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Abstract

Significance:Optical and acoustic imaging techniques enable noninvasive visualisation of struc-
tural and functional properties of tissue. The quantification of measurements, however, remains
challenging due to the inverse problems that must be solved. Emerging data-driven approaches
are promising, but they rely heavily on the presence of high-quality simulations across a range of
wavelengths due to the lack of ground truth knowledge of tissue acoustical and optical properties
in realistic settings.

Aim: To facilitate this process, we present the open-source simulation and image processing
for photonics and acoustics (SIMPA) Python toolkit. SIMPA is being developed according to
modern software design standards.

Approach: SIMPA enables the use of computational forward models, data processing algorithms,
and digital device twins to simulate realistic images within a single pipeline. SIMPA’s module
implementations can be seamlessly exchanged as SIMPA abstracts from the concrete implemen-
tation of each forward model and builds the simulation pipeline in a modular fashion. Furthermore,
SIMPA provides comprehensive libraries of biological structures, such as vessels, as well as optical
and acoustic properties and other functionalities for the generation of realistic tissue models.

Results: To showcase the capabilities of SIMPA, we show examples in the context of photo-
acoustic imaging: the diversity of creatable tissue models, the customisability of a simulation
pipeline, and the degree of realism of the simulations.

Conclusions: SIMPA is an open-source toolkit that can be used to simulate optical and acoustic
imaging modalities. The code is available at: https://github.com/IMSY-DKFZ/simpa, and all of
the examples and experiments in this paper can be reproduced using the code available at: https://
github.com/IMSY-DKFZ/simpa_paper_experiments.
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1 Introduction

Optical and acoustic imaging techniques enable real-time and noninvasive visualisation of
structural and functional tissue properties without exposing the patient to harmful ionizing
radiation. Nevertheless, the applicability of purely optical and acoustic imaging techniques
is limited, for example, by the low penetration depth of near-infrared spectroscopy1 or by the
difficulties of measuring functional tissue properties with ultrasound imaging.2 Furthermore,
quantitative measurements are challenging as the state-of-the-art model-based approaches to
solve the underlying inverse problems rely on assumptions that might not hold when applied
to in vivo measurements.

Data-driven approaches can be chosen to address these inverse problems. To this end, high-
quality well-annotated data are needed, for example, to train deep learning algorithms3–5 or to
optimize device design.6,7 In living subjects, the acquisition of such data is extremely difficult
because the underlying optical and acoustic tissue properties are generally not well known.8 As
such, for algorithm training, many researchers instead use simulated data, which are compara-
tively easy to obtain, have known underlying optical and acoustic properties, and can be used for
both algorithm training and validation.9–13 Nevertheless, the application of algorithms trained
exclusively on synthetic training data to experimental measurements is challenging due to sys-
tematic differences between synthetic and experimental data.14

Photoacoustic imaging (PAI) combines the advantages of optical and acoustic imaging by
exploiting the photoacoustic (PA) effect, resulting in optical contrast with scalable high spatial
resolution down to microns as a function of imaging depth, which can be up to several
centimeters.15 PAI enables the recovery of functional tissue properties, such as blood oxygen
saturation.16 To quantitatively recover such parameters, two inverse problems have to be solved:
the acoustic inverse problem, which constitutes the accurate and quantitative reconstruction of
the initial pressure distribution, and the optical inverse problem, which constitutes the quanti-
tative recovery of the optical absorption coefficient.8 To generate realistic PA simulations for the
purpose of training a data-driven method, all physical and computational aspects of signal for-
mation need to be considered;17 these include synthetic volume generation, photon propagation,
acoustic wave propagation, and image reconstruction.

In recent years, a heterogeneous software landscape has emerged with various open-source or
free-to-use tools to cover each of these physical and computational aspects. For example, for
volume generation, there exist open access resources, such as the Digimouse18 annotated digital
mouse phantom, digital breast phantoms (available at: https://github.com/DIDSR/VICTRE,
last visited March 22, 2022),19,20 and the multimodal imaging-based detailed anatomical model
of the human head and neck atlas MIDA.21 But usually, researchers use pseudorandom distri-
butions of light-absorbing molecules (chromophores) to create tissue-mimicking in silico
phantoms.13,22 For optical modeling of photon transport in tissue, numerous approaches have
been established; these focus in general either on (1) Monte Carlo methods including, for exam-
ple, mcxyz,23 MCX,24 or ValoMC,25 which uses a Monte Carlo approach to light transport to
simulate the propagation of photons in heterogeneous tissue, or (2) analytical methods to solve
the radiative transfer equation, including diffusion approximation or finite element solvers as
implemented in, for example, NIRFAST26 or Toast++.27 For acoustic modeling, there exists the
popular k-Wave28 toolbox, which is a third-party MATLAB toolbox for the simulation and
reconstruction of PAwave fields and is one of the most frequently used frameworks in the field.
For image reconstruction, there are many different approaches, including backprojection
algorithms,29–31 model-based algorithms,32,33 and fast Fourier transform-based reconstruction
algorithms.34,35

To navigate these tools and integrate them into a complete pipeline, the user must transform
the output of each toolkit into an appropriate form for input to the next36,37 or model the entire
process in a joint computational framework.38,39 Each step in assembling these pipelines can be
time-consuming or error-prone, especially including correct consideration of the physical quan-
tities and their units. They are typically limited to the toolkits that are currently integrated in their
respective framework and thus lack broad applicability to other simulators. Furthermore, a seam-
less exchange from, e.g., a finite element method optical forward simulator to a Monte Carlo
simulator is not straightforward in existing frameworks.
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To tackle these challenges, we developed the open-source simulation and image processing
for photonics and acoustics (SIMPA) Python toolkit, which features a modular design that allows
for easy exchange and combination of simulation pipeline elements. In its first version, the tool-
kit facilitates the simulation and processing of PA data and provides a straightforward way to
adapt a simulation to meet the specific needs of a given researcher or project. It can easily be
extended to support simulations corresponding to other optical and acoustic imaging modalities.
The core idea of the framework is to standardize the information flow between different com-
putational models by providing a central software architecture that abstracts from the individual
requirements of external libraries. SIMPA achieves this by defining abstract implementations of
the simulation steps based on adapters that can be implemented, such that specific toolkits can
easily be integrated into the SIMPA ecosystem. SIMPA is tested using both Windows (specifi-
cally Windows 10) and Linux (specifically Ubuntu 20.04) operating systems. Third-party tool-
kits are executed on the GPU by default if this is supported by the respective toolkit and a
compatible GPU is installed. Furthermore, SIMPA offers the possibility of exporting simulated
time-series data compliant to the data format proposed by the International Photoacoustic
Standardisation Consortium (IPASC).40

In this paper, we first outline the purpose and the software details of SIMPA in Sec. 2.
Here, we give an overview of the software development process, the software architecture, the
modeling of digital device twins, and computational tissue generation. Afterward, there is an
extensive simulation and image processing examples section (Sec. 3) in which we show the
possibilities that SIMPA offers. We demonstrate the modularity of SIMPA by showcasing the
results of example simulations including an overview of how parameter choices can affect
the results and the degree of realism of the simulations that is achievable with SIMPA.

2 SIMPA Toolkit

SIMPA aims to facilitate realistic image simulation for optical and acoustic imaging modalities
by providing adapters to crucial modeling steps, such as volume generation, optical modeling,
acoustic modeling, and image reconstruction (Fig. 1). SIMPA provides a communication
layer between various modules that implement optical and acoustic forward and inverse
models.

Non-experts can use the toolkit to create sensible simulations from default parameters in
an end-to-end fashion. Domain experts are provided with the functionality to set up a highly
customisable pipeline according to their specific use cases and tool requirements.

The following high-level requirements are key to meeting the above purpose:

1. Modularity: The different modules of the simulation pipeline should be implemented such
that each of them can be paired with arbitrary implementations of preceding or succeeding
modules. Specific module implementations can seamlessly be exchanged without

Fig. 1 The simulation and image processing for photonics and acoustics (SIMPA) toolkit.
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breaking the simulation pipeline. The user has the freedom to arrange the elements of the
simulation pipeline in exactly the way that they choose.

