
Terahertz radiation and the skin: a review

Angelina I. Nikitkina,a Polina Y. Bikmulina ,a,b Elvira R. Gafarova,a,b

Nastasia V. Kosheleva,a,b,c Yuri M. Efremov ,a,b Evgeny A. Bezrukov,d

Denis V. Butnaru,d Irina N. Dolganova ,a,e,f Nikita V. Chernomyrdin ,a,g

Olga P. Cherkasova ,h,i Arsenii A. Gavdush,g and Peter S. Timashev a,b,j,k,*
aSechenov University, Institute for Regenerative Medicine, Moscow, Russia

bWorld-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
cFederal State Budgetary Scientific Institution “Institute of General Pathology and

Pathophysiology,” Moscow, Russia
dSechenov University, Institute for Urology and Reproductive Health, Moscow, Russia
eRussian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia

fBauman Moscow State Technical University, Moscow, Russia
gRussian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia

hRussian Academy of Sciences, Institute of Laser Physics of the Siberian Branch,
Novosibirsk, Russia

iNovosibirsk State Technical University, Novosibirsk, Russia
jN. N. Semenov Institute of Chemical Physics, Department of Polymers and Composites,

Moscow, Russia
kLomonosov Moscow State University, Chemistry Department, Moscow, Russia

Abstract

Significance: Terahertz (THz) radiation has demonstrated a great potential in biomedical appli-
cations over the past three decades, mainly due to its non-invasive and label-free nature. Among
all biological specimens, skin tissue is an optimal sample for the application of THz-based meth-
ods because it allows for overcoming some intrinsic limitations of the technique, such as a small
penetration depth (0.1 to 0.3 mm for the skin, on average).

Aim:We summarize the modern research results achieved when THz technology was applied to
the skin, considering applications in both imaging/detection and treatment/modulation of the
skin constituents.

Approach: We perform a review of literature and analyze the recent research achievements in
THz applications for skin diagnosis and investigation.

Results: The reviewed results demonstrate the possibilities of THz spectroscopy and imaging,
both pulsed and continuous, for diagnosis of skin melanoma and non-melanoma cancer,
dysplasia, scars, and diabetic condition, mainly based on the analysis of THz optical properties.
The possibility of modulating cell activity and treatment of various diseases by THz-wave
exposure is shown as well.

Conclusions: The rapid development of THz technologies and the obtained research results
for skin tissue highlight the potential of THz waves as a research and therapeutic instrument.
The perspectives on the use of THz radiation are related to both non-invasive diagnostics and stimu-
lation and control of different processes in a living skin tissue for regeneration and cancer treatment.
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1 Introduction

The skin is the layer of flexible outer tissue covering the body and functions as an interface with
the environment.1,2 The main function of the skin is the protection from external factors, for
example, against various xenobiotics and pathogens. Water and temperature balances are also
regulated based on the processes in the skin. The functions and dysfunctions of the skin, includ-
ing many pathological conditions, have a significant impact on both the physical health and
general wellness of a person.

A large number of past studies have greatly expanded our understanding of the structure and
properties of the skin, and many tools for treatment and diagnostic purposes have been devel-
oped. A significant role in such studies is played by interdisciplinary, cutting-edge approaches
coming from physics and biophysics. Among such approaches, the use of terahertz (THz) radi-
ation looks particularly promising due to some recent achievements in the field. THz radiation
is an electromagnetic wave with a frequency that lies in between the infrared and microwave
regions—namely, in the 0.1- to 10-THz range (1 THz ¼ 1012 Hz).3 Its wavelengths and photon
energies range from 3 mm to 30 μm and from 0.41 to 41 meV, respectively. Due to the high
sensitivity to biomolecules and water content and the low ionization of biological samples, THz-
based methods have a great potential in biomedical research and diagnostics.4,5 Consequently,
many efforts have been devoted to the development and application of THz methods in biomedi-
cal and biological fields.5–7

Some specifics of THz imaging and spectroscopy, as described below, make these techniques
good candidates for the skin research. THz radiation is non-ionizing and is considered to be safe
for humans at low powers. THz waves are strongly absorbed by water molecules, which limits
their penetration into tissues by hundreds or even tens of microns. Thus, skin tissue is the ideal
target for imaging using THz radiation due to its superficial location. The skin penetration is
around 0.1 to 0.3 mm depending on the THz frequency.8 Both the content and state (free or
bound) of water in tissue could be used as the markers for skin cancer detection and diagnosis
of some other skin diseases. In addition to their diagnostic potential, THz technologies
demonstrate perspectives for treatment using their effects on DNA demethylation and specific
expression.

This review is divided into eight sections. Section 2 is devoted to the brief overview of the
THz instrumentation. Section 3 provides information on the skin structure and properties.
Section 4 overviews the recent THz imaging and spectroscopic techniques used for skin studies.
Section 5 addresses the possible effects of THz radiation on skin cells and the extracellular
matrix (ECM). Section 6 summarizes current achievements in the diagnosis and treatment of
skin cancer. Section 7 covers some other recent perspective applications of THz technology in
skin-related problems. Section 8 summarizes the reviewed material and addresses the limitations
and perspectives of THz technology.

