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ABSTRACT. Significance: Mueller-matrix polarimetry is a powerful method allowing for the
visualization of malformations in biological tissues and quantitative evaluation of
alterations associated with the progression of various diseases. This approach, in
fact, is limited in observation of spatial localization and scale-selective changes in
the poly-crystalline compound of tissue samples.

Aim: We aimed to improve the Mueller-matrix polarimetry approach by implement-
ing the wavelet decomposition accompanied with the polarization-singular process-
ing for express differential diagnosis of local changes in the poly-crystalline structure
of tissue samples with various pathology.

Approach: Mueller-matrix maps obtained experimentally in transmitted mode are
processed utilizing a combination of a topological singular polarization approach and
scale-selective wavelet analysis for quantitative assessment of the adenoma and
carcinoma histological sections of the prostate tissues.

Results: A relationship between the characteristic values of the Mueller-matrix
elements and singular states of linear and circular polarization is established within
the framework of the phase anisotropy phenomenological model in terms of linear
birefringence. A robust method for expedited (up to ∼15 min) polarimetric-based
differential diagnosis of local variations in the poly-crystalline structure of tissue
samples containing various pathology abnormalities is introduced.

Conclusions: The benign and malignant states of the prostate tissue are identified
and assessed quantitatively with a superior accuracy provided by the developed
Mueller-matrix polarimetry approach.
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1 Introduction
In terms of biomedical optical imaging, the biological tissues are conditionally divided into two
major groups.1 The first group contains tissues that highly scatter the light, e.g., skin, brain,
sclera, blood, and vessel wall, whereas the second one consists of weakly scattering or nearly
transparent tissues, such as cornea, eye lens, and thin histological sections of various types of
biological tissues. Therefore, the optical properties of tissues in these groups are based, respec-
tively, on multiple scattering (diffusion) approximation and single scattering. Although the
approximation of photon diffusion is a cornerstone of optical imaging and near-infrared spec-
troscopy,2 it struggles to describe properly the propagation of polarized light in biological tissues
both in single and multiple scattering regimes. In addition, neither single scattering nor multiple
scattering approximations are not able to take into account the vector nature of the incident
polarization and/or scattered light waves.

The use of polarized light as an “instrumental probe” allows for assessing quantitatively
optical anisotropy of the poly-crystalline structure of biological fluids and tissues.3–9 The polari-
zation introscopy approach is well developed and known as Mueller-matrix (MM) microscopy in
transmitted mode.10–15 In fact, MM microscopy is an example of a successful synthesis of instru-
mental imaging polarimetry, diverse theoretical modeling, and image processing, utilizing the
regression model of optical anisotropy,11 logarithmic MM decomposition,12–15 Monte Carlo-
based assessment of polarized light conversion,14 and statistical analysis of MM images and
optical anisotropy maps.11,15 A considerable result of biological tissue screening, obtained with
the MM microscopy, is highly promising for the clinical application and pre-clinical studies of
the poly-crystalline structure of biological tissues.15 In particular, the possibility of obtaining
quantitative optical metrics to characterize the evolution of gastric tissue from a healthy state
through inflammation to cancer using MM microscopy of gastric biopsies, a regression model
of optical anisotropy, and statistical analysis of the obtained images has been demonstrated.11

Extension of the applied functional capabilities of MMmicroscopy ensured the application of the
differential MM formalism in the analysis of experimental data.12,13,15 On this basis, the maps of
depolarization and polarization of fixed uncolored histological sections of human skin tissues
were obtained. This allowed for mitigating the influence of tissue slice thickness variations and
increasing the contrast of polarimetric images for tissue diagnosis. In addition, the use of MM
microscopy data in combination with logarithmic decomposition and polarization Monte Carlo
simulation (within the framework of Mie theory approximation) opens a way for qualitative and
quantitative analysis of thin tissue sections to extract information about tissue microstructure,15,16

which is not available in conventional microscopy.
It should be noted that the analyzed polarization introscopy methods3–6,8,9,17,18 and MM10–16

microscopy facilitate obtaining and visual analysis of the topological and coordinate structure of
optical anisotropy maps of biological preparations. However, such analysis is somewhat subjec-
tive and does not provide a quantitative (objective) assessment of the severity or stages of path-
ology. Therefore, it is relevant to obtain a set of additional perceptible objective criteria (e.g.,
such as statistical moments of the first to fourth orders11,15) for MM characterization and differ-
entiation of pathological conditions that are coordinate (x; y) and scale (a) localized in the bio-
logical tissue layer. However, the topological information about the optical anisotropy of the
biological layer appears to be integrally averaged over all coordinates and geometric dimensions
of MM map images within a quantitative statistical analysis. For statistical quantification of
polarization-detected local variations in optical anisotropy parameters, statistical analysis of
scale-selective samples from MM data derived from polarization-singular19–34 and scale-selec-
tive35–40 wavelet analysis may be most appropriate.

The use of the polarization-singular approach defines the lines/surfaces at each point of a
polarization-inhomogeneous field with indefinite (singular) parameters.19–22,41 These points are
as follows:

(1) “C” states are the points of circular polarization of the field, where the polarization ellipse
degenerates into a circle and, accordingly, the direction of the main axis (azimuth) of
the polarization ellipse is uncertain;

(2) “L” states are the points with linear polarization degenerated in the direction of the rota-
tion of the electric vector.
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The basic principles of complex vector singular analysis are formulated and described in
details elsewhere,19,22–26 considered for optical fields,27–29 and practically implemented in bio-
medical imaging.30–34 Thus, for the first time, to our knowledge, biological tissues with a pres-
ence of linearly birefringence were characterized analytically in terms of the formation of linear
and circular polarization singularities.27–29 A significant predominance of L states in comparison
with C states is observed due to a more complex formation of circular polarization states and the
domination of optically isotropic constituents within biological tissue morphology. The charac-
teristic values of the fourth parameter of the Stokes vector were used as markers of polarization-
singular states: S4 ¼ 0 for L and S4 ¼ �1 for �C, whereas the distribution of polarization-
singular states numbers (NðLÞ, NðCÞ) was utilized to analyze images of biological tissue and
fluid samples. It has been demonstrated that the third (Z3) and fourth (Z4) statistical moments
characterizing the asymmetry and excess of the distributions NðS4 ¼ 0Þ and NðS4 ¼ �1Þ of
singular points are sensitive to pathological changes in the poly-crystalline component of
histological sections of biological tissues as well as in the poly-crystalline films of biological
fluids. Such changes can lead to the necrosis of biological tissue morphological structure. As a
result, the level of optical anisotropy decreases as well as the probability of S4 ¼ �1 for �C
formation. Quantitatively, this leads to an increase in the value of statistical moments Z3 and Z4.