2. Extensibility: The user should have the freedom to add any custom elements to the pipe-
line and to implement custom module adapters. There should exist documentation that
shows how custom adapters for each module and completely new modules can be
implemented.

3. Physical correctness: Each module implementation should have a single purpose,
produce plausible results, and not alter other parts of the pipeline. Physical quantities
(i.e., units) should be correctly handled by the information flow between separate
modules.

4. Independence: Arbitrarily many sequentially executed SIMPA simulations should not
influence the results of subsequent simulations.

5. Usability: The entry for new users must be as easy as possible such that sensible PA
images can be simulated without prior knowledge. A simulation with default parameters
can be started using only a few lines of code.

The following sections of this paper introduce the software development life cycle in Sec. 2.1
and SIMPA’s software architecture in Sec. 2.2, as well as another prominent contribution of
SIMPA: a volume creation adapter that enables the user to create diverse spatial distributions
of tissue properties as detailed in Sec. 2.4.

2.1 Software Development Life Cycle

SIMPA is developed using the Python programming language (Python Software Foundation),41

version 3.8 because it is currently one of the most commonly used programming languages. We
use git42 as the version control system, and the code is maintained on GitHub (available at:
https://github.com/IMSY-DKFZ/simpa, last visited March 22, 2022). Stable versions of
the develop branch are integrated into the main branch and then form a release with an
increase in the version number according to the Semantic Versioning Specification (SemVer)
scheme.43

SIMPA code is written using a quality-controlled development process. Every feature request
or bug fix is assigned an issue on the SIMPA GitHub page (available at: https://github.com/
IMSY-DKFZ/simpa/issues, last visited March 22, 2022). Issues can be opened and commented
on by any SIMPA user, and the code is written in separate branches that are only integrated into
the develop branch after a successful code review by a member of the SIMPA core developer
team. To ensure good code quality, the code reviews are designed to check whether
the code follows the SIMPA developer guide:

1. The code is executable and yields the expected result in a typical use case.
2. The code is accompanied by an automatic or manual test.

3. The code is written using the Python Enhancement Proposal (PEP) 8 style guide for
Python code.44

4. The code documents its intended use case, input parameters, and expected output.

More specifically, each new feature and bug fix must add a unit test that tests the functionality
of the feature. If automatic unit testing is not possible (e.g., because required third-party binaries
are not available in the integrated testing environment), then a manual integration test is defined
in which the feature is being used within a SIMPA simulation run. The output of the manual test
is then reviewed by a SIMPA developer as a sanity check. Using such a mixture of automatic and
manual tests, we aim to provide tests for every intended use case of SIMPA to ensure that the
toolkit is stable and working as intended.

2.2 Software Architecture

SIMPA provides a unified abstract data structure that combines existing simulation tools to
represent the full signal generation process of a given optical and/or acoustic imaging
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modality. Specifically, SIMPA handles the data/information flow from and to each simulation
tool and provides an infrastructure to use these tools in an integrated pipeline. Figure 2 shows
the main components of SIMPA and visualises their interactions in an example simulation
pipeline.

SIMPA contains two primary Python modules: core and utils. Furthermore, the toolkit
features several smaller Python modules: io_handling, log, visualisation, algo-
rithms, examples, and tests. The SIMPA core defines a centralized structure to provide
simulation tool-specific adapters to the abstract modules for each step in the simulation process.
The utils package provides a collection of libraries and convenience methods to help a
researcher set up a customized simulation pipeline.

2.2.1 Core

The core is organized into three Python submodules. The SimulationModules
submodule provides interfaces for all simulation modules (e.g., the ones that are required
for complete PA forward modeling). To meet the modularity criterion (Sec. 2), it contains
abstract module definitions for the major parts: VolumeCreationModule,
OpticalForwardModule, AcousticForwardModule, and Reconstruction
ForwardModule. Furthermore, the core contains a ProcessingComponents

Fig. 2 Software components of SIMPA. (a) The main software components of SIMPA’s software
architecture. The toolkit consists of two main components, core and utils, as well as several
smaller components (e.g., io_handling, visualisation), which are each composed of sev-
eral subcomponents. The core contains all SimulationModules, DeviceDigitaltwins,
and ProcessingComponents. The utils component contains the Settings dictionary, a
standardized list of Tags, various Libraries, and other utility and helper classes to facilitate
using the toolkit. (b) An example simulation pipeline. The pipeline is defined via a Settings
dictionary using a standardized list of Tags. During the pipeline execution, each pipeline
element (which can be either a SimulationModule or a ProcessingComponent) is called
sequentially. After each step, the new results are amended to a hierarchical data format 5
(HDF5) file. The pipeline is repeated for each wavelength; afterwards, all multispectral
ProcessingComponents are executed, and the results can be visualised. In this example,
the included pipeline elements are volume generation, optical modeling, acoustic modeling,
noise modeling, image reconstruction, field of view (FOV) cropping, linear unmixing, and result
visualisation.
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submodule that contains a base for components that supplement the main simulation modules,
such as a component for noise modeling, which currently supports a number of noise models:
salt and pepper noise, Gaussian noise, Poisson noise, uniform noise, and Gamma noise. Finally,
the DeviceDigitalTwins submodule also contains base classes that enable the definition of
digital twins of PA imaging devices such as slit or pencil illuminations combined with circular or
linear detector geometries. Details on the digital device representation in SIMPA can be found
in Sec. 2.3.

The main entry point for the user is the simulate method that is contained in the core.
This method is responsible for the execution of all desired simulation modules and processing
components (referred to as pipeline_elements).

To meet the extensibility criterion (Sec. 2), a developer has the freedom to add custom new
simulation module adapters, processing components, or digital device twins. Each pipeline
element in the simulation pipeline has to be fully self-contained and thus handle its produced
result correctly within the information flow of SIMPA. To ensure this, each of the Python sub-
modules provides an abstract class that encapsulates parts of the functionality. For example, a
user can define a custom simulation module using the abstract SimulationModule class as a
blueprint. To implement a Python adapter, it has to inherit from this class and overwrite the
implementation method. Internally, the representation of the computational grid is defined
by isotropic voxels. This does not necessarily exclude external tools that work on differently
defined grids such as anisotropic voxels or mesh-based methods if the according adapter trans-
lates one into another. The edge size of the voxels is generally defined by the user attribute
SPACING_MM, but this would not prevent an adapter from resampling the voxel sizes. The grid
uses the default unit for length within SIMPA, which is mm. The default unit for time in
SIMPA is ms.

2.2.2 Utils

The utils Python module contains utility classes such as the Tags and Settings classes.
The Settings class is a dictionary that contains key-value pairs defining the simulation
parameters. To assert standardized naming conventions of the dictionary keys, these keys are
globally accessible via the Tags class. Furthermore, there is the Libraries package that
provides both LiteratureValues as well as collections of classes that represent, e.g., geo-
metrical shapes and biochemical molecules. The LiteratureValues are used to instantiate
these classes for the purpose of generating synthetic tissue models. The Libraries package
provides the following collections:

LiteratureValues: Reference values for optical, acoustic, and morphological tissue
properties including the respective online source.

SpectrumLibrary: Classes based on a Spectrum. A Spectrum represents wave-
length-dependent tissue properties such as optical absorption or scattering defined for
a specific set of wavelengths (depending on the reference literature).

MoleculeLibrary: Classes based on a Molecule. The Molecule class is used to
represent the optical and acoustic properties of biochemical molecules such as melanin
or hemoglobin.

TissueLibrary: Predefined MolecularComposition classes. A Molecular
Composition is a linear mixture of different Molecules. The elements of the
TissueLibrary are defined such that the optical and acoustic properties of the mixed
Molecules agree with the literature references (e.g., skin or blood).

StructureLibrary: Classes based on a Structure. Each Structure defines the
geometry of a certain volumetric shape (such as cuboids, tubes, or vessel trees) in a
voxelized grid.

