greater
(Tables 4 and 5).

Automatic predictions were done on larger unlabeled datasets to more effectively probe
the ability of these networks to generalize to new images. Of the images that were manually
segmented, a large portion (85% to 90%) was reserved for training, resulting in small validation
and test sets. The test set for each dataset allows for a direct comparison of manual segmentations
and automatic predictions. Comparing the density of cells detected per image and the relative
numbers of each cell type (Table 6) in the manual segmentations and automatic predictions fur-
ther shows the generalizability of these networks to new data without requiring hundreds of more
image images and thousands of more cells to be manually segmented.

4.2 Network Generalizability to other Tissue Fixation Methods

Because the fresh-frozen-DS and FFPE-DS datasets have the same number of channels and
the same number of classes, it is possible to test the generalizability of a network trained on
one dataset by using it to generate predictions on the other. Additionally, we can observe the
differences in training a network on “hard examples” compared to “easier examples.” For this
staining panel, tissue fixed with the fresh-frozen method was reported to have more ambiguous
cells by the experts who collected the data and provided ground truth, making this a hard exam-
ple training set, whereas the FFPE samples were clearer, making this an easier example training
set. The network trained on the fresh-frozen-DS dataset was used to make predictions on the
FFPE-DS test set and vice versa. Both networks generalized fairly well to the new test sets
(Table 7). Interestingly, neither network generalized better than the other across all cell types.
For example, the network trained on FFPE samples generalized better to DCs in fresh-frozen
samples, whereas the network trained on fresh-frozen samples generalized better to CD3+CD4+
T cells in FFPE samples. In general, the trends in sensitivity, specificity, and IOU follow the
trends in Table 4, where each network was tested on data from the same fixation method. This
shows that these methods for detecting cells in biopsies can generalize to images of samples with
different fixation methods and images with different pixel size/resolution. However, if a network
was intended to be used to detect and classify cells in biopsies from multiple fixation methods,
and/or in images variable pixel size, and this was known prior to training, more consistent
performance would come from training the network on a merged set of ground truth images.

4.3 Implications of Variable Cell Shape across Tissue Fixation Methods

Figure 5 demonstrates that tissue fixation impacts the metrics of cell shape and intracellular
distances that can be derived from the network predictions. Tissue expansion and shrinkage
in fresh-frozen and FFPE tissue, respectively, is well-documented.20–22 The data presented here
quantify these deformations, showing a ∼30% decrease in all linear metrics of T cell shape (e.g.,
equivalent diameter and perimeter), a 52.7% decrease in mean T cell area, and a 24.7% decrease
in the minimum distance of a T cell to the nearest DC. These discrepancies in cellular features
can have implications on conclusions drawn from data mining images to investigate biological
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phenomena. Previous work has used cellular shape and distance between cell types in fresh-
frozen LuN biopsies to identify intercellular interactions.10 Metrics including minimum distance
of T cells to a DC and T cell shape features were used to identify which cell populations were
more frequently interacting. For this work to translate effectively to FFPE LuN biopsies, these
differences in cell size, cell shape, and intercellular distances must be taken into consideration.

4.4 Multiple Markers for Classification

The second major technical consideration we investigated is the utility of using multiple markers
for classifying cells, particularly for difficult classes such as dendritic cells. Because a given
immunofluorescence experiment is limited to 5 to 6 markers, there is a real cost associated with
using multiple markers per cell type. In panel design, there is a trade-off between robustly
identifying a single cell type and interrogating multiple cell types in a single experiment.
We evaluated the extent to which using a single stain to identify DC subsets diminished network
performance. We observed that the network sensitivity was relatively poor for the single-stain
dataset, particularly for mDCs and pDCs. DC subsets were particularly impacted by ambiguous
staining from single markers, compounded by relatively low prevalence of these cell types in the
dataset. This loss of sensitivity had consequences for calculating cell features downstream, as
evidenced by the shift in the observed area distribution for pDCs and mDCs [Figs. 6(e) and 6(f)].
Thus, we conclude that using a single marker for detecting difficult or infrequent cell types is not
a worthwhile compromise, because the benefit of interrogating multiple cell types is negated by
the decrease of algorithm robustness in detecting these infrequent cell types. Using multiple
markers will bolster the performance of computer detection of cells, particularly for cell classes
of lower prevalence. Because of a severe class imbalance with DCs in the underlying biology of
LuN, it is imperative that we optimize sample staining to ensure adequate instance segmentation
of these cells.

5 Conclusions

Three separate instances of a mask R-CNN architecture were trained on three datasets of fluo-
rescence confocal images of LuN biopsies in order to evaluate which elements of data collection
can drive the success of computer vision-based analytical approaches. Automatic segmentation
of these datasets confirms that fixation method of the tissue affects cell shape features and
intercellular distances. Specifically, these features are quantifiably smaller in FFPE samples
compared to their fresh-frozen counterparts. Additionally, we demonstrated that using multiple

Table 7 Network performance for a network trained on fresh-frozen samples, but tested on FFPE
samples, and vice versa.

CD3+CD4+
T cells

CD3+CD4−
T cells DCs

All cells
(average)

Sensitivity

Train on fresh frozen, test on FFPE 0.88 0.68 0.83 0.80

Train on FFPE, test on fresh frozen 0.74 0.78 0.94 0.82

Specificity

Train on fresh frozen, test on FFPE 0.81 0.84 0.91 0.85

Train on FFPE, test on fresh frozen 0.66 0.70 0.93 0.76

IOU

Train on fresh frozen, test on FFPE 0.76� 0.21 0.69� 0.25 0.79� 0.23 0.73� 0.23

Train on FFPE, test on fresh frozen 0.80� 0.19 0.76� 0.25 0.81� 0.18 0.80� 0.20
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markers to delineate difficult cell classes is essential to optimize automated detection of cells in
LuN biopsies. These data show that decisions around tissue preparation and marker panels are
important factors to consider and optimize in order to extract biologically relevant information
from clinical biopsies.
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