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Abstract

Significance: Tissue birefringence is an important parameter to consider when designing real-
istic, tissue-mimicking phantoms. Options for suitable birefringent materials that can be used to
accurately represent tissue scattering are limited.

Aim: To introduce a method of fabricating birefringent tissue phantoms with a commonly
used material—polydimethylsiloxane (PDMS)—for imaging with polarization-sensitive optical
coherence tomography (PS-OCT).

Approach: Stretch-induced birefringence was characterized in PDMS phantoms made with
varying curing ratios, and the resulting phantom birefringence values were compared with those
of biological tissues.

Results:We showed that, with induced birefringence levels up to 2.1 × 10−4, PDMS can be used
to resemble the birefringence levels in weakly birefringent tissues. We demonstrated the use of
PDMS in the development of phantoms to mimic the normal and diseased bladder wall layers,
which can be differentiated by their birefringence levels.

Conclusions: PDMS allows accurate control of tissue scattering and thickness, and it exhibits
controllable birefringent properties. The use of PDMS as a birefringent phantom material can be
extended to other birefringence imaging systems beyond PS-OCT and to mimic other organs.
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1 Introduction

Appropriate testing platforms are essential to characterize, optimize, and validate new clinical
systems and procedures.1,2 The testing of devices and procedures can be performed on a variety
of platforms, including calibrated test targets, ex vivo human or animal tissues, in vivo animal
models, tissue-mimicking phantoms, and human subjects. In the early stages of device develop-
ment, tissue phantoms are often preferred to the alternatives of ex vivo tissues and animal models
due to their notable advantages of being low cost, easily accessible, non-perishable, free of
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ethical or legal considerations, and most important, designed with known properties, allowing
for repeated and reliable assessment of instruments. As a result, creating realistic tissue substi-
tutes for biomedical applications has been the focus of many ongoing research efforts.

When designing realistic tissue-mimicking phantoms for testing of a device, it is important to
include relevant properties of the device to be tested. For example, the acoustic and elastic prop-
erties of tissue should be carefully replicated if preparing a phantom for ultrasound imaging3;
similarly, relevant optical properties of tissue, such as scattering or absorption, should be mean-
ingfully represented if preparing a phantom to be used with light-based imaging modalities.4–10

Notably, pathologies often present as differences in tissue properties. As such, many sophisti-
cated phantoms have been developed to contain structurally dissimilar regions to represent
pathologies.11–14

Polarization-sensitive optical coherence tomography (PS-OCT) is a label-free, noninvasive
light-based imaging technique that can visualize depth-dependent birefringence properties of
tissue.15 Recent works have demonstrated that many diseased and normal tissues, particularly
epithelial tissues, demonstrate a birefringent contrast that can be detected with polarization-
sensitive methods, such as PS-OCT.16–18 For example, several works have shown that the pres-
ence of collagen in the bladder wall leads to contrast in the PS-OCT images. This contrast is
helpful to differentiate normal from cancerous bladder tissue, since the regularly defined struc-
ture of tissue is disrupted by tumor invasion.18–20 However, there have been limited efforts to
develop tissue-mimicking phantoms that include realistic, representative birefringent properties.
Given the increasing interest and effort being devoted to developing endoscopic systems that
are sensitive to polarization, the lack of available, realistic birefringent tissue phantoms poses
challenges to conducting controlled and repeated calibration, testing, and validation.

Most existing birefringent phantoms have a major limitation: they are either designed for
use with optical systems that lack three-dimensional (3D) imaging capabilities (e.g., forward-
scattering systems and Mueller polarimetric systems), or they are fabricated with overly sim-
plified designs lacking meaningful tissue-specific structures.21 Birefringent phantoms designed
for forward-scattering purposes are too thin and transparent to be compatible with PS-OCT im-
aging or as representative tissue substitutes.22,23 Phantoms that represent turbid tissue and are
used in back-scattering systems, such as Mueller polarimetric imaging, have served as calibra-
tions for multiple polarization parameters. However, they often use quarter wave retarders in
place of the birefringent tissue layers, which is not ideal to mimic tissue imaging with PS-OCT
given that the retarders have nonbiologically relevant thicknesses and specular reflections that
are not characteristic of the backscattering in tissues.24