The interplay of these libraries is described in greater detail in Sec. 2.4. All libraries are
designed such that they are easily customisable by the user, for example, by allowing for the
addition of spectra, molecules, or tissue types.
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2.2.3 IO and data format

SIMPA uses the Hierarchical Data Format 5 (HDF5)45 as it comprises a hierarchical data struc-
ture, has interfaces in many commonly used programming languages, and features the possibility
of adding metadata. All inputs, settings, and outputs of a SIMPA simulation are stored in a
central HDF5 file, and at the end of the simulation, the file contents can be repacked to be saved
in a compressed manner. The SIMPA io_handling Python module abstracts from the com-
munication with the h5py package46 and contains functionality to save and write data to the hard
drive (Fig. 3).

SIMPA also offers the feature to export simulated time-series data into the data format pro-
posed by IPASC.47 This data format is based on HDF5 as well and defines a standardized list of
metadata parameters to include.48

2.3 Digital Device Twins

SIMPA enables the definition of digital twins of optical and acoustic devices by providing
abstract base classes for the implementation of detectors and illuminators (cf. Fig. 4).
To this end, SIMPA contains the DetectionGeometryBase and Illumination
GeometryBase classes, both of which inherit from the DigitalDeviceTwinBase
class. The DigitalDeviceTwinBase class defines the device position and the field-of-
view (FOV). The DetectionGeometryBase and IlluminationGeometryBase
classes are responsible for defining the necessary parameters and abstract methods for the
implementation of custom devices. To define a detection geometry or an illumination geometry,
a class that inherits from the fitting base class and implements the necessary abstract methods
needs to be written. A PA device is defined by having both a detection and an illumination
geometry.

Fig. 3 The SIMPA file data structure is hierarchical. The output file of SIMPA uses the Hierarchical
Data Format 5 (HDF5). The top-level fields are (1) Settings in which the input parameters for the
global simulation pipeline as well as for all pipeline elements are stored in. (2) The Device
describes the digital device twin with which the simulations are performed. (3) The
Simulations field stores all of the simulation property maps that serve as input for the pipeline
elements, such as the optical absorption (μa), scattering (μa), and anisotropy (g). These properties
are wavelength-dependent and therefore are saved for each wavelength respectively. The density
(ρ), acoustic attenuation (α), speed of sound (ν), Grüneisen parameter (Γ) or blood oxygen sat-
uration (sO2) are wavelength-independent and therefore only stored once. The Simulations
field also stores the outputs for each wavelength of each processing component and simulation
module such as optical fluence (ϕ), initial pressure (p0), time series pressure data (pðtÞ), or the
reconstructed image (precon

0 ). (4) The simulation pipeline is a list that stores the specific module
adapters that have been combined and their order to form the simulation pipeline.
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SIMPA predefines some commonly used detection and illumination geometries, as well as
some PA devices. Currently, SIMPA provides classes for curved arrays, linear arrays, and planar
array detection geometries, as well as disk, Gaussian beam, pencil beam, pencil array, and slit
illumination geometries. Using these classes, the user can freely combine detection and illumi-
nation geometries as well as their relative positions to accurately represent real devices. SIMPA
also provides digital twins of some PA devices: the multispectral optoacoustic tomography
(MSOT) Acuity Echo, the MSOT InVision 256-TF, or the raster-scan optoacoustic mesoscopy
(RSOM) Xplorer P50 from iThera Medical (iThera Medical GmbH, Munich, Germany).
Because SIMPA currently only supports MCX as the optical forward model, and MCX only
has a limited amount of supported illumination geometries, the MSOT Acuity Echo and the
MSOT InVision 256-TF illumination geometries are represented by individual classes, and a
version of MCX that supports these geometries is provided as a fork at: https://github.com/
IMSY-DKFZ/mcx, (last visited March 22, 2022).

2.4 Diverse Tissue Modeling

A core prerequisite for the simulation of realistic PA images is the modeling of diverse tissue
geometries by generating plausible distributions of optical and acoustic parameters in a virtual
volume. In this context, diversity comprises not only a wide variety of geometrical shapes that
might occur in biological tissue but also the accurate modeling of optical and acoustic properties
of different tissue types such as skin, blood, or fat. These tissue types are usually mixtures of
molecules each with distinct properties, which can be difficult to represent computationally. To
meet this need, SIMPA provides a VolumeCreationmodule that enables the convenient gen-
eration of custom tissue models. The backbone of the module is the way that the optical and
acoustic tissue properties are represented using flexible MolecularCompositions (see
Fig. 5). Using a hierarchical listing of predefined structures, the user can then create custom

Fig. 4 Unified modeling language (UML) class diagram of the digital device representation in
SIMPA. Each box represents a class with the class name in bold. The first set of elements are
the fields defined by these classes with their types shown in red, and the italic fields refer to
abstract methods. A PA device comprises a detection geometry and an illumination geometry.
All classes inherit from the DigitalDeviceTwinBase class, which defines common attributes:
the device position and the FOV.
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spatial distributions of these molecular compositions. The ability to create realistic tissue models
depends on several factors, which include (1) the availability of high-quality reference measure-
ments for the optical and acoustic properties, (2) information on the molecular composition of
various tissue types, and (3) an accurate representation of their spatial distributions within the
region of interest.

2.4.1 Optical and acoustic molecule properties

A full list of all tissue properties considered in SIMPA is given in Tables 1–2. Within the SIMPA
codebase, these molecular properties are integrated as inherent parts of a Molecule. While
most properties can be approximated as singular values, the optical absorption, scattering, and
anisotropy are wavelength-dependent and therefore represented by a Spectrum that linearly
interpolates between the nearest known wavelengths to approximate the full spectrum during
simulation.

For wavelength-dependent information on the optical properties of the chromophores most
commonly found in human tissue, Jacques published an invaluable review article49 and made
information available via the OMLC website.50 We decided to follow the system of units intro-
duced in the cited literature in SIMPA. For the tissue properties relevant for acoustic forward
modeling, we used the IT’IS database for thermal and electromagnetic parameters of biological
tissues51 as it provides information on the mean value and distribution of these properties for
many different tissue types. Other literature sources that are being used by SIMPA for represent-
ing molecular properties are Kedenburg et al.52 for heavy water, Zhang et al.53 for water, or
Antunes et al.54 for the optical properties of bone.

Fig. 5 Overview of the steps involved for modeling an in silico vessel tree with SIMPA. The dia-
gram shows the resources that SIMPA provides for users to create custom tissue models.
Wavelength-dependent properties such as the optical absorption (μa), scattering (μs), or scattering
anisotropy (g) are provided in the SpectrumLibrary, whereas wavelength-independent proper-
ties such as the speed of sound (ν), the tissue density (ρ), or the Grüneisen parameter (Γ) are
provided by the LiteratureValues. A MolecularComposition corresponds to a linear
mixture of Molecules that can be used in combination with a geometrical molecular distribution
from the StructureLibrary to create an in silico model.

Table 1 Overview of all optical properties that are represented in a SIMPA
molecule with their respective units.

Optical properties Unit

Absorption coefficient cm−1

Scattering coefficient cm−1

Scattering anisotropy Unitless

Grüneisen parameter Unitless
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2.4.2 Molecular tissue compositions

To represent the properties of a tissue type, SIMPA uses a MolecularComposition,
which is a linear combination of Molecules. In the TissueLibrary, SIMPA provides
several predefined tissue types such as blood, skin, muscle, and bone that are compiled from
literature sources. However, the framework can also be used to easily define custom user-
specific molecular compositions.

Information on the molecular composition of tissue types is sparse and scattered throughout
the literature. SIMPA models the properties of different skin layers and muscle tissue using the
review article of Bashkatov et al.,55 melanin content in the epidermis using Alaluf et al.,56 the
water volume fractions of different tissue types in the human body using Timmins andWall57 and
Forbes et al.,58 and the distribution of arterial and venous blood oxygenations using Molnar and
Nemeth59 and Merrick and Hayes.60

2.4.3 Spatial tissue distribution

Taking the creation of an in silico forearm as an example, specialized clinical papers can be used
to obtain information on aspects such as the distribution of sizes of the radial and ulnar artery61

and their accompanying veins,62 the thickness of skin layers such as the dermis and epidermis,63

the separation of the radius and ulna bones,64 and the depth of subcutaneous vessels.65

SIMPA offers the ability to create voxelized volumes of molecular compositions and pro-
vides two main ways to create their spatial distributions.