The wavelet analysis is one of the main analytical methods for scale-selective estimation of
line ð1;2: : : ; ðn − 1Þ; nÞ pixel distributions qðxÞ of azimuth α, ellipticity β, and elements fik
of MM fFg.35,36 Utilizing the wavelet function, the distribution is expanded by the following
equation:

EQ-TARGET;temp:intralink-;e001;117;484qðxÞ ¼
X∞

a;b¼−∞
QabΩabðxÞ; (1)

where ΩabðxÞ ¼ Ωðax − bÞ is the basic function formed from the prototype function by offset b
and scaling a, and the coefficients of this expansion are determined as

EQ-TARGET;temp:intralink-;e002;117;419Qab ¼
Z

qðxÞΩabðxÞdx: (2)

The wavelet transform allows for revealing both low-frequency and high-frequency char-
acteristics of the distribution on the different coordinate scales (so-called “mathematical micro-
scope”). Continuing the analogy with a mathematical microscope, the shift parameter b fixes the
focal point of the microscope, the scale factor a shows the magnification, and the choice of the
base wavelet Ω is the optical properties of the microscope. In this study, the second derivative of
the Gaussian function–MHATwavelet is used. Such a function has a narrow energy spectrum and
two moments equal to zero (zero and first) that suit well for the analysis of complex signals:37–40

EQ-TARGET;temp:intralink-;e003;117;298ΩðtÞ ¼ d2

dt2
e−t

2∕2 ¼ ð1 − t2Þe−t2∕2: (3)

The wavelet transforms of the one-dimensional distribution qðxÞ result in a two-dimensional
array Qða; bÞ of amplitudes. The distribution of these values in space (a is the spatial scale, and
b is the spatial coordinate or localization) gives the information about the evolution of the relative
contribution of components of different scales to the distribution under consideration and is
called the spectrum of wavelet coefficients Qða; bÞ:

EQ-TARGET;temp:intralink-;e004;117;202Qða; bÞ ¼ 1

jaj1∕2
Z þ∞

−∞
qðxÞΩ

�
t − b
a

�
dt: (4)

The approbation of this approach demonstrates a significant improvement in the sensi-
tivity and accuracy of MM polarimetry in the differential diagnosis of inflammatory and onco-
logical conditions.30–36,42,43 However, the polarization-singular19–29,41,44,45 and scale-selective
wavelet37–40,46,47 approaches in biomedical diagnosis require further developments.

This study is aimed at identifying the analytical relationship between the polarization-
singular states of the object field of optically thin (non-depolarizing) layers obtained from bio-
logical tissues and the characteristic values of their MM images registered in transmitted light.
A robust method for expedited (up to 15 min) polarimetric-based differential diagnosis of
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local variations in the poly-crystalline structure of tissue samples containing various pathology
abnormalities is presented.

2 Materials and Methods

2.1 MM Imaging and Singular States
Determination of analytical relationships between the characteristic values of MM elements fik
of the biological layer and polarization-singular states of its object field is based on using linear
birefringence approximation for single light scattering by fibrillary networks of optically thin
(attenuation coefficient τ ≤ 0.01 ÷ 0.02) layers of biological tissue.

According to the birefringence model of spatially structured fibrillar networks,48–54 MM is
presented by the following expression:17,18

EQ-TARGET;temp:intralink-;e005;114;592fFg ¼

��������

1 0 0 0

0 f22 f23 f24
0 f32 f33 f34
0 f42 f43 f44

��������
; (5)

where

EQ-TARGET;temp:intralink-;e006;114;515fik ¼

8>>>>>>>><
>>>>>>>>:

f22 ¼ cos2 2ρþ sin2 2ρ cos δ;
f23 ¼ f32 ¼ cos 2ρ sin 2ρð1 − cos δÞ;
f33 ¼ sin2 2ρþ cos2 2ρ cos δ;
f42 ¼ −f24 ¼ sin 2ρ sin δ;
f34 ¼ −f43 ¼ cos 2ρ sin δ;
f44 ¼ cos δ:

(6)

Here, ρ is the direction of the optical axis, determined by the orientation of the fibril position
in the plane of the biological layer; δ ¼ 2π

λ Δnl defines the phase shift between linearly orthogo-
nal polarized components of the laser beam amplitude; λ is the wavelength; Δn characterises
birefringence; and l is the geometric layer thickness.

Based on Eqs. (5) and (6), it is possible to determine the diagnostically important relation-
ship between the characteristic values of MM elements and the formation conditions of “L” and
“Â� C” polarization-singular states formed by a birefringent fibrillar network (Table 1).

In fact, most of the matrix elements fik presented in Table 1 are azimuthally dependent on
the magnitude of the rotation of the sample plane relative to the irradiation direction.16–18

Therefore, for representative groups of biological tissue samples, it is necessary to use other
azimuthally invariant MM functionals, which are also presented in Table 1.