2 THz Instrumentation

A variety of techniques to generate and detect THz radiation have been developed in the past
few decades, and these form the basis of the spectroscopic and imaging instruments.9 Among
the existing schemes, two general types can be distinguished depending on the generated
radiation—pulsed and continuous-wave (CW).

The most common CW-radiation sources are quantum cascade lasers,10,11 high-speed tran-
sistors, and diodes.12,13 Tunable CW THz waves may be obtained by backward-wave oscilla-
tors,14 parametric conversion,15 and photomixing and frequency multiplication.16 Broadband
CW-radiation can be obtained as a part of the thermal source spectrum, such as that of mercury
lamps and globars.17 The detection of CW-radiation is usually implemented by pyroelectric and
optoacoustic (Golay cell) detectors 18 or by Li-He cooled bolometers.19 Here, we should also
mention emerging THz-wave solid-state emitters and detectors, which are based on different
two-dimensional materials, such as graphene and related heterostructures, as well as on novel
physical principles of operation.20–23

The majority of studies on biological samples have been performed using THz pulsed radi-
ation because it yields broader information than CW-radiation does (see below). The applied
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techniques are THz pulsed spectroscopy (TPS) and THz pulsed imaging (TPI); the schematic of
a pulsed spectrometer is shown in Fig. 1. The pulsed radiation emitters are commonly based on
photoconductive antennas (PCAs),25–28 although other methods exist, such as optical rectifica-
tion and generation in plasma.29–31 Modern PCA emitters produce short sub-picosecond THz
pulses, featuring only a few cycles of the THz field’s oscillation and a broadband spectrum.
They are accompanied by femtosecond lasers, the pulsed “pump” beam of which proceeds
to the PCA-emitter that generates a THz pulse due to the photoconductivity/photoswitching
effect. In turn, a PCA detector is used for THz signal detection by mixing THz radiation and
the “probe” beam of the femtosecond laser with an adjustable path length. The described THz-
wave generation and detection principles underlie the methods of TPS and TPI. The typical
forms of a THz pulse and its spectrum acquired from a biotissue sample are demonstrated in
Fig. 2.

Fig. 1 A common tissue measurement scheme for imaging and spectroscopy using TPS in the
reflection mode (oblique incidence). The normal incidence and transmission mode are other
widely used schemes. Reproduced from Ref. 24, CC BY-NC 4.0.

Fig. 2 TPS of biotissue samples in reflection mode: (a) a spectroscopy unit for placing the sample;
(b) reference E r without the sample and sample E s signals of the THz pulse spectrometer in
the frequency domain; and (c) the same signals in the time domain. Reproduced from Ref. 32,
CC BY 4.0.
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TPS might be implemented in reflection or transmission modes, and the imaging is generally
achieved by raster-scanning a sample surface with a focused THz beam.33–36 At the same time,
intensive research has been conducted on THz multipixel cameras and holographic or coded-
aperture imaging principles.9,37–39

The main THz spectroscopic approaches that are generally used in biological research are
Fourier transform spectroscopy (FTS), photomixing spectrometry, TPS, and TPI. FTS com-
monly utilizes broadband CW-sources or pulsed sources and the Michelson interferometer
scheme, in which the inverse Fourier transform of the recorded interferogram is used. The
photomixing spectrometer also utilizes a CW-source and contains two photomixers as a
transmitter and a receiver, respectively.40,41 This technique is inexpensive and provides high
spectral density and frequency resolution, although it requires a long measurement time. TPS
is currently the most versatile technique in biological applications and is associated with the
development of pulsed emitters and detectors.5 The technique allows for registration of the
time-dependent electric field of a THz pulse (not just the power). The collected data include
the amplitude and phase information in the frequency domain. Such a combination of time-
domain and frequency-domain information about the THz field opens wide opportunities
for TPS signal processing and data analysis, as compared with common Fourier-transform
spectroscopy.

Data processing is an important step of THz spectroscopy, especially when using the TPS
technology. Even when only the power spectrum is measured, the complex dielectric permittivity
(or the complex refractive index) of the material can be obtained using the Kramers–Kronig
relations and involving some additional assumptions.42,43 TPS does not require the use of
Kramers–Kronig relations because both the frequency-domain amplitude and phase of the
THz waveform are known. The data processing steps include preprocessing of raw signals,
time-domain windowing (apodization),44,45 denoising 46–48 and then deconvolution (or inverse
filtering),47 aimed at eliminating the impact of the particular TPS response function on the mea-
sured data. In TPS, reconstruction of the sample complex dielectric permittivity or complex
refractive index is an ill-posed inverse spectroscopy problem related to the minimization of
a discrepancy between the experimental data and the theoretical model. Various approaches for
solving this inverse problem have been suggested and introduced recently for different geom-
etries for experiments.49–53 Thr final processing steps often include statistical analysis and
dimensionality reduction of the observed data.5,54

3 Structure and Properties of the Skin

The integumentary system is a protective barrier separating the body from the environment.
It is represented by the skin and its derivatives. The skin is the largest organ of mammals,
it accounts for about 16% of the body weight, and its total surface area reaches 2 m2.55 It
performs many vital functions, including thermoregulatory, metabolic, receptor, endocrine, and
immune ones.2,56