Model-based volume generator. The purpose of this Adapter is to enable a rule-based
creation of voxelized simulation volumes. The generator is given a list of structures that are each
represented by a voxelized definition of their shape, a molecular composition, and a priority. In
the case of two structures occupying the same voxel, the molecular composition of the structure
with the higher priority is chosen for that voxel. Based on their shape and priority, all structures
are then merged into a single distribution of optical and acoustic parameters.

SIMPA provides a StructureLibrary that contains many basic 3D shapes
(Structures), such as layers, spheres, elliptical tubes, cuboids, parallelepipeds, or vessel
trees. These Structures can be mixed to create arbitrary simulation volumes. For the gen-
eration of vessel trees, we have integrated a random walk-based algorithm into SIMPA, in con-
trast to other work that uses Lindenmayer systems to build a grammar with the inclusion of
stochastic rules.66

Segmentation-based volume generator. The purpose of this Adapter is to take vox-
elized segmentation masks as input and map them to specific tissue types, which allows for the
easy inclusion of spatial tissue property distributions from other sources. The user themself is
responsible for loading a segmentation mask from a file into memory and transforming it into a
numpy array as an input for the SIMPA pipeline.

3 SIMPA Use Cases

The functionality spectrum covered by the SIMPA toolkit is best demonstrated by exemplary use
cases. The use cases in this section build upon each other with increasing complexity. Section 3.1

Table 2 Overview of all acoustic properties that are represented in a
SIMPA molecule with their respective units.

Acoustic properties Unit

Speed of sound ms−1

Density kgm−3

Acoustic attenuation dBcm−1 MHz−1
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introduces the initiation of a basic simulation pipeline. Section 3.2 shows the convenience of
changing smaller hyperparameters of an existing pipeline and the impact on the outcome of the
pipeline, and Sec. 3.3 analogously illustrates this for the change of whole simulation modules as
well as digital device twins. Section 3.4 showcases the diversity of possible tissue geometries,
and Sec. 3.5 compares simulation outcomes of SIMPA with a real PA image. Finally, Sec. 3.6
combines the previous sections to exemplify the generation of a diverse dataset of PA images.
The optical and acoustic modeling toolkits used for all experiments in this section were MCX24

and k-Wave,28 using SIMPA-provided adapters. MCX uses the Monte Carlo method that repeat-
edly draws random variables from an underlying model distribution to reach high accuracy.67

MCX approximates a light transport model using this method. K-Wave is based on the k-space
pseudospectral method for modeling nonlinear ultrasound propagation in heterogeneous
media.68 All experiments were conducted using a workstation with an AMD(R) Ryzen
3900x 12-core central processing unit, 64 GB of RAM, and NVIDIA RTX 3090 GPU running
Ubuntu 20.04., and they can be reproduced using the code available at https://github.com/IMSY-
DKFZ/simpa_paper_experiments. The run times for each executable experiment are mentioned;
however, a detailed analysis of SIMPA’s run times, computational requirements, and postpro-
cessing examples69,70 can be found in the Supplementary Material.

3.1 Running a Simulation Out-of-the-Box

Simulations are run using the simulate function, which is located in the core Python module.
The function simulate takes three input arguments: (1) a list with a definition of the sim-
ulation pipeline, (2) a Settings dictionary, which contains all parameters for the simulation, and
(3) a Device, which represents a digital twin of a PAI device. The following listing shows how
these three input parameters are defined and given to the simulate function. For each of the used
simulation pipeline elements, a settings dictionary that contains the parameters needs to be defined.
An overview of the user-side pseudocode to set up a simulation with SIMPA is given by:

import simpa as sp

# Create general settings
settings = sp.Settings(general_settings)

# Create specific settings for each pipeline element
# in the simulation pipeline
settings.set_volume_creation_settings(volume_
creation_settings)

settings.set_optical_settings(optical_settings)
settings.set_acoustic_settings(acoustic_settings)
settings.set_reconstruction_settings(reconstruction_settings)

# Set the simulation pipeline
simulation_pipeline = [sp.VolumeCreatorModule(settings),

sp.OpticalForwardModule(settings),
sp.AcousticForwardModule(settings),
sp.ReconstructionModule(settings)]

# Choose a PA device with device position in the volume
device = sp.CustomDevice()

# Simulate the pipeline
sp.simulate(simulation_pipeline, settings, device)

3.2 Customising Simulation Parameters

SIMPA enables easy customization of simulation parameters according to the criterion usability.
Awide range of simulation outputs can be achieved by simply changing one parameter, such as
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the spacing or image reconstruction bandpass filter (Fig. 6), with the latter achieved, for example,
by setting Tags.RECONSTRUCTION_PERFORM_BANDPASS_FILTERING in the recon-
struction module settings to True instead of False as it is by default. To showcase this, a
simulation pipeline was executed with three different spacings (0.15, 0.35, and 0.55 mm) and
reconstructed with the default settings (delay-and-sum), with an applied bandpass filter, with a
“differential mode” (delay-and-sum of the first derivative of the time signal), and finally, with a
customized set of hyperparameters. For the bandpass filter, a Tukey window71 with an alpha
value of 0.5 and 1 kHz as high-pass and 8 MHz as low-pass frequencies was applied. The set
of hyperparameters was chosen such that the result is most similar to the underlying initial pres-
sure. For different phantom designs, illumination geometries, or detection geometries, a different
choice of parameters might be preferable.

The overall run time for these simulations was about 480 s. The run times of the optical and
acoustic forward modules as well as the image reconstruction for the specified hardware are
reported in Table 3. Only the mean for the different parameter combinations of these times are
reported; however, an extensive listing of the run times of each module in each pipeline can be
found in Tables S1-S4 in the Supplementary Material.

3.3 Rapid Prototyping with Multiple Pipelines

SIMPA facilitates simulation of phantom imaging, which is highly relevant for experimental
planning and rapid prototyping. To demonstrate this, a pipeline was executed with two

Fig. 6 Simulation results with different hyperparameter configurations using a digital device twin of
the MSOT Acuity Echo (iThera Medical GmbH, Munich, Germany). The results are shown for three
spacings (Δx ) in three rows (0.15, 0.35, and 0.55 mm), and from left to right, the columns show the
following: (a) the ground truth initial pressure distribution; (b) the default pipeline with delay-and-
sum reconstruction of the time-series pressure data (pressure mode); (c) delay-and-sum recon-
struction with a bandpass filter (Tukey window with an alpha value of 0.5 and 1 kHz as high-pass
and 8 MHz as low-pass frequencies) applied to the time-series data; (d) delay-and-sum recon-
struction with the first derivative of the time-series data (differential mode); and (e) delay-and-sum
reconstruction with a bandpass filter with the same configuration as in (c), the first derivative of
the time-series data and envelope detection.

Table 3 Mean run times of the optical and acoustic forward modules and image reconstruction for
simulation pipelines with different parameter combinations in seconds (s). The mean time was
calculated from the run times of the pipelines: default, bandpass filter, differential mode, and
custom. The times are reported for three different spacings: 0.15, 0.35, and 0.55 mm.

Spacing (mm)
Optical modeling

time (s)
Acoustic modeling

time (s)
Image reconstruction

time (s)

0.55 1.19 7.96 2.22

0.35 2.80 8.28 2.21

0.15 27.77 11.62 2.22
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commercial PAI systems (MSOT Acuity Echo and the MSOT InVision 256-TF devices, iThera
Medical GmbH). For each device, the optical and acoustic forward simulations were executed
only once. With the produced time-series data as a result, for each device, two different recon-
struction adapters were added to the pipeline to reconstruct the final PA images. Currently, the
following reconstruction algorithms are supported: delay-and-sum,29 delay-multiply-and-sum,31

signed delay-multiply-and-sum,72 and time reversal.73 The results that are shown in Fig. 7 are
reconstructed with delay-and-sum or time reversal. The overall run time for these simulations
was about 320 s with a spacing of 0.15 mm.