Using the information presented in Table 1, it is possible to determine a complete set of

“Â� C”-points ðδ ¼ � π
2
Þ on the image of a biological object. The coordinate position of each

point, in this way, corresponds to the conditions f44 ¼ f22 ¼ f33 ¼ 0. Also, it is possible to
determine a complete set of “L”-points ðδ ¼ 0Þ on the polarization image with arbitrary azimuths
ð0 ≤ ρ ≤ πÞ. Here, each point corresponds to the conditions f22 ¼ f33 ¼ 1. Finally, the
“orthogonal” L-points are determined. The formation of each L-point is associated with the
orthogonal orientations of the optical axes of birefringent fibrils as

EQ-TARGET;temp:intralink-;e007;114;198

�
f34 ¼ 0; L45;−45 − points for ρ ¼ � π

4

f34 ¼ �1; L0;90 − points for ρ ¼ 0; π
2

: (7)

For the “azimuthal-invariant” polarization-singular states

EQ-TARGET;temp:intralink-;e008;114;147

8>>><
>>>:

f44;F22;33 ¼ �1; L − points for δ ¼ πk; k ¼ 0; 1; : : : ; 0 ≤ ρ ≤ π

f44;F22;33 ¼ 0; C − points for δ ¼ 0.5πð2 kþÞ; k ¼ 0; 1; : : : ; 0 ≤ ρ ≤ π

F42;43;24;34 ¼ 0; L − points for δ ¼ πk; k ¼ 0; 1; : : : ; 0 ≤ ρ ≤ π

F42;43;24;34 ¼ �1; C − points for δ ¼ 0.5πð2 kþÞ; k ¼ 0; 1; : : : ; 0 ≤ ρ ≤ π

: (8)
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2.2 Tissue Samples
To validate the proposed method and show the possibility of determining the different types of
tumors, the histological sections of prostate and uterine tissue were obtained using microtome
with rapid freezing after radical prostatectomy. Four representative groups of obtained histologi-
cal biopsy sections of tumors were formed: group 1:– n ¼ 36 adenoma samples; group 2: n ¼ 36

moderately differentiated (3þ 3 on Gleason’s pattern scale) carcinoma samples; group 3: n ¼ 36

myoma samples; and group 4: n ¼ 36 uterine endometriosis samples.

Table 1 Relationships between the characteristic values of the elements and azimuthal invariants
of MM and polarization singularities.

f ik “L”-point ðδ ¼ 0; δ ¼ πÞ “+C”-point ðδ ¼ þπ∕2Þ “-C”-point ðδ ¼ −π∕2Þ

f 22 0 — þðρ ¼ þπ∕4Þ þðρ ¼ −π∕4Þ

1 þðδ ¼ 0Þ — —

−1 þðδ ¼ πÞ — —

f 23 ¼ f 32 0 þðρ ¼ �π∕4Þ — —

1 — þðρ ¼ þπ∕4Þ þðρ ¼ −π∕4Þ

−1 — þðρ ¼ −π∕4Þ þðρ ¼ þπ∕4Þ

f 24 ¼ −f 42 0 þðρ ¼ 0; πÞ — —

1 — þðρ ¼ þπ∕4Þ þðρ ¼ −π∕4Þ

−1 — þðρ ¼ −π∕4Þ þðρ ¼ þπ∕4Þ

f 33 0 — þðρ ¼ 0Þ þðρ ¼ 0Þ

1 þðδ ¼ 0Þ — —

−1 þðδ ¼ πÞ — —

f 34 ¼ −f 43 0 þðρ ¼ �π∕4Þ — —

1 — þðρ ¼ 0Þ þðρ ¼ þπ∕2Þ

−1 — þðρ ¼ þπ∕2Þ þðρ ¼ 0Þ

MMIðf ik Þ — “L”-point “+C”-point “-C”-point

— ðδ ¼ 0; δ ¼ πÞ ðδ ¼ þπ∕2Þ ðδ ¼ −π∕2Þ

f 44 ¼ cos δ 0 — þðρ ¼ 0 ÷ πÞ þðρ ¼ 0 ÷ πÞ

1 þðδ ¼ 0Þ — —

−1 þðδ ¼ πÞ — —

F 22;33 ≡ ðf 22 þ f 33Þ − 1 ¼ cos δ 0 — þðρ ¼ 0 ÷ πÞ þðρ ¼ 0 ÷ πÞ

1 þðδ ¼ 0Þ — —

−1 þðδ ¼ πÞ — —

F 42;43 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf 242 þ f 243Þ

q
¼ sin δ 0 þðδ ¼ 0; δ ¼ πÞ — —

1 — þðρ ¼ 0 ÷ πÞ þðρ ¼ 0 ÷ πÞ

−1 — þðρ ¼ 0 ÷ πÞ þðρ ¼ 0 ÷ πÞ

F 24;34 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf 224 þ f 234Þ

q
¼ sin δ 0 þðδ ¼ 0; δ ¼ πÞ — —

1 — þðρ ¼ 0 ÷ πÞ þðρ ¼ 0 ÷ πÞ

−1 — þðρ ¼ 0 ÷ πÞ þðρ ¼ 0 ÷ πÞ
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For the histological analysis, each tissue sample was first fixated with formalin (40% form-
aldehyde aqueous solution). After 24 h, the sample was washed with running water. Further, the
sample was placed in alcohol with increasing concentrations (from 70% to 100%) to achieve
tissue dehydration. After dehydration, the sample was fixated in a xylol-paraffin mixture for
1 to 2 h at a temperature of 52°C to 56°C. After that, the histological sections were cut using
the standard microtome. Each section was further stained with hematoxylin-eosin. Further, the
obtained sections were investigated by microscope and the position of the tumor was determined
according to Gleason’s scale.

Table 2 presents the optical and geometric parameters of the obtained histological sections of
prostate tumor biopsies from both groups.

The geometric thickness of histological sections of prostate and uterine tissues was deter-
mined by the standard values of scale of the freezing microtome. Variations in geometric
thickness h, μm within the plane of the histological sections (7 mm × 7 mm) did not exceed
�0.15 μm and did not result in a significant change in optical thickness and single-scattering
conditions.