Other phantoms have been designed for use with 3D imaging devices, such as PS-OCT, but
have failed to incorporate the biological properties of tissue. These phantoms have been con-
structed using a variety of techniques (e.g., by stretching and annealing polycarbonate films25 or
by stretching a rubber phantom26,27); however, they largely exhibited simplified designs: that is,
they did not appropriately mimic the layers of the actual biological tissue, nor did they simulate
backscattering, which is the basis for tissue imaging in PS-OCT. In fact, the birefringent materi-
als used in these studies exhibited higher backscattering than that of tissue, which compromises
the depth of OCT imaging.

In this study, we demonstrate a method for producing tissue-mimicking phantoms for
PS-OCT imaging that mimic the birefringent, scattering and thickness properties of layered bio-
logical tissues. As an example case study, we designed a flat, multilayered, tissue-mimicking
phantom that demonstrates the layered architecture and birefringent properties of the healthy and
cancerous bladder tissue in cross section. To this end, we also report the first use of PS-OCT to
determine the birefringence of normal and cancerous human bladder tissue and use these values
as design criteria in the development of our phantom.

Our new approach to generate birefringent, tissue-mimicking phantoms for PS-OCT will
allow for more realistic testing of PS-OCT devices as well as potential opportunities for surgical
training. The resulting phantoms are useful in their current form to allow controlled and reliable
testing, calibration and comparison of PS-OCT systems with biologically meaningful geometries
and light–tissue interaction properties. Moreover, the proposed concept for including birefrin-
gence in tissue-mimicking phantoms can be extended to fabricate 3D tissue-mimicking
phantoms with realistic organ shapes for the bladder or other organs that contain birefringent
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structures. While full discussion of a process for fabrication of a 3D birefringent phantom is
beyond the scope of this paper, we provide some inspiration for relevant methods to create such
phantoms as future directions.28,29

2 Birefringence in Human Bladder Tissue

A healthy bladder wall contains several layers of varying thickness. The top layer, called the
urothelium, is five to seven cell layers thick and appears in PS-OCT as a thin, dim layer ∼50 μm
in thickness. Just below the urothelium is the lamina propria (LP) layer. The LP of human urinary
bladder contains collagen fibers and is birefringent in healthy individuals. It is typically 300- to
400-μm thick. Finally, the muscularis propria (MP) layer, the third visible layer in OCT images,
is 1.6-mm thick; PS-OCT systems cannot generally image to the bottom of the MP due to light
attenuation and a limited imaging depth.29 Additionally, the bladder has a perivesical fat layer
that surrounds the outside of the bladder. An example diagram of the layers of the bladder wall is
shown in Fig. 1(a).

To determine the birefringence of bladder tissue, we conducted a study approved by the
Institutional Review Board of Vanderbilt University (IRB# 191337) and obtained informed con-
sent from all study subjects. We enrolled patients presenting to the Vanderbilt University Medical
Center with confirmed bladder cancer or suspicious bladder lesions that were scheduled to
receive a transurethral resection of bladder tumor procedure. One healthy tissue sample and
one pathological [atypical or carcinoma in situ (CIS)] tissue sample were collected from each
enrolled patient.

All tissues were immersed in saline upon resection and during imaging. Fresh tissue samples
(within 30 min of resection), with sizes ranging from ∼4 to 6 mm in diameter, were imaged with
a commercial PS-OCT system (TEL220PSC2, ThorImage OCT software version 5.3.2.0,
Thorlabs, Inc.) using an OCT-LK3 objective at an A-scan rate of 28 kHz. The incident light
on the sample was circularly polarized with a center wavelength of 1300 nm. The measured
axial and lateral resolution of the system were 5.5 and 7.8 μm, respectively. An immersion type
Z-spacer (OCT-IMM3, Thorlabs, Inc.) was attached to the objective to allow imaging at a close
distance to the tissue surface while reducing the strong back reflections. The output of the system
includes both conventional, intensity-based OCT images, as well as images of the retardation and
optic axis mappings calculated from the image data, which characterize the birefringence proper-
ties of the sample. Immediately after imaging, the tissues were fixed and processed for histology.
Hematoxylin and eosin (H&E) staining was used for tissue type confirmation.