Not only does the user have the ability to easily exchange devices and module adapters in the
simulation pipeline but the pipeline can also be designed in such a way that the simulation is
executed efficiently. The optical and acoustic forward models had to be simulated only once for
each device, and the two image reconstruction algorithms were applied afterward, demonstrating
the modularity of SIMPA.

3.4 Generating Diverse Tissue Geometries

Awide range of in silico tissue models can be generated using SIMPA. For this, we specifically
showcase tissue structure distributions aligned to different use cases from the literature.
Figure 8(a) shows an arrangement of different geometrical shapes such as cuboids and spheres
as used by Cox et al.69 In Fig. 8(b), a cylindrical phantom with two absorbing inclusions, com-
parable to the one presented by Hacker et al.,74 is generated. Avolume containing complex vessel
trees can easily be generated similar to the human lung vessel dataset acquired from computed
tomography used by Bench et al.14 as shown in Fig. 8(c). Lastly, realistic tissue models such as a
human forearm used by Gröhl et al.13 are possible by combining the previously mentioned struc-
tures, which are shown in Fig. 8(d). The overall run time for these simulations was about 10 s.

Fig. 7 Demonstration of the versatility of the toolkit. From the same tissue phantom, two initial
pressure distributions and time-series data are simulated using completely different PA digital
device twin [in this case, the MSOT Acuity Echo and the MSOT InVision 256-TF (iThera
Medical GmbH, Munich, Germany)]. The simulated time-series data are then reconstructed using
different reconstruction algorithms (time reversal and delay-and-sum), resulting in four distinct
simulation results.
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3.5 Simulating Realistic Photoacoustic Images

Being as realistic as possible is key to many applications in which simulated data are needed.
Nevertheless, it has been reported multiple times that a domain gap exists between simulated and
real PA images.3–5,14 By its modular nature, SIMPA can be used to simulate PA images with a
high degree of realism. To visually demonstrate the capabilities of the current version of SIMPA
in this regard, an image of a human forearm was recorded from a volunteer using the MSOT
Acuity Echo. The measurement was conducted within a healthy volunteer study that was
approved by the ethics committee of the medical faculty of Heidelberg University under refer-
ence number S-451/2020, and the study is registered with the German Clinical Trials Register
under reference number DRKS00023205. Based on this real image, the model-based, as well as
the segmentation-based volume creators were used to synthetically recreate this image with
SIMPA to compare the results with the original image (Fig. 9).

For the segmentation-based volume creator, the original image was manually annotated, and
the different classes were assigned tissue properties by trial and error, so the image as a whole
looks as close to the original image as possible. Using the model-based volume creator, the
volume of the original image was recreated using the basic geometrical structures as described
in Sec. 2.4. It should be mentioned that the model-based recreation of high-quality images, such
as the one depicted in Fig. 9, is relatively time-consuming as it requires substantial manual inter-
action. To address this resource bottleneck and thus pave the way for the generation of large
(training) data sets as required by modern machine learning algorithms, SIMPA also offers
the option of generating the simulation volumes from predefined sets of rules (see Sec. 3.6).
The results show that both of these methods can lead to images that closely resemble the real
PA image. The overall run time for these simulations was about 80 s.

(a) Real image (b) Segmentation-based image (c) Model-based image a.u.

Fig. 9 Comparison of simulations using SIMPA with a real PA image of a human forearm. From
left to right, the panels show: (a) the normalized reconstructed PA image of a real human fore-
arm acquired with the MSOT Acuity Echo; (b) a simulated image using SIMPA’s segmentation-
based volume creator with a reference segmentation map of (a); and (c) a simulated image
using SIMPA’s model-based volume creator. For both volume creators, a digital device twin of
the MSOT Acuity Echo was used. For easier comparison, all images were normalized from 0 to
1 in arbitrary units.

(a) Geometrical shapes (b) Phantom (c) Vessel tree (d) Forearm model

Fig. 8 Examples of chromophore distributions that can be created using the SIMPA volume gen-
eration module. (a) Arbitrarily placed and oriented geometrical structures, i.e., a tube (green), a
sphere (blue), a parallelepiped (yellow), and a cuboid (red); (b) a cylindrical phantom (yellow) with
two tubular inclusions (red); (c) a vessel tree with high blood oxygen saturation (red) and a vessel
tree with lower blood oxygen saturation (blue); and (d) a forearm model including the epidermis
(brown), dermis (pink), fat (yellow), vessels (red), and a bone (gray).
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3.6 Generating a Diverse Dataset of Photoacoustic Images

For the training and the generalization ability of a complex deep learning model, a large and
diverse dataset is crucial. In PAI, however, a vast amount of real PA images with ground truth
annotations for their underlying properties such as optical absorption in vivo is not feasible. To
remedy this, SIMPA can be used to generate an arbitrarily large dataset of simulated PA images
with a degree of realism that can be seen in the previous section. In Fig. 10, 12 diverse PA images
were simulated using randomized tissue mimicking settings of SIMPA’s model-based volume
creator.

These randomized settings allow for controlled distributions of, for example, amount of ves-
sels, vessel locations, skin curvature, and blood oxygen saturations. The overall run time for the
generation of these 12 images was about 570 s with a spacing of 0.15 mm. An investigation of
adverse programming effects in SIMPA when generating such a dataset can be found in the
Supplementary Material.

4 Conclusion and Discussion

In this work, we present SIMPA, an open-source software library that allows for the simulation
and image processing of optical and acoustic imaging modalities taking into account user-spe-
cific requirements common in the community. Core to the toolkit is its modular design, which
allows for a flexible definition of simulation and processing pipelines. To this end, SIMPA
defines abstract interfaces for the necessary forward modeling steps that allow for the integration
of arbitrary third-party simulation tools in addition to modules already implemented in SIMPA.
It already includes interfaces to toolkits that are commonly used in the field, such as MCX24 and
k-Wave,28 is open-source, and is actively maintained and improved. Furthermore, a strong
emphasis has been placed on tissue modeling as the basis for each simulation. SIMPA provides
methods and functionalities to generate numerical tissue models that incorporate optical and
acoustic tissue properties by means of a dynamic definition of molecular compositions.
Using PAI as an example, we show the simulation results for several typical SIMPA use cases.
By generating a diverse dataset of PA images, we demonstrate that SIMPA can create simulations
with a high degree of flexibility suitable for, e.g., training of deep learning algorithms.

The images simulated with SIMPA look realistic (Fig. 9); however, because of the vast num-
ber of modeling assumptions both within SIMPA and within the used forward models, through-
out all forward modeling steps, there remains a domain gap between simulated and experimental
measurements. Steps toward increasing the realism of simulated images have already been taken
by including various noise models and diverse tissue geometries such as the deformability of
structures. This enables horizontal layers to more closely resemble the deformation of skin and
vessels can thus also be squeezed analogously to applying pressure with an imaging device.

a.u.
0.0

1.0

0.8

0.4

0.2

0.6

Fig. 10 Example of a diverse dataset of simulated PA images. With randomized settings of
amount, location, size, shape, and blood oxygen saturation of vessels as well as the curvature
of the skin, 12 diverse PA images were generated and normalized between 0 and 1 in arbitrary
units (a.u.). The spacing of all images was 0.15 mm. For all simulations, a digital device twin of the
MSOT Acuity Echo was used.
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Despite these efforts, computational modeling inaccuracies such as device-specific artifacts or a
heterogeneous background with, e.g., varying blood volume fraction and oxygen saturation are
not yet included.

SIMPA’s modular design also facilitates the exchangeability of simulation algorithms with-
out affecting the integrity of the simulation pipeline. Because of the modular design, arbitrary
pipeline elements can be added to the simulation. SIMPA provides example scripts to achieve
this and comprises an extensive test suite that incorporates unit tests for the code, as well as
manual test scripts that can be used to test the integration of forward models. Analysis of over
100 subsequent runs shows that sequential simulations do not affect each other; the detailed
results can be found in the Supplementary Material.