There are three interconnected layers of tissues in the structure of the skin (Fig. 3). Its
outermost layer is the epidermis, the middle one is the dermis, and the innermost one is the
hypodermis.58 The complex dynamic organization of the skin is related to the different structure
and physiological characteristics of different body areas.59 Depending on the localization, the
thickness of these layers can vary.60,61 For example, the eyelid has the thinnest layer of the epi-
dermis, less than 0.5 mm, while the palms and soles have the thickest layer of the epidermis,
about 1.5 mm. The thickest dermis is on the back, where it is 30 to 40 times thicker than the
overlying epidermis.62

The epidermis is a system of continuously renewing cells, which is based on the process of
specific cell differentiation called keratinization. The morphological basis of the epidermis is the
multilayer flat squamous epithelium. Its structural organization changes from the innermost
basal layer to the outermost stratum corneum.63 Keratinocytes account for up to 95% of epi-
dermal cells and enable the synthesis of keratin, a filamentous protein that plays a protective
role.64 The epidermis is usually divided into four layers according to the morphology and posi-
tion of keratinocytes:65
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• the layer of basal cells (stratum basale);

• the layer of spinous cells (stratum spinosum);

• the layer of granule cells (stratum granulosum); and

• the layer of keratinized corneocytes (stratum corneum).

The basal layer is formed by one row of columnar keratinocytes adjacent to the basement
membrane. The distinctive features of basal cells are dark-colored oval nuclei and the presence of
the melanin pigment. Basal keratinocytes adhere to each other, as well as to more superficial
flattened cells, through desmosomes.66 The presence of stem cells and the mitotic activity of the
basal layer provide the continuous renewal of epithelial cells and their differentiation, with
gradual lifting into overlying layers, transformation into corneocytes, and desquamation from
the skin surface. The basal cell migration from the basal layer to the stratum corneum in humans
takes at least 14 days, and the transit through the stratum corneum to the external epidermis
requires another 14 days.67

The prickly layer (stratum spinosum) consists of several rows of large cells of a polygonal
shape attached by desmosomes in the area of numerous processes (“spines”) that contain bundles
of tonofilaments. Prickle keratinocytes retain the ability to reproduce through mitosis. The
granular layer is formed by 1 to 3 rows of flattened spindle-shaped cells with a dark nucleus.
The cytoplasm of such cells also contains tonofilaments, as well as keratohyalin granules. The
clear layer is present only in the thick skin; its structure contains the eleidine protein. It consists
of 1 to2 rows of flattened oxyphil cells with fuzzy borders and poorly defined organelles.68

The stratum corneum is the outermost layer of the epidermis, and it is formed by postcellular
structures, corneocytes. They do not contain nuclei and organelles and are filled with keratin
filaments (tonofilaments), which gives them high mechanical strength and resistance to chem-
icals. In the outer parts of the layer, desmosomes break apart, and corneocytes desquamate (shed)
from the surface of the epithelium.67

The above-mentioned epidermal layers are involved in the formation of the epidermal pro-
liferative unit. It is a self-renewing unit of the epidermis that has the shape of a hexagonal cell
column. Its width is equal to the width of a single corneocyte, while its height corresponds to
the thickness of the epidermis, and it includes all layers of the epidermis.69

In addition to keratinocytes, the epidermis contains populations of non-epidermal cells
(melano-cytes, Langerhans cells, and Merkel cells). Melanocytes are specialized neuroglial
pigment-synthesizing cells. Their body lies in the basal layer, and the long processes continue
into the more superficial layers of the epidermis. Melanocytes produce melanin and transfer it to

Fig. 3 Schematic representation of the human skin structure. Reproduced from Ref. 57, CC BY 4.0.
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keratinocytes. Melanin is a black-brown or yellow-red pigment that protects the nuclear appa-
ratus of cells from damage by ultraviolet rays. Melanin is synthesized and accumulated in
melanosomes, which are transported to the processes of the melanocytes. The synthesis of mela-
nin and its transport into epithelial cells is stimulated by melanocyte-stimulating hormone and
adrenocorticotropic hormone, as well as by ultraviolet light.70

Merkel cells are neuroendocrine cells that are associated with the afferent nerve fiber and
perform the receptor function. Their body lies in the basal layer, and the processes are attached to
epithelial cells of the basal and prickly layers by desmosomes. In the basal part of the cell,
granules that contain a mediator that is secreted into the synaptic cleft during the mechanical
deformation of the processes are accumulated.71 Langerhans cells (or intraepidermal macro-
phages) are of bone marrow origin, and they lie in the basal or prickly layers. They capture
antigens that penetrate the epidermis, process and transport them to the lymph nodes, and present
them to lymphocytes, triggering an immune response.72

The dermis is the connective tissue layer of the skin that is about 0.5 to 5 mm thick and
located under the epidermis. The dermis serves the trophic function, gives the skin strength,
and contains its derivatives. It is composed of two layers—the papillary layer and the reticular
layer. The papillary layer consists of a loose fibrous connective tissue with lymph and blood
capillaries, nerve fibers, and endings. It provides the connection of the dermis with the basement
membrane of the epidermis with the help of reticular fibers, elastic fibers, and special anchoring
fibrils. The reticular layer of the dermis is deeper, thicker, and stronger: it is formed by dense
fibrous unformed connective tissue and contains a three-dimensional network of thick bundles of
collagen fibers interacting with the network of elastic fibers.63