Fig. 1 (a) Diagram showing layers of the bladder. (Note that the diagram was not drawn to scale.)
Example retardation mapping of (b) normal and (c) diseased bladder sample, compared with
conventional OCT intensity images and H&E histology. Scale bar ¼ 0.2 mm.
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We could compute the sample birefringence Δn from the linear relationship between retar-
dation versus depth in the following equation:

EQ-TARGET;temp:intralink-;e001;116;711δ ¼ 2πΔnz∕λ; (1)

where λ is the center wavelength of the incident light, z is the distance of light traveled in the
material, and δ is the cumulative phase retardation. To extract the birefringence from each layer
of the bladder samples, the tissue surface in the PS-OCT image was first determined by intensity
thresholding with Otsu’s method in MATLAB (MathWorks, Inc.). For normal tissue, this surface
corresponded to the urothelium layer. We then relied on a simple segmentation for identifying the
location of the LP layer in the tissue, where we assumed the urothelium layer extends 50 μm
below the surface and the LP region extends 200 μm below the urothelium. After aligning
the surface position across different lateral locations, we averaged the retardation laterally over
a 2-mm region of the B-scan, and the birefringence was extracted from the slope of a line fitting
the retardation versus depth.

The mean and standard deviation of the birefringence values measured from the urothelium
(n ¼ 11 and mean age ¼ 69.6) and LP layer of normal (n ¼ 12 and mean age ¼ 69.8) human
ex vivo bladder biopsies were found to be 2.54 × 10−5 � 8.88 × 10−5 and 1.18 × 10−4 �
5.43 × 10−5, respectively. Note that some birefringence measurements in the urothelium were
“negative” (a negative fitting slope), likely due to the facts that (1) the layer is very thin, and
(2) the birefringence is very close to zero. These facts also explain the relatively large standard
deviation for the urothelium measurements and suggest that the urothelium layer is not birefrin-
gent. The mean and standard deviation of the birefringence values measured from the LP layer in
the diseased tissues (CIS tumors, n ¼ 6, and mean age ¼ 77.3) was 3.21 × 10−5 � 2.27 × 10−5.
As this value also suggests very minimal to negligible changes of retardation versus depth, we
considered the LP layer to be nonbirefringent for the purpose of phantom design. Due to the
strong signal attenuation near the MP, the birefringent property of the MP was not analyzed with
PS-OCT. However, because of the presence of smooth muscle fibers in the MP and since CIS is
not muscle invasive, the MP layer of the bladder should exhibit birefringence and is not affected
by the disease condition. Example OCT intensity and retardation maps of normal and diseased
bladder tissues are shown in Figs. 1(b) and 1(c), respectively.

3 Birefringence in a Tissue-Mimicking Material

3.1 Choice of Material

Optical properties (e.g., reflectivity, scattering, and absorption) reveal heterogeneities in tissue
and allow separation of dissimilar tissue types. A number of previous research efforts have
focused on providing mathematical and experimental details for calibration and fabrication
of the scattering and absorption properties in phantoms,5,30,31 mainly by means of mixing an
appropriate weight fraction of scattering agents [e.g., titanium dioxide (TiO2)] and absorption
agents (e.g., India ink).32 A common material for tissue-mimicking phantoms is polydimethyl-
siloxane (PDMS) due to its tunability for scattering and absorption.33,34 PDMS is particularly
useful for phantoms that mimic highly stretchable organs, such as the bladder.29