The measurement of the extinction coefficient of the prostate tissue samples was carried out
according to the standard procedure of light attenuation measurement55 using an integral light
scattering sphere.56 The sample preparation procedure was conducted in accordance with the
principles of the Declaration of Helsinki and in compliance with the International Conference
on Harmonization-Good Clinical Practice and local regulatory requirements. The study was
reviewed and approved by the appropriate Independent Ethics Committees, and written informed
consent was obtained from all subjects prior to the study initiation.

2.3 Experimental Setup
The experimental set up and the protocol of measurements of spatial distributions of the param-
eters of the Stokes vector and the elements of MM were developed earlier.30,31,48,49 Briefly, the
optical setup is shown in Fig. 1. The setup utilized an He–Ne laser (Edmund Optics) emitting
low-intensity (W ¼ 5.0 mW) light at 633 nm. The light beam was further collimated and passed
through the quarter-wave plate (Achromatic True Zero-Order Waveplate, APAW 15 mm,
Astropribor, Ukraine) and polarizer (B+WXS-Pro Polarizer MRC Nano, Kaesemann, Germany).
After that, the light beam was passed through the sample and projected to the CCD-camera
(1280 × 960 pixels, DMK 41AU02.AS, The Imaging Source, Germany) using a polarization
microobjective (CFI Achromat P, focal length: 30 mm, numerical aperture: 0.1, increase:
4×, Nikon, Japan). Additional quarter-wave plates before the sample and after the microobjective
were used for image analysis.

Table 2 Optical and geometric parameters of histological sections of prostate (groups 1 and 2)
and uterine (groups 3 and 4) tissues.

Parameter Group 1 Group 2 Group 3 Group 4

Geometrical thickness h ðμmÞ 20� 0.15 20� 0.15 20� 0.15 20� 0.15

Attenuation (extinction)
coefficient τ, ðcm−1Þ

0.026� 0.0014 0.028� 0.0016 0.021� 0.0011 0.022� 0.0013

Fig. 1 Experimental setup. (1) He–Ne laser, (2) collimator, (3) stationary quarter-wave plate, (5),
(8) mechanically movable quarter-wave plates, (4), (9) polarizer and analyzer, (6) histological
section, (7) polarizing microobjective, (10) CCD camera.
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For the series of linear (0 deg, 90 deg, 45 deg) and right- ⊗ circular polarized illuminating

laser beams, the Stokes-vector parameter SVð0;45;90;⊗Þ
ði¼1;2;3;4Þ was defined for each pixel ðm × nÞ as

EQ-TARGET;temp:intralink-;e009;117;707

8>>>>>><
>>>>>>:

SVð0;45;90;⊗Þ
ði¼1Þ ðm × nÞ ¼ ðIð0;45;90;⊗Þ

0 þ Ið0;45;90;⊗Þ
90 Þðm × nÞ;

SVð0;45;90;⊗Þ
ði¼2Þ ðm × nÞ ¼ ðIð0;45;90;⊗Þ

0 − Ið0;45;90;⊗Þ
90 Þðm × nÞ;

SVð0;45;90;⊗Þ
ði¼3Þ ðm × nÞ ¼ ðIð0;45;90;⊗Þ

45 þ Ið0;45;90;⊗Þ
135 Þðm × nÞ;

SVð0;45;90;⊗Þ
ði¼1Þ ðm × nÞ ¼ ðIð0;45;90;⊗Þ

⊗ þ Ið0;45;90;⊗Þ
� Þðm × nÞ:

(9)

Here, I0;45;90;⊗0;45;90;135;⊗;� is the intensities of linearly (0 deg; 90 deg; 45 deg; 135 deg), right- (⊗)
and left- (�) circularly polarized components of the filtered by means of polarizer 9 and quarter-
wave plate 8 laser light. Finally, MM invariants were calculated as

EQ-TARGET;temp:intralink-;e010;117;580

f11ðm × nÞ ¼ 0.5ðSV0
1 þ SV90

1 Þðm × nÞ;
f12ðm × nÞ ¼ 0.5ðSV0

1 − SV90
1 Þðm × nÞ;

f13ðm × nÞ ¼ ðSV45
1 − f11Þðm × nÞ;

f14ðm × nÞ ¼ ðSV⊗
1 − f11Þðm × nÞ;

f21ðm × nÞ ¼ 0.5ðSV0
2 þ SV90

2 Þðm × nÞ;
f22ðm × nÞ ¼ 0.5ðSV0

2 − SV90
2 Þðm × nÞ;

f23ðm × nÞ ¼ ðSV45
2 − f21Þðm × nÞ;

f24ðm × nÞ ¼ ðSV⊗
2 − f21Þðm × nÞ;

f31ðm × nÞ ¼ 0.5ðSV0
3 þ SV90

3 Þðm × nÞ;
f32ðm × nÞ ¼ 0.5ðSV0

3 − SV90
3 Þðm × nÞ;

f33ðm × nÞ ¼ ðSV45
3 − f31Þðm × nÞ;

f34ðm × nÞ ¼ ðSV⊗
3 − f31Þðm × nÞ;

f41ðm × nÞ ¼ 0.5ðSV0
4 þ SV90

4 Þðm × nÞ;
f42ðm × nÞ ¼ 0.5ðSV0

4 − SV90
4 Þðm × nÞ;

f43ðm × nÞ ¼ ðSV45
4 − f41Þðm × nÞ;

f44ðm × nÞ ¼ ðSV⊗
4 − f41Þðm × nÞ: (10)

2.4 Methods of MMI Processing

2.4.1 Linear scanning

To obtain objective criteria for MM polarization-singular differentiation between optical properties
of prostate adenoma, carcinoma, and myoma-endometriosis samples, the following procedure
was performed. MM images of the element f44ðx; yÞ and a set of other MM invariants
(see Table 1) were measured sequentially, and the coordinate grids of characteristic values
were determined [Eq. (8)]. For example, matrix element f44ðx; yÞ ¼ �1 ↔ 00L 00 − point and
f44ðx; yÞ ¼ 0 ↔ 00 � C 00 − point. By linear Oχ scanning along the m − thðm1; m2; : : : :; mnÞ

pixel row of the photosensitive pad

0
@
2
4 111 : : : 1n

..