The subcutaneous fatty tissue (hypodermis) is a continuation of the dermis. The structural
basis of the skin’s deepest layer is the white adipose tissue and layers of loose fibrous con-
nective tissue. The adipose tissue thickness depends on the location, gender, and nature of
nutrition. For example, the hypodermis is absent in the vermillion border and eyelids, while
the thinnest subcutaneous tissue is present in the neck. The subcutaneous tissue plays an
important role in the body, acting as a heat insulator and a storage site for nutrients, hormones,
and vitamins.60

As in any other tissue, proteins, fats, and carbohydrates form the basis of the organic
composition of the skin. Proteomic skin studies have revealed that the skin contains from
155 to 174 different proteins. The main structural proteins are collagen type I, II, III, VI, XII,
and XIV and other ECM proteins (elastin, lumican, mimecan, periostin, prolargin, decorin, and
laminin), keratins, and cell proteins (desmoplakin, histones, actin, myosin, vimentin, and
tubulin).60,73

Between the skin cells, there is an intercellular “cement,” which consists of polar and non-
polar lipids.74,75 Lipids take part in the creation of the waterproof barrier and cell adhesion, as
well as in the process of the cell desquamation. The lipid profile changes toward the surface of
the epidermis. Quantitatively, ceramides account for the largest proportion (up to 50%) of the
skin. They are followed by cholesterol (about 25%) and free fatty acids.75 Carbohydrates are
mainly represented by mucopolysaccharides, glycogen, and glucose. Of inorganic substances,
water makes up the largest proportion of the skin. The water content in the skin varies depending
on a person’s age.76,77 The content of trace elements in the skin is low, 0.5%; the most common
elements are copper, zinc, arsenic, and cobalt.

The boundary location of the skin implies its exposure to dangerous external factors.78

Wound healing is a complex sequential process including hemostasis, inflammation, prolifer-
ation, and regulation with the participation of cytokines.79 Violation of the normal biological
response to skin damage resulting from an illness, injury, or surgery, as well as prolonged
adverse effects, can lead to the development of complications. Understanding the molecular,
cellular, and physiological mechanisms that govern wound healing is the key to the successful
treatment of skin diseases.

Most of the skin components have dimensions of less than 0.1 mm, except for basal cells,
squamous epithelium cells, and multicellular structures such as sweat ducts. Thus, they are much
smaller than typical THz wavelengths. (Fig. 4). However, some other types of cells, such as
adipose cells and thick bundles of collagen fibers, can cause scattering of THz waves, which
should be accounted for during measurements.4
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4 THz Spectroscopy and Imaging of the Skin

THz spectroscopy and imaging of biological tissues, including the skin, are based on the inter-
action of THz radiation with (predominantly) tissue water, as well as with other less-polar bio-
molecules, separated cells, and different structural components of tissues. The characteristic
sample features are observed in the maximum or minimum values of the time-domain TPS wave-
form or in the frequency-domain data, such as the sample refractive index and absorption coef-
ficient in a broad frequency range. The contrast-enhancement approaches, such as the integration
technique,80 principal component analysis, linear discriminant analysis,81 or signal complexity
analysis,82 are often applied to improve the capabilities of THz spectroscopy and imaging.

THz spectroscopy was found to differentiate skin and muscle tissue with high sensitivity.82

TPS systems were successfully applied for measuring the optical properties of different skin
regions.83 This method is sensitive enough to differ skin samples moisturized with glycerin
or lanolin.84 The THz optical properties, such as the frequency-dependent absorption coefficient
and refraction index, depend on the melanin content in the skin.85 Usually, the THz refractive
index n of skin decreases with the frequency (see Figs. 5 and 6), though the opposite character
was found for ordinary and dysplastic nevi86 (Fig. 6).

TPS allowed for detection of differences in the stratum corneum treated with chemicals that
caused changes in the content of intracellular lipids or in the conformation of proteins.87 Free
water content in the stratum corneum can be measured with THz spectroscopy.88 Also, it can
detect the pressure changes in the skin due to different water distribution profiles 89 and the
process of water desorption itself.8 The diffusivity of human skin can be measured and used
for spatially resolved maps of water content in the skin.90,91 This information can be used for
observing and investigating human scar healing.92 Reflection-mode TPI detected the water
amount for a 7-h-long period after a skin burn.93 This method is also advantageous in collecting
the data on a drug’s spreading within the skin. Additionally, the TPS and TPI methods appeared
instrumental in studying dimethyl sulfoxide and glycerol diffusion into skin tissues,94,95 as well
as related effects of tissue immersion optical clearing at THz frequencies.96–98

The important feature of skin imaging is the opportunity to detect, differentiate, and identify
specific skin structures, such as glands, ECM, capillaries, and others. A combination of two
tissue imaging modalities, optical coherence tomography and TPI, allowed for measurement
of the diameter and THz dielectric properties of sweat ducts.99 Moreover, the properties of the
sweat ducts were similar before and after the measurements. This indicates that THz imaging is
safe for skin and therefore potentially can be used in the medical field. THz spectroscopy can
detect changes in the spatial structure of the skin. For instance, the absorption coefficients for the
0.2- to 1.5-THz frequency band were shown to depend on varying concentrations of collagen
(in the range of 2 to 3 mg∕ml) and fibroblast densities (in the range of 105 to 106 cells∕ml) in
the dermal equivalents.100