Our strategy to introduce birefringence in a tissue-mimicking phantom relies on the photo-
elastic property of PDMS, which varies as a function of the curing ratio and stretch.
Photoelasticity describes the induced macroscopic birefringence in a material undergoing a large
elastic deformation.35 When subject to a mechanical force, the polymer chains in soft materials,
such as hydrogels and elastomers, increase in alignment and exhibit optical anisotropy, which
causes a difference between the refractive indices (Δn, or birefringence) for different polarization
states. The high elasticity of PDMS allows for large deformation with minimal stress relaxation.
As a result, PDMS-based structures can be repeatedly stretched without losing their induced
birefringence over time.36 Figure 2 shows representative PS-OCT-generated retardation maps of
single layer, homogeneous PDMS phantoms in relaxed and stretched states. The phantoms shown
in Figs. 2(a) and 2(b) were made with a 15:1 weight ratio of base to curing agent, comprised
0.2 weight ratio (w%) TiO2 and had an initial (relaxed or unstretched) thickness of 1.5 mm.
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3.2 Design and Preparation of Birefringent Slab Phantoms

To characterize the stretch-induced birefringence of PDMS phantoms, we first prepared several
single layer, scattering phantoms (i.e., slab phantoms) from Sylgard 184 silicone elastomer (Dow
Silicones Corporation) by mixing the base solution (part A) and the curing agent (part B) at
specific curing ratios. In this study, we prepared PDMS phantoms with four curing ratios (weight
ratios of part A to part B): 10:1, 15:1, 20:1, and 25:1. We also added TiO2 to mimic tissue
scattering. The weight ratios used included 0.04, 0.15, 0.2, and 0.3 w% and were chosen based
on values of the light attenuation coefficient (AC) determined in previous literatures for the
different layers in bladder tissues.28 Each solution was degassed in a desiccator before being
transferred to a plastic mold to cure at 80°C for 2.5 h.

3.3 General Procedure for Measuring Birefringence in Slab Phantoms

We then used the testing setup shown in Fig. 2(c) to measure the retardation as a function of
applied stretch. The PDMS phantom was secured into two clamps with an initial clamp sepa-
ration of 6 mm, which we refer to as the “original length.” One clamp was held stationary by
mounting it to a force gauge (FG-3007, Nidec-Shimpo, Inc.); the other clamp was mounted onto
a translational stage and allowed to move away in 2.5-mm increments using the micrometer,
which controlled the amount of stretch. The imaging location was centered on the phantom and
remained unchanged for a given stretching experiment. The phantom was imaged when relaxed
and then at each stretch increment. From the PS-OCT image, we determined the thickness and
birefringence for each phantom and experimental condition in the following manner (Fig. 3):

1. The top and bottom surfaces of the phantom were automatically segmented by intensity
thresholding. In cases where the bottom surface was not visible on the B-scan, a maximum
detection depth was determined through intensity thresholding and was used in the bire-
fringence determination. We used the number of pixels between the top and bottom layer
as a relative thickness measurement; this was converted to a physical value by assuming a
refractive index to be 1.4. Although the refractive index is expected to vary slightly for
phantoms with different curing ratios, our birefringence measurement is based on the rel-
ative change in thickness, so the exact coefficient for the pixel-to-thickness conversion is
irrelevant.

2. We used the surface pixels to create a mask for the retardation map generated by PS-OCT.
3. We aligned the surface from each lateral position so that the phantom was always perfectly

horizontal in the corrected image.
4. We averaged the retardation laterally at each depth from the surface and used linear regres-

sion to determine the slope of the retardation versus depth, from which we derived the

Fig. 2 Retardation maps of PDMS in relaxed (a) and stretched (b) states. Retardation plots show
the cross-sectional plane of the PDMS. Yellow and white triangles point to the location of the top
and bottom surface of the phantom, respectively. Scale bar ¼ 0.2 mm. (c) Imaging system setup
for measuring phantom birefringence.
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birefringence. For a given amount of stretch, the measured birefringence and thickness of
the PDMS phantoms were found to be roughly uniform in the area of interest. Therefore,
in our characterization experiments, we assumed homogenous birefringence in the area of
interest on the phantom at a given amount of stretch.