. . .
. ..

.

m1 : : : mn

3
5
1
A of digital camera 10 for each indi-

vidual pixel (mj), the number (Nmj) of characteristic values f44 within the corresponding

column

0
B@

1j
:
:
mj

1
CA, and so on, is determined. Further, sets of linear dependencies of points

for MM image characteristic values were determined in two orthogonal directions as
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�
Nððf44 ¼ �1Þ; xÞ ≡ NðL; xÞ;
Nððf44 ¼ �1Þ; yÞ ≡ NðL; yÞ and

�
Nððf44 ¼ 0Þ; xÞ ≡ NðC; xÞ;
Nððf44 ¼ 0Þ; yÞ ≡ NðC; yÞ: Similarly for other MMIs,

there were

�
NððF22;33 ¼ �1Þ; xÞ ≡ NðL; xÞ;
NððF22;33 ¼ �1Þ; yÞ ≡ NðL; yÞ and

�
NððF22;33 ¼ 0Þ; xÞ ≡ NðC; xÞ;
NððF22;33 ¼ 0Þ; yÞ ≡ NðC; yÞ: , as well as�

NððF42;43;24;34 ¼ 0Þ; xÞ ≡ NðL; xÞ;
NððF42;43;24;34 ¼ 0Þ; yÞ ≡ NðL; yÞ and

�
NððF42;43;24;34 ¼ �1Þ; xÞ ≡ NðC; xÞ;
NððF42;43;24;34 ¼ �1Þ; yÞ ≡ NðC; yÞ:

2.4.2 Wavelet analysis

Then, wavelet analysis of linear dependencies NðL; xÞ, NðC; xÞ was carried out, and two-
dimensional arrays of wavelet coefficients Qa;bðLÞ ¼ ∫NðL; xÞΩa;bdx and Qa;bðC; xÞ ¼
∫NðL; xÞΩa;bdx were determined. For the various scales aj ¼ A of the MHAT function
Ωða; bÞ, sets of linear dependences of the wavelet coefficients amplitudes QAðL; bÞ and
QAðC; bÞ were determined. For each scale aj ¼ A, the central statistical moments of the first
and second orders Zi¼1;2

48 were calculated, characterizing the average M and dispersion D
of the distributions QAðL; bÞ and QAðC; bÞ. Further, the step of large-scale “macro” scanning
(amax

j ¼ 10) of MHAT function Ωða; bÞ was selected. The difference between the values of
each central statistical moments of the first and second orders was calculated ðΔZi¼1;2ÞÞk ¼
Zi¼1;2ðamax

jþ1Þ − Zi¼1;2ðamax
j Þ. Then, the scale interval Δa� ¼ ðamax

jþ1 ÷ amax
j Þ was determined,

within the monotonic increase in the value ðΔZi¼1;2Þk ¼ Zi¼1;2ðamax
jþ1Þ − Zi¼1;2ðamax

j Þ⩽0 stops.

Also, within limits Δa�, a new series of values ΔZi ¼ Ziðamin
qþ1Þ − Zi¼1;2ðamin

q Þ was calculated
with a step of discrete scaled “micro” scan amin

q ¼ 2. Then, the optimal scale A� was determined

following the condition ΔZiðA�Þ ¼ max. The mean M, D and standard deviations σðMÞ, σðDÞ
were determined within the representative samplings of histological sections from group 1 to
group 2 and group 3 to group 4.

2.4.3 Informational analysis

To differentiate pathological states of prostate and uterine, for each statistical moment Zi,
the sensitivity (Se ¼ ðp∕ðpþ gÞÞ100%), specificity (Sp ¼ ðc∕ðcþ dÞÞ100%), and balanced
accuracy (Ac ¼ 0.5ðSeþ SpÞ) were calculated.57 Here, p and g are the numbers of correct and
incorrect diagnoses, respectively, within group 2 and group 4; and c and d are the same within
control group 1 and group 3.

3 Results and Discussion
The results of the polarization-singular study (using MM images of f44ðx; yÞ invariants) of the
polycrystalline structure for optically thin histological sections of benign (adenoma) and malig-
nant (carcinoma) prostate tumor tissue samples are shown in Fig. 2. Here, Figs. 2(a) and 2(b)
show the MMI f44ðx; yÞ of the adenoma [Fig. 2(a)] and carcinoma [Fig. 2(b)] samples.
Figures 2(c)–2(f) show distributions of Nððf44 ¼ �1Þ; xÞ ≡ NðL; xÞ (Figs. 2(c) and 2(d)]
and Nððf44 ¼ 0Þ; xÞ ≡ Nð; xÞ (Figs. 2(e) and 2(f)]. Similar dependencies of the number of
characteristic values f44ðx; yÞ obtained for the orthogonal scanning direction (Oy) are presented
[Figs. 2(g)–2(j)].

Comparative analysis of the obtained data (Fig. 2) revealed opposite tendencies in changes
of distributions NðLÞ and NðCÞ during the formation of malignant carcinoma of the prostate
regardless of scanning direction (Ox and Oy). The number of characteristic values f44 ¼ 0

decreases [Figs. 2(c) and 2(d) and 2(e) and 2(f)] and the number of characteristic values
f44 ¼ �1 increases (Figs. 2(g) and 2(h) and 2(i) and 2(j)]. Physically, the obtained results can
be explained by the fact that malignant necrotic changes in prostate tissue lead to degradation of
its polycrystalline birefringent structure.17,18 As a consequence of this process, the “phase-shift-
ing” ability of this layer decreases (δ ↓) and the probability of formation of C-polarization states
decreases. By contrast, the probability of L-states formation increases, which corresponds to
optically isotropic necrotically changed areas of carcinoma tissue.
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Fig. 2 Spatial distributions of characteristic values of the MM images f 44ðx; yÞ of histological
sections of prostate adenoma (a) and carcinoma (b). Illustrative linear dependences of NðL; xÞ,
NðC; xÞ, NðL; yÞ, and NðC; yÞ, respectively, for prostate adenoma (c), (e), (g), (i) and carcinoma
(d), (f), (h), (j). See further details in the text.
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Quantitatively, these birefringence degradation processes of malignant prostate tumors are
illustrated by the results of statistical (Zi) and informational (Se; Sp; Ac) analysis of the f44ðx; yÞ,nNððf44 ¼ �1Þ; xÞ ≡ NðL; xÞ;
Nððf44 ¼ �1Þ; yÞ ≡ NðL; yÞ , and

nNððf44 ¼ 0Þ; xÞ ≡ NðC; xÞ;
Nððf44 ¼ 0Þ; yÞ ≡ NðC; yÞ: These are presented in

Tables 3 and 4.