10–110–2 10–0 λ, mm

Adipose cell
Squamous

epithelium cell
Keratinocyte

Melanonocyte

Merkel cell

Basal cell

Langerhans cell

Collagen
Fibroblast

Corneocyte

THz
wavelength

range

Fig. 4 Comparison of typical skin components with the THz wavelength ranging from 0.03 to
3 mm. Courtesy of I. N. Dolganova.
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ECM is an important part of the skin that is responsible for cell growth and differentiation,
tissue mechanics, and regeneration. One of the most pronounced components of the dermis is
collagen. Collagen absorbs THz radiation, thus providing data about the tissue structure and
enrolled processes.101 Far-infrared spectroscopy was able to detect the collagen amount and its
spectral shape changes after the addition of a salt solution.102 TPS allowed for detection of differ-
ent salt concentrations in the collagen layers and drug absorption in the skin.94,102 Using TPI, the
concentration and spreading area of a drug released from a collagen–chitosan scaffold were
assessed,103 and the protein–water dynamics during proteolysis of collagen-like substrates by
a matrix metalloproteinase were studied.104 Some other components of the skin ECM, e.g. gly-
coproteins, can also be detected and used for the tissue structure mapping.105

5 Effects of THz Radiation on the Skin

The THz radiation impact on biological cells, tissues, and organisms have been of importance
since the creation of THz sources, yet this remains insufficiently investigated. For example, the
safety limits of the power density, which are set by The International Commission on Non-
Ionizing Radiation Protection, are not established for frequencies above 300 GHz.106 The con-
ducted studies, as reviewed in a number of articles,107–109 reveal that THz radiation can have both
thermal (associated with the heating of the exposed object due to absorption) and non-thermal
effects on biological objects. Like other electromagnetic waves, THz beams heat biotissues, and
the extent of heating depends on the applied power, while the strong absorption by water rep-
resents an important factor related to the heating. The potential tissue heating with THz waves
has been shown in several model studies.110–112 However, such heating is associated with CW
radiation sources and high-power densities, whereas for pulsed sources the average power is
generally too low to cause notable changes.

Fig. 5 THz optical properties of Asian, Black, and Caucasian donor tissue models with a different
content of melanin grown in vitro for 16 days: (a) measurements on Day 2, (b) on Day 16;
(c) THz optical properties of water, skin, and collagen obtained from the double Debye model.
Insets: fits from the double Debye model. Reproduced from Ref. 85, © 2019 Optical Society
of America.
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Another class of effects is related to non-thermal mechanisms of the THz-wave—biological
system interactions. Supposedly, THz radiation can induce linear or non-linear resonance effects
at the molecular level, specifically in deoxyribonucleic acid (DNA), in which local disruption of
hydrogen bonds can further lead to modifications in gene expression.4,108,113 Thus, THz radiation
can serve as a convenient and effective tool for cell activity modulation. On the one hand, the
majority of the used THz intensities are not harmful to cells and do not cause any decrease in
their viability.114 Studies performed on skin cells showed no signs of apoptosis and oxidative
stress.115 On the other hand, there are data regarding THz-induced adipogenic differentiation
of melanoma skin cancer MSCs and indications that THz can influence on the protein
transcription.116,117 More detailed data are presented in Table 1.

The ECM component of the skin might be affected indirectly by the modification of cell
activity with THz radiation. For example, wound healing was stimulated by TGF-β-induced
synthesis of collagen after the irradiation.120 This finding implies a potentially beneficial appli-
cation of THz radiation for skin regeneration.

6 Skin Cancer Detection and Therapy

Skin cancer is the most common malignant disease in the world, affecting men and women of
any race.121 Currently, one-third of all diagnosed types of cancer is skin cancer,122 and the inci-
dence of skin cancer of all types is growing [Fig. 7(a)].

Fig. 6 THz dielectric characteristics of healthy skin (in green), ordinary (in blue), and dysplastic
(in red) nevi in vivo. Reproduced with permission from Ref. 86, © 2015 AIP Publishing.
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Table 1 Effects of THz radiation on cells.

Frequency
Irradiance
(mW∕cm2)

Exposure
time Object Effects Refs.

Broad
spectrum
centered
at 10 THz

1 2, 6, 9 h Mouse
MSCs

Exposure of cells to THz radiation for
9 h caused changes in gene expression,
whereas in response to shorter duration
of exposure, the changes were less
pronounced. The lipid inclusions that are
a characteristic sign of MSC differentiation
into adipocytes were clearly visible after
9 h of exposure.

Ref. 116

1) 2.52 THz; 1.2 1) 2 h; Mouse
MSCs

It was found that genes affected by prolonged
irradiation are characteristic for already
differentiated cells, i.e., for adipocytes,
whereas genes differentially expressed
after short (2 h) THz irradiation are
characteristic of pluripotent stem cells.