We further determined the stress σ applied for each amount of stretch from force measure-
ments recorded by the force gauge using the following equation:

EQ-TARGET;temp:intralink-;e002;116;436σ ¼ P∕A; (2)

where P is the stretching force and A is the cross-sectional area of the phantom in its relaxed
state. The cross-sectional area was taken to be the initial phantom thickness (L2;0) multiplied by
the width of the phantom (L1), which is width of the clamp that was in contact with the phantom,
where A ¼ L1 × L2;0. Note, we assumed negligible changes in the width measurement through-
out the experiment.

3.4 Characterization of Slab Phantom Birefringence

The optical anisotropy of PDMS is determined by the number of cross-linked polymer chains in
a unit area, which can be adjusted by varying the weight ratio of the base solution (part A) and
the curing agent (part B). Theoretical prediction and experimental data of birefringence induced
in PDMS have been studied recently,35 albeit with very modest amount of stretch. As a result, the
published birefringence levels are too low to be useful in mimicking values of tissue birefrin-
gence. In this study, we explored a wider range of stretch values in slab PDMS phantoms of
varying curing ratios and measured the induced birefringence under each condition.

To characterize the amount of stretch, we defined a parameter, the length ratio, which equals
the elongated length divided by the original length. For each curing ratio, the induced birefrin-
gence versus stretch relationship was measured and plotted as a function of length ratio, as
shown in Fig. 4(a) for phantoms with an initial thickness of 1.5 mm. Each data point represents
the average birefringence and standard deviation measurements from five measurement repeats.
Note that error bars are not shown for data points with very low standard deviations, as in these
cases the error bars are smaller than the extent of the data point. The results reveal that PDMS
phantoms made with lower curing ratios (i.e., 10:1) have greater stiffness and are therefore
more resistant to deformation. The maximum achievable elongation, that is, the point at which
the phantom starts to slip out of the clamp, is lowest for 10:1 phantoms, followed by that
for 15:1; meanwhile, 20:1 and 25:1 phantoms exhibit greater stretchability and can reach more
than five times their original length. We reason that both the increase in stiffness as well as the
decrease in stickiness contribute to the slipping that happens at lower curing ratios, such as
the 10:1.

Fig. 3 Flow diagram for calculation of phantom birefringence.
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In our experiments, all four curing ratios exhibited birefringence changes with stretch.
At lower curing ratios, the induced birefringence increases at a faster rate with stretch than
at higher curing ratios. However, because of the low stretchability of low curing-ratio phantoms,
higher values of birefringence could ultimately be obtained in stretched phantoms made with
higher curing ratios. For example, the largest birefringence we induced (2.1 × 10−4) over the
range of length ratios we explored was achieved with 20:1 phantoms, when stretched to approx-
imately five times the original length. Notably, birefringence levels we induced in PDMS are
within the range of those in tissues that exhibit weak birefringence, including the normal and
diseased bladder (see Sec. 2), retinal nerve (Δn ¼ 1.2 × 10−4),37 and tumor in breast tissue
(Δn ¼ 1.8 × 10−4).38 We also report the birefringence properties of another silicone-based poly-
mer, Dragon Skin (Smooth-On, Inc.). Under the same stretching conditions, the 1.5-mm-thick
Dragon Skin phantom showed negligible changes in birefringence, and we therefore concluded
that the Dragon Skin does not exhibit a stretch-induced birefringent property.

We also measured the force exerted on the PDMS phantom as we performed the stretching
experiments and determined the changes of birefringence as a function of stress, as shown in
Fig. 4(b). The stress measurement is determined by both the force and the original cross-
sectional area, which is related to the original phantom thickness, (L2;0). Stress measurements
on the Dragon Skin were also performed; however, the elasticity of Dragon Skin is much lower
than PDMS, and thus exhibited negligible birefringence changes over the applicable range of
stress.