Table 3 Statistical informational parameters characterizing the distribution of f 44ðx; yÞ,
Nððf 44 ¼ �1Þ; xÞ, and Nððf 44 ¼ 0Þ; xÞ within both groups of prostate samples.

Parameters f 44ðx; yÞ Nððf 44 ¼ �1Þ; xÞ Nððf 44 ¼ 0Þ; xÞ

Samples Adenoma Carcinoma Adenoma Carcinoma Adenoma Carcinoma

M 0.31 0.26 237.3 288.9 19.4 16.3

± 0.019 ± 0.017 ± 18.8 ± 24.7 ± 1.2 ± 0.91

p p < 0.05 p < 0.05 p < 0.05

Se (%) 55.5 66.7 72.2

Sp (%) 52.8 63.9 69.4

Ac (%) 54.15 65.3 70.8

D 0.19 0.14 52.1 59.7 7.8 5.1

± 0.009 ± 0.008 ± 3.5 ± 4.2 ± 0.41 ± 0.032

p p < 0.05 p < 0.05 p < 0.05

Se (%) 61.1 72.2 77.8

Sp (%) 58.3 69.4 75

Ac (%) 59.4 70.8 76.4

Table 4 Statistical informational parameters characterizing the distribution of f 44ðx; yÞ,
Nððf 44 ¼ �1Þ; yÞ, and Nððf 44 ¼ 0Þ; yÞ within both groups of prostate samples.

Parameters f 44ðx; yÞ Nððf 44 ¼ �1Þ; yÞ Nððf 44 ¼ 0Þ; yÞ

Samples Adenoma Carcinoma Adenoma Carcinoma Adenoma Carcinoma

M 0.31 0.26 214.3 259.9 21.4 17.1

± 0.019 ± 0.017 ± 13.7 ± 21.4 ± 1.1 ± 0.88

p p < 0.05 p < 0.05 p < 0.05

Se (%) 55.5 68.4 74.3

Sp (%) 52.8 64.2 70.6

Ac (%) 54.15 66.3 72.5

D 0.19 0.14 49.4 57.6 7.2 4.9

± 0.009 ± 0.008 ± 3.5 ± 4.2 ± 0.3.8 ± 0.029

p p < 0.05 p < 0.05 p < 0.05

Se (%) 61.1 74.8 80.4

Sp (%) 58.3 71.6 77.2

Ac (%) 59.4 73.82 78.8
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The analysis of the presented data showed the low efficiency of the traditional MM
polarimetry imaging method for discrimination between different types of prostate tumors
(54.15% ≤ AcðM;DÞ ≤ 59.5%). At the same time, utilizing the statistical analysis of the dis-
tributions of characteristic values (NðL; xÞ and NðC; xÞ), the balanced accuracy of differential
diagnosis is increased by 10% to 15% (65.3% ≤ AcðNðL; CÞÞ ≤ 76.4%).

Similar results (within 5% of variation in the value of the balanced accuracy Ac) were
obtained using statistical and polarization-singular analysis of the set of other MM invariants
Fik (Table 5).

This result can be related to the fact that all MM images that characterize optical anisotropy
of the polycrystalline structure for histological sections of prostate tumor tissue samples are func-
tionalities of a single physical mechanism—phase-shifting capacity of linear birefringence
—FikðσÞ. In addition, for both scanning directions (Ox and Oy), the statistical (M;D) and infor-
mational (Ac) parameters of both methods are close enough—the differences between M;D lie
within 8% to 15%, and variations of Ac diagnostic accuracy do not exceed 2% to 3%. In addition,
the obtained result can be explained by the fact that pathological changes of fibrillar networks of
prostate tumor samples are sufficiently azimuthally symmetric. On the other hand, for other
tissue types and pathologies, other scenarios of birefringent polycrystalline structure changes
can also be realized. For this purpose, we performed an additional set of studies aimed at the
differential diagnosis of extragenital endometriosis (group 3 and group 4) by methods of
azimuthal-invariant MM polarimetry and polarization-singular MM image analysis (see Fig. 3,
Tables 6–8).

Comparative analysis of the obtained data (Fig. 3) revealed different (opposite to Fig. 2)
tendencies in NðLÞ and NðCÞ distributions changing during uterine endometriosis formation
in both scanning directions (Ox and Oy): the number of characteristic values f44 ¼ 0 increases
[Figs. 3(c) and 3(d) and 3(g) and 3(h)], whereas the number of characteristic values f44 ¼ 1

decreases [Figs. 3(e) and 3(f) and 3(i) and 3(j)].
The obtained results can be explained by the fact that pathological endometriosis overgrowth

of fibrillar networks of connective tissue leads to an increase in the level of linear
birefringence.31,32,48,49 As a consequence of this process, the “phase-shifting” ability of this layer
increases ðσ ↑Þ, and the probability of the formation of C-polarization states increases as well.
By contrast, the probability of forming L states, which correspond to optically isotropic altered
regions of the uterine endometrium, decreases.