Ref. 117

2) 2, 12 h2) 10 THz

1) 10 THz; 1.2 1) 2 h; Mouse
MSCs

1) The level of expression of the shock
protein genes remains unchanged after
9 h of THz irradiation.

Ref. 114

2) 9 h2) 2.52 THz

2) The level of the stress-responsive CRP
gene that is activated in dying cells remains
low in both the control and irradiated cells
suggests the absent cellular stress response.

0.14 THz 10, 30, 50,
70, and 100

20 min hDF 120 h after the irradiation, the proliferative
activity of the irradiated cells did not differ
from the non-irradiated control. The level of
NO production by irradiated fibroblasts did
not differ from the NO level of non-irradiated
cells. The 0.14-THz radiation of 10- to
100-mW power did not affect the functional
activity of human skin fibroblasts.

Ref. 115

0.15 THz 0.4 20 min hDF 1) No effect on cell cycle; Ref. 118

2) no effect on heat shock response;

3) increase in genome damage;

4) no effect on clastogenic genome damage;

5) no effect on telomere length; the THz
radiation exposure in vitro caused non-
thermal effects on the genome.

2.52 THz 84.8 5, 10, 20,
40, or
80 min

hDF Cellular temperatures increased by 3°C
during all THz exposures. At the used power,
radiation at 2.52 THz can generate thermal
effects in mammalian cells.

Ref. 112

0.14 THz 10, 30, 50,
70, and 100

20 min hDF After exposure to THz radiation, the
proliferative activity of the irradiated cells
did not differ from the control. The level of
NO production by irradiated fibroblasts
did not differ from the control.

Ref. 115

0.38 and
2.52 THz

0.03 to 0.9 2 and 8 h hDF,
HaCaT cells

No DNA damage was found in HaCaT and
hFB cells after irradiation.

Ref. 119

0.10 to
0.15 THz

0.4 20 min hDF The THz irradiation resulted in the genome
damage in hDFs. No changes in the
expression of proteins associated with DNA
damage sensing and repair were detected,
indicating that THz radiation exposure may
affect genome integrity through aneugenic
effects.

Ref. 118
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Skin cancer is generally divided into two main types: melanoma (reportedly, the most danger-
ous cancer of the skin) and non-melanoma skin cancer (NMSC).125 Melanoma develops from
melanocytes that produce melanin, a pigment that stains the skin, eyes, and hair. Melanoma is
one of the most aggressive and resistant to treatment types of human cancers, and it accounts for
75% of all deaths from skin cancer.126 NMSC is the fifth most common cancer, with more than
1 million diagnoses worldwide in 2018.127 NMSC is further divided into two types: basal cell
carcinoma (BCC) and squamous cell carcinoma (SCC) [Fig. 7(B)]. Although BCC is the most
common form of skin cancer, it is rarely fatal but can lead to serious health problems. SCC is the
second most common form of skin cancer. Together, BCC and SCCmake up approximately 95%
of NMSC.128 In addition to the above-mentioned types, there are also some rare types of skin
cancer, such as Merkel’s carcinoma,129 Kaposi’s sarcoma,130 and dermatofibrosarcoma protu-
berans (DFSP). Merkel’s carcinoma is the second leading cause of death from skin cancer after
melanoma, although it causes less than 1% of malignant skin tumors.131 DFSP, which is ∼1.3 to
7.5 times less common than Merkel’s carcinoma, rarely metastases,132 and the prognosis is
usually much better.

The development of new methods for the early-non-invasive and intraoperative diagnosis of
skin cancer is extremely important. If skin cancer is diagnosed and treated early, it is almost a
hundred percent treatable. A visual examination of the skin is usually not enough to diagnose it,
and the traditional detection of histopathology (biopsy) is still the gold standard for evaluating
skin cancer. However, biopsy has many disadvantages: it is painful, relatively expensive, and
time-consuming and usually produces scars. In many cases, several biopsies are required to

(a)

(b)

Fig. 7 (a) Incidence of different types of skin cancer, reproduced from Ref. 123, CC BY 4.0.
(b) Histological sections of melanoma, BCC, SCC, and some rare subtypes of skin cancer
(Kaposi’s sarcoma and Merkel’s cell carcinoma). Reproduced from Ref. 124, CC BY-NC 3.0.
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confirm the diagnosis. Therefore, non-invasive and minimally invasive methods and instruments
are demanded.

Currently, there are several methods for non-invasive diagnostics of epithelial tissues based
on two- or three-dimensional skin imaging, including optical coherence tomography133,134 and
confocal microscopy.61,135 For the first time, using a THz imaging system to visualize a malig-
nant skin lesion was proven by Woodward et al.136,137 In that study, visualization of basal cell
skin cancer was achieved due to the difference between the absorption coefficients of cancerous
and normal tissues 136 (Fig. 8). Recent studies have shown that THz spectroscopy and/or spectro-
scopic imaging methods can identify tumors in mammary glands,138 lungs,139 the pancreas,139

and the brain.32,140

In Ref. 86, differentiation was demonstrated between ordinary and dysplastic human skin
nevi in vivo using TPS, a dysplastic nevus being considered a precursor of melanoma, i.e., the
zeroth stage of its development (see Fig. 6). For ex vivo murine skin tissues, the differences of
optical properties between the normal skin and melanoma were used for selecting the borders of
melanoma regions.141

The appearance of an oncological neoplasm leads to an increase in the blood microvascu-
lature and, consequently, to an increase in the tissue water content. In addition to the structural
changes, the content of various chemical compounds, for example, tryptophan amino acids,142 is
altered in the affected areas of skin tissues. This leads to a modified spectral dependence of the
reflection coefficient in the THz region, suggesting the possibility of label-free skin cancer diag-
nostics using reflected THz radiation.