Tissue-mimicking phantoms are particularly useful for testing tools and procedures in a mock
surgical environment. As manipulation of tissue with surgical tools can cause local changes in
the measured birefringence at the manipulation site, we also tested whether the use of PDMS to
mimic tissue birefringence allows resemblance of such changes. We used a tweezer to press
perpendicularly on a layer of stretched PDMS (15:1 curing ratio, 1.5-mm thick) and, without
piercing the phantom, we imaged it from the opposite side of the tweezer at two cross-sectional
imaging planes: (1) the plane, including the tweezer, i.e., the manipulation site, and (2) a parallel
imaging plane located 1-mm away from the tweezer. We pressed from the opposite side of the
imaging surface to allow better visualization of the effect on measured retardation (if imaged
from the same side, the tweezer would cast a shadow and prevent changes directly underneath
the tweezer to be visualized). The 1-mm-away imaging plane was used to study the whether the
effect of manipulation can change the birefringence measurements from the surrounding regions.
As shown in Fig. 5(a), a local birefringence change can be observed as a change in the retardation
mapping, when comparing the cross-sectional images resulted from no manipulation and when
manipulation was applied. In this case, the retardation increases more rapidly along the axis of
manipulation than the surrounding PDMS and untouched PDMS. To quantify the amount of
change in birefringence, we took birefringence measurements from 20 A-scans centered at the
manipulation site and 20 A-scans from the corresponding lateral location of the untouched
PDMS. The locations of the 20 A-scans are indicated by the white dashed line in Fig. 5(a).
We observed a 38.6% and 35.6% increase at a 0- (Δn ¼ 1.40 × 10−4) and 1-mm distance
(Δn ¼ 1.37 × 10−4) from the manipulation site, respectively, when compared with untouched
PDMS (Δn ¼ 1.01 × 10−4).

A major advantage of using PDMS as the birefringent material is that it is optically clear,
which grants easy control of the scattering properties. By means of tuning the volume of

Fig. 4 (a) Birefringence versus stretch and (b) birefringence versus stress relationships at different
curing ratios, characterized with 1.5-mm-thick phantoms with 0.2 w% TiO2.
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scattering in each representative layer, we can achieve realistic tissue contrast in conventional
B-scan intensity images. To confirm that the induced birefringence measured with PS-OCT is not
dependent on the amount of scatterers, we conducted stretching experiments with slab phantoms
comprising 0.1 w% to 0.5 w% TiO2, while keeping all other factors constant (i.e., curing ratio
and thickness). The results suggest that there is no significant difference in the rate of birefrin-
gence increase with scatterer weight ratio, as shown in Fig. 5(b). This result confirms that we can
tune the scattering of the phantom, as is necessary to mimic different types of biological tissue,
without altering the birefringence levels.

4 Design of a Planar Bladder Tissue-Mimicking Phantom

4.1 Relevant Properties of the Human Bladder

To mimic the layered structure of the bladder wall under PS-OCT imaging, there are three impor-
tant design criteria for each layer: thickness, AC, and level of birefringence. When imaged from
the lumen side, the three layers in the healthy bladder can be distinctively visualized and have
thicknesses of 50 μm, 400 μm, 1.6 mm, and ACs of 0.8, 3.5, and 1.5 mm−1, respectively.28,29

Since the urothelium is a cell layer, it does not exhibit any birefringence, which is consistent with
our finding of negligible birefringence in Section 2. In contrast, the collagen-rich LP layer and
the smooth muscle in the MP layer both exhibit birefringence in healthy bladders. In early stage
cancerous development, bladder tumors, such as in the case of CIS, have reduced contrast
between the urothelium and LP on the OCT image, which causes them to lose their distinct
stratification and appear as a fused layer. Dimming in the OCT intensity and near complete loss
of birefringence can also be observed as the result of cancer development,39 which is consistent
with our finding of negligible birefringence in the fused CIS layer of the diseased bladder in
Sec. 2. The table in Fig. 6(a) summarizes these general characteristics and inspires our phantom
design.