Analysis of the data presented in Tables 6–8 revealed a slightly higher (∼10%) diagnostic
efficiency of myoma and extragenital endometriosis differentiation by azimuthal-invariant
MM polarimetry: 64.55% ≤ AcðM;DÞ ≤ 70.35%. Polarization-singular processing of the data
obtained provides a further increase in the level of balanced accuracy to the level of
76.1% ≤ AcðNðL; CÞÞ ≤ 83.4%. Similar results (within 5% variation in the value of the balanced
accuracy Ac) were obtained using statistical and polarization-singular analysis of the set of other
MM invariants Fik (Table 8). At that, for both scanning directions (Ox and Oy), the differences
between M,D increased 12% to 20%, and the variation in the accuracy Ac was 7% to 9%.
The obtained results can be explained by the fact that the pathological formation of newly
formed fibrillar networks of endometrial connective tissue leads to an increase in structural
anisotropy48,49 (linear birefringence), the polarization manifestations of which may be azimu-
thally asymmetric.

Table 5 Operational characteristics of MM invariants and polarization-singularity methods diag-
nostic power.

MMI f 44 ðf 22 þ f 33Þ − 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf 242 þ f 243Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf 224 þ f 234Þ

q

MMI� Nð�1Þ Nð0Þ Nð�1Þ Nð0Þ Nð�1Þ Nð0Þ Nð�1Þ Nð0Þ

AcðxÞ (%) 65.3 to
70.8

70.8 to
76.4

67.1 to
72.5

72.8 to
78.4

68.9 to
74.1

64.4 to
70.1

68.9 to
74.1

65.1 to
69.7

AcðyÞ (%) 66.3 to
73.2

72.45 to
78.8

69.1 to
75.3

75.5 to
80.3

65.1 to
71.4

70.4 to
76.6

65.8 to
72.1

71.2 to
77.1
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Fig. 3 Spatial distributions of characteristic values of the MM images f 44ðx; yÞ of histological
sections of prostate adenoma (a) and carcinoma (b). Illustrative linear dependences of NðL; xÞ,
NðC; xÞ, NðL; yÞ, and NðC; yÞ, respectively, for prostate adenoma (c), (e), (g), (i) and carcinoma
(d), (f), (h), (j). See further details in the text.
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The main factor limiting the accuracy of MM differential diagnosis of pathological changes
is the integral averaging of experimentally obtained information about optical anisotropy over all
coordinates and geometric dimensions of the morphological structure of biological tissues.10–18

We show (Tables 3–8) that the use of polarization-singular samples from the whole array of MM
invariant values provides an increase in the accuracy of differential diagnosis of pathological
conditions of the prostate and uterine endometrium tissues by 15% to 20%. It should be noted

Table 6 Statistical informational parameters characterizing the distribution of f 44ðx; yÞ,
Nððf 44 ¼ �1Þ; xÞ, and Nððf 44 ¼ 0Þ; xÞ within both groups of uterine samples.

Parameters f 44ðx; yÞ Nððf 44 ¼ �1Þ; xÞ Nððf 44 ¼ 0Þ; xÞ

Samples Myoma Endometriosis Myoma Endometriosis Myoma Endometriosis

M 0.21 0.16 188.5 141.6 29.1 38.4

± 0.014 ± 0.009 ± 11.8 ± 9.8 ± 1.6 ± 2.3

p p < 0.05 p < 0.05 p < 0.05

Se (%) 66.3 77.4 81.6

Sp (%) 62.8 74.8 78.8

Ac (%) 64.5 76.1 80.2

D 0.12 0.11 41.3 49.9 11.5 16.3

± 0.007 ± 0.006 ± 2.7 ± 3.2 ± 0.07 ± 0.09

p p < 0.05 — p < 0.05 p < 0.05

Se (%) 72.3 81.2 84.8

Sp (%) 68.4 79.4 80.3

Ac (%) 70.3 80.3 82.5

Table 7 Statistical informational parameters characterizing the distribution of f 44ðx; yÞ,
Nððf 44 ¼ �1Þ; yÞ, and Nððf 44 ¼ 0Þ; yÞ within both groups of uterine samples.

Parameters f 44ðx; yÞ Nððf 44 ¼ �1Þ; yÞ Nððf 44 ¼ 0Þ; yÞ

Samples Myoma Endometriosis Myoma Endometriosis Myoma Endometriosis

M 0.21 0.16 153.4 120.8 33.5 46.8.1

± 0.014 ± 0.009 ± 9.8 ± 7.74 ± 2.2 ± 3.2

p p < 0.05 p < 0.05 p < 0.05

Se (%) 66.3 77.2 79.8

Sp (%) 62.8 74.9 75.2

Ac (%) 64.5 76.1 77.5

D 0.12 0.11 32.6 58.9 14.6 21.2

± 0.007 ± 0.006 ± 2.1 ± 3.9 ± 0.08 ± 0.11

p p < 0.05 p < 0.05 p < 0.05

Se (%) 72.3 81.4 85.2

Sp (%) 68.4 77.4 81.6

Ac (%) 70.4 79.4 83.4
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that the mentioned processes are scale-dependent. Oncological changes that are accompanied by
necrotic destruction of morphological structure are localized in large-scale areas of birefringent
fibrillary networks of the prostate. By contrast, the formation (growth) of fibrillar networks of
connective tissue of the uterine endometrium are localized in small-scale areas. Based on this,
we next investigated additional possibilities of scale-selective wavelet analysis [Eqs. (1)–(4)]
of distributions of number of characteristic MM invariant values to improve the accuracy of
differential diagnostics of biological tissues from different human organs.

Figures 4 and 5 show the wavelet transform maps Qab [Figs. 4, 5(a), and 5(b)] of distri-
butions NðL; xÞ, NðC; xÞ, the linear dependencies of the amplitudes of the wavelet coefficients

Table 8 Operational characteristics of MM invariants (MMI) and polarization-singularity methods
diagnostic power.