TPI was applied to analyze the dielectric properties of human skin.143 Using this technique,
a contrast was found between BCC and normal healthy skin. THz imaging was also utilized to
analyze biological tissues using frequency conversion in gold nanoparticles and integrating
an infrared camera and detector.144 Joseph et al.145 differentiated non-cancerous and cancerous
tissue areas via two-frequency THz imaging at 1.39 and 1.63 THz.

Recently, a perspective application of THz radiation in skin cancer treatment was demon-
strated. It was shown in Ref. 146 that expression of certain tumor suppressor genes can be
regulated by non-thermal effects of intense THz radiation, which suggests that it can have
an anti-cancer effect.147 Intense THz pulses downregulated the expression of epidermal differ-
entiation genes, which are overexpressed in psoriasis and skin cancer.146 Non-thermal intense
THz pulses with high (1.0 μJ) or low (0.1 μJ) energy applied for 10 min to human skin caused
phosphorylation of H2AX, which indicates the formation of double-stranded breaks in DNA.
The latter is extremely dangerous and can lead to cell death or cancer. However, the simultaneous
activation of certain tumor suppressor proteins and regulatory cell cycle proteins, such as p53,
p21, p16, and p27, which slow down the cell cycle and facilitate DNA repair, suggests that DNA
damage caused by a THz pulse can be quickly restored.148,149

Fig. 8 Basal cell skin cancer observed by THz imaging in vivo: (a) photograph of a skin sample
and (b) a THz image of a skin sample, in which the central dark regions with increased absorption
correspond to the tumor locus. Reproduced from Ref. 136 with permission, Copyright 2003 SPIE.
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Methylation of genes that control the cell cycle and apoptosis catalyzed by DNA methyl-
transferases (DNMT) is a well-studied epigenetic change that causes genetic mutations leading
to carcinogenesis.150 DNA demethylation has been shown to reduce the risk of cancer by
preventing tumor suppressor hypermethylation or metastasis.151 Currently, there are some
commercially available nucleoside inhibitors of DNMT, such as azacitidine (5aza, Vidaza®) and
decitabine (5azadC, Dacogen™);150 however, such drugs have many side effects caused by their
low specificity.151 Therefore, there is a need to look for alternative approaches to DNA deme-
thylation. THz radiation can be used as an epigenetic inhibitor in the treatment of cancer due to
its ability to cause targeted DNA demethylation, similar to demethylation drugs, along with
an easy control of radiation energy.152 Demethylation is related to the resonant absorption of
high-power THz radiation at the characteristic 1.65-THz peak associated with cancer cells and
attributed to methyl-DNA bonds. Cheon et al.152 used resonant THz radiation to dissociate
methyl-DNA bonds and reduce the total DNA methylation. The degree of methylation inside
melanoma cells decreased by about 10% to 15%, causing the formation of 5 to 8 abasic sites
[apurinic/apyrimidinic (AP) sites] per 105 bp, which was significantly less compared with DNA
damaged by infrared radiation.152 AP sites are one of the basic indicators of DNA damage,
capable of generating DNA strand breaks, lethal mutations, or cell death.153 Therefore, it is nec-
essary to understand whether powerful THz radiation can damage other DNA structures in addi-
tion to breaking methyl–DNA bonds.

Thermal effects of THz exposure are also applicable in cancer treatment, but they are less
studied. Hyperthermic therapy is heating of tumor tissue (from 40°C to 45°C) to kill tumor
cells.154 It is believed that the heat tolerance of normal cells is better than that of cancer cells
due to a weaker blood flow and a worse cooling in tumor areas. Additionally, hyperthermia
makes cancer cells more sensitive to radiation and drug therapy.

The current achievements of THz spectroscopy in the diagnosis and treatment of skin cancer
are shown in Table 2 and in Fig. 9.

7 Other Application of THz in Skin Studies

THz imaging is becoming one of the powerful tools for non-invasive diagnostics, visualizing and
differentiating living, damaged, and dead tissue by changes in hydration gradients. For example,
THz reflection imaging was proposed as a tool to monitor deterioration in the feet of diabetic
patients. A common consequence of diabetes mellitus is the so-called “diabetic foot,” or
“diabetic foot syndrome.” This syndrome is characterized by deterioration of micro- and macro-
vasculatue and innervation. This leads to an altered structure and physiology of the foot skin
and underlying tissues with a decrease in skin sensitivity.165 Ultimately, it is often necessary to
amputate a part of a leg or a limb as a whole.102 Early diagnosis is crucial for timely initiating
the therapy and preventing the risks of ulceration, infection, and amputation. The existing
approaches are based on the analysis of sensitivity and thermoregulation disorders and allow
one to recognize the syndrome when innervation and vascularization are already violated.
A new approach for early diagnosis of the diabetic foot using TPS based on the detection of
a decrease in skin hydration was developed by a team of scientists from Mexico.166 Typical THz
images of normal and diabetic feet demonstrated a correlation with the water content (Fig. 10).
The TPS system used in this work utilized a reflection geometry for the generation of the feet
images. A special platform was constructed with a chair and two high-density polyethylene
windows, which were transparent at THz frequencies and used for the patients’ feet placement.
The THz waveforms were collected across a mesh of 22 × 54 pixels spaced by 5 mm for
each foot.