To generate layers that do not exhibit birefringence with stretch, we chose to use the Dragon
Skin as the material for nonbirefringent regions, since it does not exhibit photoelasticity but is
still highly elastic. Hence, Dragon Skin was used for the urothelium layer of the healthy bladder
phantom. Similarly, we chose to use multiple layers of Dragon Skin with ACs ranging from 1.8
to 2.2 mm−1 (lower AC near the MP and higher AC at the top) to represent the fused appearance
of the urothelium and LP layers in the CIS-mimicking phantom, given that these layers also
exhibit negligible birefringence in the diseased case. The varying AC levels were achieved
by adding different weight ratios of TiO2, of which the relationship has been previously
established.28

Because of the presence of collagen and smooth muscle fibers, respectively, both the LP and
MP layers of the healthy bladder exhibit birefringence. Hence, both layers should be fabricated
from PDMS. To determine the curing ratios to use for these layers, we consider the graph in

Fig. 5 (a) Retardation maps of cross section of PDMS when no manipulation is applied (left
image), and when there is manipulation applied: at an imaging plane that includes the tweezer
(0 mm from manipulation site, middle image) and a parallel imaging plane that is 1-mm away from
the tweeze (right image). The orange triangle indicates the location of the tweezer, which simu-
lates manipulation with surgical tool. The white dashed lines indicate location where birefringence
measurements were taken. (b) Birefringence versus stretch at varying TiO2 (w%), characterized
with 1.5-mm-thick phantoms made with 20:1 curing ratio.
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Fig. 6(b), where we compared the birefringence of stretched phantoms with initial thicknesses of
1 (dashed line) and 1.5 mm (solid line) and reported the change of thickness of the phantom (L2)
as a function of length ratio. The red shaded region denotes the range of birefringence values
associated with a healthy bladder LP, while the gray shaded region denotes the thickness value of
a typical LP layer. We chose to use a curing ratio of 15:1 for the LP layer, as it is capable of
achieving birefringence values that fall within the range for healthy LP with modest length ratios.
Although we could not measure the birefringence of the MP layer directly with PS-OCT due to
the high attenuation of light when reaching that depth, we chose to use a curing ratio of 25:1 to
reflect the non-negligible, but lower expected birefringence in that layer in healthy tissue.
Because CIS is a superficial tumor that does not extend to the MP, we chose to use the same
recipe for the MP of the diseased phantom as for the healthy phantom.

4.2 Phantom Fabrication Procedure

Figure 6(c) shows the steps taken to fabricate the healthy and CIS phantoms. First, the MP layers
of both phantoms were fabricated by pouring TiO2-infused PDMS (0.15 w%) into a standard
mold (e.g., a petri dish) and letting it cure. Note that we did not tightly control the thickness of
this layer because it is typically too thick to visualize in OCT, so its actual thickness does not
matter so long as it exceeds 1.6 mm when stretched. Our choice of a high curing ratio for this
layer (25:1) ensures that it can stretch well. For the healthy phantom, the LP layer was added and
cured atop the MP by pouring another layer of PDMS with TiO2 (0.3 w%). Its thickness was
controlled by weight versus volume calibration. Finally, to create a thin urothelium layer, a TiO2-
inflused Dragon Skin solution (0.04 w%) was first thinned with NOVOCS solution (Smooth-On,
Inc.) at 100 w% (i.e. part A + part B : NOVOCS = 1:1) and then sprayed onto the LP layer with a
Badger air brush (200-BWH) and Badger air compressor (AS180-12) at the rate of one second
per spray coating, until the thickness reached the design criterion for the urothelium (∼90 μm).28

To fabricate the combined urothelium and LP layers in the disease phantom, the same air brush-
ing technique was used. In this case, multiple coatings of Dragon Skin were applied with ACs
ranging from 0.15 w% to 0.2 w%: the AC of the solutions decreased progressively from near the
MP toward the tissue surface. Sonication was used during Dragon Skin preparation to ensure

Fig. 6 (a) Overall design of desired thickness, AC, and birefringence in each layer of the bladder
under normal and tumor conditions. (b) Induced birefringence in 15:1 phantoms with different initial
thicknesses (solid line: 1.5-mm-thick phantom and dashed line: 1-mm-thick phantom). Pink
shaded region: birefringence values observed in normal bladder LP. Gray shaded region: thick-
ness values observed in normal bladder LP. Overlap region shows birefringence and thickness
values to be achieved in the LP layer of normal bladder phantoms. (c) Fabrication steps for normal
(left) and diseased (right) bladder phantoms.
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evenly dispersed TiO2 particles. All Dragon Skin layers were allowed to cure at room temper-
ature for 6 h.