Decreasing the potential for user error and lowering the barrier to entry for PA simulation is
one of the core ideas behind SIMPA; hence, we show here the simulation and customization of
specific use cases. SIMPA itself also contains many example scripts and documentation. The
SIMPA developers try to ensure high code quality through its software development life-cycle,
which includes the presence of tests, as well as internal code reviews before changes are inte-
grated. Using SIMPA lowers the barrier of entry into the field of PA image simulation by taking
over many of the researchers’ responsibilities in navigating the respective simulation tools. At
the same time, this increased ease of use comes at the cost of a reduced amount of flexibility, as
users are limited to the SIMPA interface and do not directly control the third-party tools. Despite
the high level of abstraction, there is still room for user errors that can potentially be hard to
identify. For support, researchers can open issues in the SIMPA GitHub repository and can also
join the SIMPA Slack channel upon request.

Two major contributions of this work are the model-based volume creator that enables the
user to create diverse spatial distributions of tissue properties and the segmentation-based vol-
ume creator that loads segmentation masks. The model-based approach includes features such as
the simulation of partial volume effects and the rendering of the model in different spacings.
Furthermore, it is straightforward to create diverse tissue geometries using random variables
during the creation process (see Sec. 3.6). SIMPA provides many utility functions that make
the model-based volume creator easy to use. Rendering the scene description into a voxelized
grid, however, can become computationally expensive for small spacings, and the user is limited
by the SIMPA-defined structure primitives (unless they want to implement their own
Structure classes). The segmentation-based approach addresses this issue by featuring great
flexibility in the shapes that it can simulate. Moreover, the creation of the voxelized grid is
generally much faster. On the negative, the spacing of the simulation is limited to the spacing
of the segmentation, which can lead to hard edges and staircase artifacts.

In addition to the signal simulation steps detailed in this paper, SIMPA also provides post-
processing modules for image processing. SIMPA currently provides two algorithms: (1) an
iterative qPAI algorithm, implemented based on the publication of Cox et al. from 200669

(cf. Fig. S3 in the Supplementary Material 4.1), and (2) a linear spectral unmixing algorithm
based on singular value decomposition (cf. Fig. S4 in the Supplementary Material 4.2).

Future work will include supporting more forward models, such as numerical approxima-
tions of the radiative transfer equation for photon transport in biological tissue;75 supporting
other optical imaging modalities such as multi-/hyperspectral diffuse reflectance imaging; the
addition of more reconstruction algorithms; the capabilities for ultrasound simulation; and the
provision of more digital commercial PA devices from a variety of vendors including distinct
artifacts that are introduced by different devices. The IPASC is working on a standardiszed data
format for PAI (Ref. 48) and has a digital device definition embedded in its format. They are
currently planning to integrate support for their definition of the devices into MCX (available at:
https://github.com/IPASC/PACFISH/issues/15, last visited March 22, 2022). Once this is
achieved, we will support arbitrary illumination geometries within SIMPA. Furthermore, the
variety of structures that can be used will be increased by including heterogeneous backgrounds
that more closely represent the irregularities within tissue as well as larger, more complex, and
connected structures that can represent organs or tumors. A great current challenge is the steep
increase of needed computational resources, especially RAM and hard drive space, when
decreasing the spacing of the computational grid. To this end, optimization strategies will be
investigated to minimize the achievable spacing for a given hardware configuration. We only
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tested SIMPAwith NVIDIA GPUs for GPU acceleration, but we plan to support a wider variety
of computing platforms in the future. We are currently also working toward an interactive visual-
isation tool for the data and the addition of a graphical user interface for SIMPA, which could
further flatten the learning curve. Other interesting avenues of future work could be the con-
sideration of heterogeneous molecular distributions within the structures or the integration of
state-of-the-art deep learning-based processing components or module adapters.

Disclosures

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Acknowledgments

The authors would like to thank Minu D. Tizabi for proofreading the manuscript. This project
received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme through the ERC Starting Grant
COMBIOSCOPY under Grant Agreement No. ERC-2015-StG-37960 and through the ERC
Consolidator Grant NEURAL SPICING under Grant Agreement No. 101002198.

Code, Data, and Materials Availability

The experiments conducted in this paper do not require any external data. The latest release of
the SIMPA code can be downloaded from GitHub (https://github.com/IMSY-DKFZ/simpa, last
visited 22 March 2022). The code used to generate the results and figures is available in a GitHub
repository (https://github.com/IMSY-DKFZ/simpa_paper_experiments).

References

1. R. H. Wilson et al., “Review of short-wave infrared spectroscopy and imaging methods for
biological tissue characterization,” J. Biomed. Opt. 20(3), 030901 (2015).

2. E. Macé et al., “Functional ultrasound imaging of the brain,” Nat. Methods 8(8), 662–664
(2011).

3. C. Yang et al., “Review of deep learning for photoacoustic imaging,” Photoacoustics
21, 100215 (2021).

4. A. Hauptmann and B. T. Cox, “Deep learning in photoacoustic tomography: current
approaches and future directions,” J. Biomed. Opt. 25(11), 112903 (2020).

5. J. Gröhl et al., “Deep learning for biomedical photoacoustic imaging: a review,”
Photoacoustics 22, 100241 (2021).

6. T. Sowers, H. Yoon, and S. Emelianov, “Investigation of light delivery geometries for photo-
acoustic applications using Monte Carlo simulations with multiple wavelengths, tissue
types, and species characteristics,” J. Biomed. Opt. 25(1), 016005 (2020).

7. L. A. Ayala et al., “Band selection for oxygenation estimation with multispectral/hyperspec-
tral imaging,” arXiv:1905.11297v2 (2021).

8. B. Cox, J. Laufer, and P. Beard, “The challenges for quantitative photoacoustic imaging,”
Proc. SPIE 7177, 717713 (2009).

9. S. Tzoumas et al., “Eigenspectra optoacoustic tomography achieves quantitative blood
oxygenation imaging deep in tissues,” Nat. Commun. 7, 12121 (2016).

10. T. Kirchner, J. Gröhl, and L. Maier-Hein, “Context encoding enables machine learning-
based quantitative photoacoustics,” J. Biomed. Opt. 23(5), 056008 (2018).

11. C. Cai et al., “End-to-end deep neural network for optical inversion in quantitative photo-
acoustic imaging,” Opt. Lett. 43(12), 2752–2755 (2018).

12. H. Lan et al., “Y-net: hybrid deep learning image reconstruction for photoacoustic tomog-
raphy in vivo,” Photoacoustics 20, 100197 (2020).

13. J. Gröhl et al., “Learned spectral decoloring enables photoacoustic oximetry,” Sci. Rep. 11,
6565 (2021).

Gröhl et al.: SIMPA: an open-source toolkit for simulation and image processing for photonics and acoustics

Journal of Biomedical Optics 083010-17 August 2022 • Vol. 27(8)

https://github.com/IMSY-DKFZ/simpa
https://github.com/IMSY-DKFZ/simpa
https://github.com/IMSY-DKFZ/simpa_paper_experiments
https://doi.org/10.1117/1.JBO.20.3.030901
https://doi.org/10.1038/nmeth.1641
https://doi.org/10.1016/j.pacs.2020.100215
https://doi.org/10.1117/1.JBO.25.11.112903
https://doi.org/10.1016/j.pacs.2021.100241
https://doi.org/10.1117/1.JBO.25.1.016005
https://doi.org/10.1117/12.806788
https://doi.org/10.1038/ncomms12121
https://doi.org/10.1117/1.JBO.23.5.056008
https://doi.org/10.1364/OL.43.002752
https://doi.org/10.1016/j.pacs.2020.100197
https://doi.org/10.1038/s41598-021-83405-8


14. C. Bench, A. Hauptmann, and B. T. Cox, “Toward accurate quantitative photoacoustic
imaging: learning vascular blood oxygen saturation in three dimensions,” J. Biomed.
Opt. 25(8), 085003 (2020).

15. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
16. Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt.