Visualization of burn wounds in vivo was achieved by correlating changes in the reflected
TPS signal with a change in the local water concentration in soft tissues.93 The formation
and dissipation of edema in and around the burn injury and the formation and evolution of the
coagulation zone (highly reflective center of the burn) and a border zone of stasis (a ring of
low reflecting tissue) were imaged with a high contrast in a live rat. In an other study,167

analyzing the changes in both the water content and the density of discrete scattering structures
within the skin layers, the authors developed TPS-based approaches to non-invasively
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differentiate partial-thickness (second-degree) burns by the degree of damage. The deeper ones
that require surgical intervention were distinguished from those that could naturally heal.

A reflective THz imaging system was used for visualization and quantification of the burn-
induced model of edema in rats.168 60 × 60 mm images were obtained in the reflective mode at
the center frequency of 0.525 THz with a ∼125-GHz bandwidth, using a 0.5-mm step size per
∼10 min. The images and resulted data were compared with a more labor-intensive technique,
depth-resolved magnetic resonance imaging, and a strong positive correlation was found. In
another study,92 a reflection-mode TPS system was tested in scar imaging with the contrast based
on changes in the refractive index and absorption coefficient of the scar; hypertrophic scars had a
significantly higher refractive index than that of healthy skin, whereas normal scars had a refrac-
tive index lower than that of healthy skin. The refractive index in the scar area deviated from that
of the surrounding healthy tissue even six months post-injury, which correlated well with the
collagen deposition during wound healing.

The efficacy of the silicone gel sheeting strategy for skin scar repair was evaluated with
THz spectroscopy.169 The mechanism of the silicone gel sheeting is not well established, and
investigation of the skin water amount revealed the nature of the silicone sheets-induced
regeneration.

Finally, a potential application of TPS is the analysis of archaeological findings and mum-
mified tissues. Compared with traditional x-ray and computed tomography, TPS offers a lower
spatial resolution but allows for better identification of bones and cartilage with a spatial res-
olution on the order of 1 mm (at 0.3 THz) that is limited due to wave diffraction. In addition, TPS
can provide additional information on the optical density of the sample. By changing the used
THz frequency, one can vary the level of details: lower frequencies (0.24 THz) revealed large
vessels in the bone tissue, and higher frequencies (0.54 THz) visualized the morphology of the
bone tissue itself.170

8 Conclusion

In this review, we summarized the recent developments of THz technologies related to the skin
analysis, diagnosis, and treatment. The brief overview of instruments and methods demonstrates
the uniqueness of information about skin tissue analyzed by THz imaging and spectroscopy.

Dysplastic nevi;
Melanoma; BCC

(a)

Melanocytes;
Melanoma

(b)

BCC; SCC;
Melanoma

(c)

THz pulse

CW
THz

BCC

(d)

Fig. 9 The possibilities of different THz techniques to detect skin cancer types: (a), (b) reflection
and transmission mode TPI, respectively; (c), (d) reflection and transmission mode CW THz im-
aging and spectroscopy, respectively. Here, BCC stands for basal cell carcinoma and SCC stands
for squamous cell carcinoma. Courtesy of I. N. Dolganova.

Fig. 10 TPI of normal and diabetic feet and estimation of water content. Reproduced from
Ref. 166, CC BY 4.0.
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The research results obtained in the past few decades on THz-wave–biological tissue interactions
highlight several directions for further studies, though a number of limitations slow down their
implementation.

Fortunately, most of the limitations associated with the small penetration depth of THz radi-
ation in biological tissues are less dramatic in the case of the skin. However, they might be
important for the analysis of the deeper skin layers. Development of compact and inexpensive
THz sources is another problem that limits the technique prevalence. The spatial resolution is
defined by the diffraction limit and is not enough for single-cell detection. However, several
promising techniques, such as THz solid-immersion microscopy,35,36 can overcome this limit
and demonstrate high efficiency in biomedical imaging. The new effective approaches for signal
enhancement, contrast and sensitivity improvement, and general signal analysis will be helpful
for detection tasks. Nevertheless, the freedom from using contrast agents makes THz-based dis-
tinction between normal and pathologically altered skin most beneficial for in vivo applications.

The biological effects induced by THz radiation require further study. As shown above,
the effects of low-power THz radiation are not harmful, but it is capable of inducing certain
biological responses at the level of gene expression. This finding opens perspectives on THz
radiation use in the stimulation and control of different processes in a living skin tissue related
to regeneration of damages and cancer treatment. The impact of high-power THz radiation,
as well as its possible application in the destruction of cancer cells, is less studied.

Thus, the recent advances in THz technologies used to study biological tissues and, particu-
larly, skin tissues, reveal their further potential as research and therapeutic instruments.
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