MMI f 44 ðf 22 þ f 33Þ − 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf 242 þ f 243Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf 224 þ f 234Þ

q

MMI� Nð�1Þ Nð0Þ Nð�1Þ Nð0Þ Nð�1Þ Nð0Þ Nð�1Þ Nð0Þ

AcðxÞ (%) 76.1 to
80.3

80.2 to
82.5

78.4 to
83.1

83.1 to
85.3

74.5 to
78.4

78.8 to
80.4

74.1 to
77.8

77.6 to
79.1

AcðyÞ (%) 76.1 to
79.4

77.5 to
83.4

73.8 to
76.7

74.1 to
78.7

74.2 to
75.6

73.8 to
76.2

72.9 to
75.4

73.2 to
76.3

Fig. 4 Wavelet transform of distributions NðL; xÞ and NðC; xÞ for (a) adenoma and (b) carcinoma
tissues. Linear dependencies of the amplitudes of the wavelet coefficientsQA� ðL; bÞ andQA� ðC; bÞ
on the optimal scale A� of the MHAT function Ωab of MM image characteristic values f 44ðx; yÞ for
(c), (e) adenoma and (d), (f) carcinoma tissues, respectively.
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QA� ðL; bÞ [Figs. 4, 5(c), and 5(d)] and QA� ðC; bÞ [Figs. 4(e) and 4(f)] on the optimal scale A� of
the MHAT functionΩab of MM image characteristic values f44ðx; yÞ for adenoma and carcinoma
(Fig. 4) and myoma and endometriosis (Fig. 5) tissues.

A comparative analysis ofQAðL; bÞ andQAðC; bÞ distributions revealed opposite tendencies
in the formation of the magnitude and range of variation of their amplitudes QA. First, for
the carcinoma tissues, the range of amplitude changes of wavelet coefficients for QAðC; bÞ
was smaller than that of the adenoma tissues. At the same time, the range of amplitude
changes of wavelet coefficients for QAðL; bÞ was higher for adenoma tissues than for the
carcinoma.

For the endometrium tissues, the range of amplitude changes of wavelet coefficients for
QAðC; bÞ was higher compared with the myoma tissues. At the same time, the amplitude range
of changes of wavelet coefficients for QAðL; bÞ was smaller for endometrium tissues than
for myoma.

From a physical point of view, the obtained results can be explained by the fact that cancer
development leads to the destruction of birefringent large-scale localized domains of the prostate
tissue. Thus, in corresponding areas, the value of the phase shifts decreases. In this way, the
probability of C -states formation and the number of characteristic values of MM image
f44ðx; yÞ ¼ 0 are reduced. Therefore, for a given scale A�, during scanning QAðC; bÞ, the
maximum extrema QA� of the distributions of the wavelet coefficients are formed. The
opposite picture takes place in the wavelet analysis of distributions QA� ðL; bÞ characterizing

Fig. 5 Wavelet transform of distributions NðL; xÞ and NðC; xÞ for (a) adenoma and (b) carcinoma
tissues. Linear dependencies of the amplitudes of the wavelet coefficientsQA� ðL; bÞ andQA� ðC; bÞ
on the optimal scale A� of the MHAT function Ωab of MM image characteristic values f 44ðx; yÞ for
(c), (e) myoma and (d), (f) endometriosis tissues, respectively.
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the number of L-states corresponding to necrotically changed (almost optically isotropic) areas of
adenocarcinoma tissues, which are characterized by values f44ðx; yÞ ¼ �1. As a result, for
adenocarcinoma samples, the average and dispersion characterized the distributions of wavelet
coefficients amplitudes of the number of L-states. The opposite picture takes place for the stat-
istical parameters characterizing the distributions QAðC; bÞ.

For the pathological growth of fibrillar networks of endometrium connective tissue, the
opposite tendencies to that of prostate tissue are realized. Specifically, for myoma samples,
the average and dispersion, characterizing the distributions of the amplitudes of the wavelet
coefficients of the number of L-states, compared more to the same parameters of the carcinoma
samples. The opposite picture takes place for the statistical parameters of prostate tumors
samples.

The quantitative data for the distributions QAðL; bÞ and QAðC; bÞ for prostate and uterine
tissues are presented in Tables 9 and 10, respectively.

The accuracy of the wavelet analysis of the distributions QA� ðC; bÞ of MM image character-
istic values f44ðx; yÞ in the differentiation of the tumor states for the prostate tissue reaches an
excellent quality of AcðNðCÞÞ ¼ 93.05%, and for uterine tissue, AcðNðCÞÞ ¼ 97.7%.

Thus, the proposed method of wavelet analysis of the characteristic value distributions for
MM images of linear birefringence significantly expands the functionality of the traditional
polarization mapping of histological sections with minor changes in the optical anisotropy of
fibrillar networks.

4 Conclusions
In this study, an analytical relationship between the characteristic values of individual matrix
elements and polarization singularities of microscopic images of birefringent fibrillar networks
of biological tissues were established within the framework of an MMmodel of phase anisotropy.
The elements of MM treated with the wavelet analysis were used to diagnose the local mani-
festations of localized changes in the magnitude of birefringence of the polycrystalline fibrillar
compounds within biological tissue. The statistical analysis of characteristic values of spatial
distributions of the obtained MM images demonstrates a high potential for differentiating the
benign and malignant states of the prostate and uterine tissues with excellent accuracy.

Table 9 Statistical and informational parameters characterizing the distributions QAðL; bÞ and
QAðC; bÞ within both groups of prostate samples.

Parameters QAðL; bÞ QAðC; bÞ

Samples Adenoma Carcinoma Adenoma Carcinoma

M 0.051 0.045 0.012 0.015

± 0.004 ± 0.003 ± 0.001 ± 0.0012

p p ≺ 0.05 p ≺ 0.05

Se (%) 77.8 80.6

Sp (%) 75 77.8

Ac (%) 76.4 79.2

D 0.31 0.25 0.11 0.18

± 0.021 ± 0.018 ± 0.006 ± 0.008

p p ≺ 0.05 p ≺ 0.05

Se (%) 86.1 94.4

Sp (%) 83.3 91.7

Ac (%) 84.7 93.05
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