21(6), 061007 (2016).
17. J. Gröhl, “Data-driven quantitative photoacoustic imaging,” PhD Thesis, Heidelberg

University (2021).
18. B. Dogdas et al., “Digimouse: a 3d whole body mouse atlas from CT and cryosection data,”

Phys. Med. Biol. 52(3), 577 (2007).
19. S. Park et al., “Realistic three-dimensional optoacoustic tomography imaging trials using the

VICTRE breast phantom of FDA (conference presentation),” Proc. SPIE 11240, 112401H
(2020).

20. Y. Lou et al., “Generation of anatomically realistic numerical phantoms for photoacoustic
and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).

21. M. I. Iacono et al., “MIDA: a multimodal imaging-based detailed anatomical model of the
human head and neck,” PLoS One 10(4), e0124126 (2015).

22. S. Antholzer, M. Haltmeier, and J. Schwab, “Deep learning for photoacoustic tomography
from sparse data,” Inverse Prob. Sci. Eng. 27(7), 987–1005 (2019).

23. S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues
to photoacoustic signal generation,” Photoacoustics 2(4), 137–142 (2014).

24. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media
accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).

25. A. A. Leino, A. Pulkkinen, and T. Tarvainen, “ValoMC: a Monte Carlo software and Matlab
toolbox for simulating light transport in biological tissue,” OSA Continuum 2(3), 957–972
(2019).

26. H. Dehghani et al., “Near infrared optical tomography using NIRFAST: algorithm for
numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6),
711–732 (2009).

27. M. Schweiger and S. R. Arridge, “The toast++ software suite for forward and inverse
modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).

28. B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction
of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).

29. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed
tomography,” Phys. Rev. E 71(1), 016706 (2005).

30. S. Park et al., “Adaptive beamforming for photoacoustic imaging,” Opt. Lett. 33(12), 1291–
1293 (2008).

31. G. Matrone et al., “The delay multiply and sum beamforming algorithm in ultrasound
b-mode medical imaging,” IEEE Trans. Med. Imaging 34(4), 940–949 (2015).

32. H. Grün et al., “Photoacoustic tomography using a fiber based Fabry-Perot interferometer as
an integrating line detector and image reconstruction by model-based time reversal method,”
Proc. SPIE 6631, 663107 (2007).

33. A. Hauptmann et al., “Model-based learning for accelerated, limited-view 3-D photoacous-
tic tomography,” IEEE Trans. Med. Imaging 37(6), 1382–1393 (2018).

34. Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacous-
tic tomography. I. Planar geometry,” IEEE Trans. Med. Imaging 21(7), 823–828 (2002).

35. M. Jaeger et al., “Fourier reconstruction in optoacoustic imaging using truncated regularized
inverse k-space interpolation,” Inverse Prob. 23(6), S51 (2007).

36. N. Akhlaghi et al., “Multidomain computational modeling of photoacoustic imaging:
verification, validation, and image quality prediction,” J. Biomed. Opt. 24(12), 121910
(2019).

37. S. Agrawal et al., “Modeling combined ultrasound and photoacoustic imaging: simulations
aiding device development and artificial intelligence,” Photoacoustics 24, 100304 (2021).

38. C. Sowmiya and A. K. Thittai, “Simulation of photoacoustic tomography (PAT) system in
comsol and comparison of two popular reconstruction techniques,” Proc. SPIE 10137,
101371O (2017).

Gröhl et al.: SIMPA: an open-source toolkit for simulation and image processing for photonics and acoustics

Journal of Biomedical Optics 083010-18 August 2022 • Vol. 27(8)

https://doi.org/10.1117/1.JBO.25.8.085003
https://doi.org/10.1117/1.JBO.25.8.085003
https://doi.org/10.1098/rsfs.2011.0028
https://doi.org/10.1117/1.JBO.21.6.061007
https://doi.org/10.1088/0031-9155/52/3/003
https://doi.org/10.1117/12.2552380
https://doi.org/10.1117/1.JBO.22.4.041015
https://doi.org/10.1371/journal.pone.0124126
https://doi.org/10.1080/17415977.2018.1518444
https://doi.org/10.1016/j.pacs.2014.09.001
https://doi.org/10.1364/OE.17.020178
https://doi.org/10.1364/OSAC.2.000957
https://doi.org/10.1002/cnm.1162
https://doi.org/10.1117/1.JBO.19.4.040801
https://doi.org/10.1117/1.3360308
https://doi.org/10.1103/PhysRevE.71.016706
https://doi.org/10.1364/OL.33.001291
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1117/12.729475
https://doi.org/10.1109/TMI.2018.2820382
https://doi.org/10.1109/TMI.2002.801172
https://doi.org/10.1088/0266-5611/23/6/S05
https://doi.org/10.1117/1.JBO.24.12.121910
https://doi.org/10.1016/j.pacs.2021.100304
https://doi.org/10.1117/12.2254450


39. C. Fadden and S.-R. Kothapalli, “A single simulation platform for hybrid photoacoustic and
RF-acoustic computed tomography,” Appl. Sci. 8(9), 1568 (2018).

40. S. E. Bohndiek et al., “IPASC: a community-driven consensus-based initiative towartandar-
dizationion in photoacoustic imaging,” in IEEE Int. Ultrason. Symp., IEEE, pp. 1–4 (2020).

41. Python Software Foundation, http://www.python.org, (accessed 22 March 2022).
42. S. Chacon and B. Straub, Pro Git, Apress, Berlin, Germany (2014).
43. T. Preston-Werner, Semantic Versioning 2.0.0, https://semver.org/ (accessed 22 March

2022).
44. Python Enhancement Proposals, https://www.python.org/dev/peps/pep-0008/ (accessed 22

March 2022).
45. M. Folk et al., “An overview of the HDF5 technology suite and its applications,” in Proc.

EDBT/ICDT Workshop Array Databases, pp. 36–47 (2011).
46. A. Collette, Python and HDF5, O’Reilly, Sebastopol, California (2013).
47. S. Bohndiek, “Addressing photoacoustics standards,” Nat. Photonics 13(5), 298–298

(2019).
48. International Photoacoustic Standardisation Consortium, https://www.ipasc.science/

documents/20210916_IPASC_Format_V2.pdf (accessed 22 March 2022).
49. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11),

R37 (2013).
50. S. Prahl and S. Jacques, https://omlc.org/ (accessed 22 March 2022).
51. P. Hasgall et al., “IT’IS database for thermal and electromagnetic parameters of biological

tissues,” Version 4.0, May 15, 2018. doi: 10.13099/VIP21000-04-0, www.itis.ethz.ch/
database.

52. S. Kedenburg et al., “Linear refractive index and absorption measurements of nonlinear
optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2,
1588–1611 (2012).

53. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt.
Express 17, 5698–5710 (2009).

54. A. Antunes et al., “Optical properties on bone analysis: an approach to biomaterials,”
Proceedings 27(1), 36 (2019).

55. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous,
and muscle tissues: a review,” J. Innovative Opt. Health Sci. 4(01), 9–38 (2011).

56. S. Alaluf et al., “Ethnic variation in melanin content and composition in photoexposed and
photoprotected human skin,” Pigment Cell Res. 15(2), 112–118 (2002).

57. P. Timmins and J. Wall, “Bone water,” Calcified Tissue Res. 23(1), 1–5 (1977).
58. R. Forbes et al., “The composition of the adult human body as determined by chemical

analysis,” J. Biol. Chem. 203(1), 359–366 (1953).
59. Z. Molnar and M. Nemeth, “Monitoring of tissue oxygenation: an everyday clinical chal-

lenge,” Front. Med. 4, 247 (2018).
60. E. B. Merrick and T. J. Hayes, “Continuous, non-invasive measurements of arterial blood

oxygen levels,” Hewlett-Packard J. 28(2), 2–9 (1976).
61. G. Yang and K. C. Chung, “Ulnar artery to superficial arch bypass with a vein graft,” in

Operative Techniques: Hand and Wrist Surgery, K. C. Chung, Ed., pp. 732–737, Elsevier
Health Sciences, Amsterdam, Netherlands (2018).

62. M. G. Hubmer et al., “The posterior interosseous artery in the distal part of the forearm.
Is the term ‘recurrent branch of the anterior interosseous artery’justified?” Br. J. Plast. Surg.
57(7), 638–644 (2004).