4.3 Measurements in the Final Phantoms

OCT intensity and PS-OCT retardation images of the final normal and diseased phantoms are
shown in Fig. 7. In this image, both phantoms were stretched to a length ratio of nearly four.
Intensity and retardation versus depth plots, averaged laterally in the boxed regions (and calcu-
lated from the surface of the phantom to 500 pixels below the surface), are shown next to the
OCT intensity cross-sectional images on the left. Both the intensity and the retardation map can
visually differentiate the normal from the diseased condition, suggesting that the design criteria
have been met successfully. The achieved thicknesses of the layers and measured birefringence
are reported on the plot. Specifically, in the normal bladder phantom, we achieved birefringence
levels of 3.11 × 10−7, 1.05 × 10−4, and 4.50 × 10−5 in the urothelium, LP, and MP layers. In the
diseased phantom, the values for the fused layer and MP are 4.61 × 10−6 and 3.59 × 10−5.

5 Discussion

Although not shown in this paper, the fabrication process we introduced can be easily expanded
to show other pathological conditions in the bladder, such as inflammation (characterized by a
thickened urothelium and reduced birefringence in the LP) and T2 (muscle-invasive) stage
tumors (complete loss of stratification and birefringence in the top three layers of the bladder).28

Other works have already described methods to mimic the appearance of bladder rugae, such as
through use of crumpled aluminum foil during the molding process, and to improve the visual
appearance of PDMS and Dragon Skin solutions to better resemblance actual tissue under white
light illumination.28,29 These strategies can be equally applied to create a more realistic bladder
phantom. In the future, we will consider developing a fully 3D bladder phantom to aid the testing
of endoscopic PS-OCT devices. In this case, stretching (necessary to induce birefringence) can
be accomplished by filling the phantom with water or saline, which also serves to mimic the
realistic clinical environment, as patient bladders are usually distended with saline prior to
cystoscopy examinations.

While the proposed strategy is useful to mimic birefringence levels associated with weakly
birefringent tissues, the range of parameters we explored is not sufficient to mimic tissues
with more orderly aligned structures, such as human skin (Δn ¼ 1.2 × 10−3), scar tissue

Fig. 7 B-scan and retardation maps of (a) normal and (b) diseased bladder phantoms. Plots of
averaged intensity and retardation versus depth plots are shown for the regions boxed with yellow
solid line. Scale bar = 0.2 mm.
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(Δn ¼ 0.9 × 10−3),40 and myocardial fiber (Δn ¼ 0.69 × 10−3 to 1.46 × 10−3).41 Achieving
greater levels of birefringence with PDMSmay require new fabrication strategies, such as adding
nanofibers to induce greater birefringence with deformation,42 which may allow the resulting
PDMS to reach the birefringence levels needed to mimic highly birefringent tissues.
Alternatively, one may consider the use of other materials that have been described in previous
literatures to induce high birefringence.25

6 Conclusions

In this study, we describe a method for inducing birefringence in PS-OCT phantoms with a
common material used in phantom development—PDMS. We characterized the level of induced
birefringence in PDMS slab phantoms with stretch and showed that the values could reach the
range of many weakly birefringent tissues. The major advantage of using PDMS as the bire-
fringent material is that it permits precise control of the scattering properties and phantom thick-
ness, which allows fabrication of sophisticated phantoms that realistically mimics tissue
structures and light–tissue interactions. We demonstrated only layered slab phantoms in this
work. However, 3D birefringent phantoms that resemble shapes of hollow organ, such as the
bladder, can also be achieved with the proposed method. Air or water inflation may be used to
cause deformation in 3D PDMS phantom, which removes the need of using clamps. In summary,
given the wide availability and the extensive use of PDMS in phantom development research,
this method can be readily adopted in other birefringent tissue phantom designs and used for
polarization imaging systems beyond PS-OCT.
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