63. P. Oltulu et al., “Measurement of epidermis, dermis, and total skin thicknesses from six
different body regions with a new ethical histometric technique,” Turkish J. Plast. Surg.
26(2), 56 (2018).

64. J. B. Christensen et al., “A study of the interosseous distance between the radius and ulna
during rotation of the forearm,” Anat. Rec. 160(2), 261–271 (1968).

65. C. Goh et al., “Subcutaneous veins depth measurement using diffuse reflectance images,”
Opt. Express 25(21), 25741–25759 (2017).

66. M. A. Galarreta-Valverde et al., “Three-dimensional synthetic blood vessel generation using
stochastic l-systems,” Proc. SPIE 8669, 86691I (2013).

Gröhl et al.: SIMPA: an open-source toolkit for simulation and image processing for photonics and acoustics

Journal of Biomedical Optics 083010-19 August 2022 • Vol. 27(8)

https://doi.org/10.3390/app8091568
https://doi.org/10.1109/IUS46767.2020.9251362
http://www.python.org
http://www.python.org
http://www.python.org
https://semver.org/
https://semver.org/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://doi.org/10.1038/s41566-019-0417-3
https://www.ipasc.science/documents/20210916_IPASC_Format_V2.pdf
https://www.ipasc.science/documents/20210916_IPASC_Format_V2.pdf
https://www.ipasc.science/documents/20210916_IPASC_Format_V2.pdf
https://www.ipasc.science/documents/20210916_IPASC_Format_V2.pdf
https://www.ipasc.science/documents/20210916_IPASC_Format_V2.pdf
https://doi.org/10.1088/0031-9155/58/11/R37
https://omlc.org/
https://omlc.org/
www.itis.ethz.ch/database
www.itis.ethz.ch/database
www.itis.ethz.ch/database
www.itis.ethz.ch/database
www.itis.ethz.ch/database
https://doi.org/10.1364/OME.2.001588
https://doi.org/10.1364/OE.17.005698
https://doi.org/10.1364/OE.17.005698
https://doi.org/10.3390/proceedings2019027036
https://doi.org/10.1142/S1793545811001319
https://doi.org/10.1034/j.1600-0749.2002.1o071.x
https://doi.org/10.1007/BF02012759
https://doi.org/10.1016/S0021-9258(19)52646-1
https://doi.org/10.3389/fmed.2017.00247
https://doi.org/10.1016/j.bjps.2004.06.011
https://doi.org/10.4103/tjps.TJPS_2_17
https://doi.org/10.1002/ar.1091600212
https://doi.org/10.1364/OE.25.025741
https://doi.org/10.1117/12.2007532


67. R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, John Wiley &
Sons, Hoboken, New Jersey (2016).

68. B. E. Treeby et al., “Modeling nonlinear ultrasound propagation in heterogeneous media
with power law absorption using AK-space pseudospectral method,” J. Acoust. Soc. Am.
131(6), 4324–4336 (2012).

69. B. T. Cox et al., “Two-dimensional quantitative photoacoustic image reconstruction of
absorption distributions in scattering media by use of a simple iterative method,” Appl.
Opt. 45, 1866–1875 (2006).

70. N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag. 19(1),
44–57 (2002).

71. J. W. Tukey, “An introduction to the calculation of numerical spectrum analysis,” Spectra
Analysis of Time Series, pp. 25–46 (1967).

72. T. Kirchner et al., “Signed real-time delay multiply and sum beamforming for multispectral
photoacoustic imaging,” J. Imaging 4(10), 121 (2018).

73. B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic
media using time reversal,” Inverse Prob. 26(11), 115003 (2010).

74. L. Hacker et al., “A copolymer-in-oil tissue-mimicking material with tuneable acoustic and
optical characteristics for photoacoustic imaging phantoms,” IEEE Trans. Med. Imaging
40(12), 3593–3603 (2021).

75. T. Tarvainen et al., “Utilising the radiative transfer equation in quantitative photoacoustic
tomography,” Proc. SPIE 10064, 100643E (2017).

Janek Gröhl received his PhD from the University of Heidelberg in April 2021. In 2020,
he worked as a postdoctoral researcher at the German Cancer Research Center (DKFZ) and
he was working as a research associate at the Cancer Research UK Cambridge Institute in
2021. He was awarded the Walter Benjamin Fellowship by the German Research Foundation
(DFG) in 2022. He conducts research on data-driven methods for image processing and signal
quantification in photoacoustic imaging.

Kris K. Dreher received his MSc degree in physics from the University of Heidelberg in 2020.
He is currently pursuing a PhD at the division of Intelligent Medical Systems (IMSY), DKFZ,
and does research in deep learning-based domain adaptation methods to tackle the inverse prob-
lems of photoacoustic imaging.

Melanie Schellenberg received her MSc degree in physics from the University of Heidelberg in
2019. She is currently pursuing an interdisciplinary PhD in computer science at the division of
IMSY, DKFZ, and aiming for quantitative photoacoustic imaging with a learning-to-simulate
approach.

Tom Rix received his MRes degree in medical physics and biomedical engineering from the
University College London in 2020. He submitted his MSc thesis in applied computer sciences at
Heidelberg University in January 2022, where he worked on photoacoustic image synthesis with
deep learning for highly realistic photoacoustic image simulations. He is going to pursue a PhD
at the Division of IMSY, DKFZ, in quantitative photoacoustic imaging.

Niklas Holzwarth received his MSc degree in physics from the University of Heidelberg in
2020. He is currently pursuing an interdisciplinary PhD in computer science at the division
of IMSY, DKFZ investigating a sensorless 3D photoacoustic approach, referred to as “tattoo
tomography.”

Patricia Vieten received her BSc degree in physics from Heidelberg University in 2019. She is
currently pursuing her MSc degree in physics at the Division of IMSY, DKFZ, and is working
on semantic segmentation of multispectral photoacoustic images using deep learning-based
methods.

Leonardo Ayala received his MSc degree in physics from Balseiro Institute in 2016, Argentina.
He is currently pursuing a PhD at the division of IMSY, DKFZ, and does research in deep learn-
ing-based translational biophotonics.

Gröhl et al.: SIMPA: an open-source toolkit for simulation and image processing for photonics and acoustics

Journal of Biomedical Optics 083010-20 August 2022 • Vol. 27(8)

https://doi.org/10.1121/1.4712021
https://doi.org/10.1364/AO.45.001866
https://doi.org/10.1364/AO.45.001866
https://doi.org/10.1109/79.974727
https://doi.org/10.3390/jimaging4100121
https://doi.org/10.1088/0266-5611/26/11/115003
https://doi.org/10.1109/TMI.2021.3090857
https://doi.org/10.1117/12.2249310


Sarah Bohndiek received her PhD at University College London in 2008 and then worked in
both the UK (at Cambridge) and the USA (at Stanford) as a postdoctoral fellow in molecular
imaging. Since 2013, she has been a group leader at the University of Cambridge and was
appointed as full professor of Biomedical Physics in 2020. She was recently awarded the
CRUK Future Leaders in Cancer Research Prize and SPIE Early Career Achievement Award.

Alexander Seitel is a computer scientist currently working as a group lead and deputy head at
DKFZ in Heidelberg and holds a doctorate in medical informatics from the University of
Heidelberg. His research focusses on computer-assisted interventions and novel imaging meth-
odologies aiming to improve interventional healthcare. In this area, he conducted various
international projects at DKFZ and during his two-year postdoctoral fellowship at the
University of British Columbia, Vancouver, Canada.

Lena Maier-Hein is a full professor at Heidelberg University (Germany) and division head at
the DKFZ. She is managing director of the National Center for Tumor Diseases (NCT)
Heidelberg and of the DKFZ Data Science and Digital Oncology cross-topic program. Her
research concentrates on machine learning-based biomedical image analysis with a specific
focus on surgical data science, computational biophotonics, and validation of machine learning
algorithms.

Gröhl et al.: SIMPA: an open-source toolkit for simulation and image processing for photonics and acoustics

Journal of Biomedical Optics 083010-21 August 2022 • Vol. 27(8)


