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ABSTRACT. Significance: Orthopedic surgery is frequently performed but currently lacks con-
sensus and availability of ideal guidance methods, resulting in high variability of out-
comes. Misdirected insertion of surgical instruments can lead to weak anchorage
and unreliable fixation along with risk to critical structures including the spinal cord.
Current methods for surgical guidance using conventional medical imaging are indi-
rect and time-consuming with unclear advantages.

Aim: The purpose of this study was to investigate the potential of intraoperative
in situ near-infrared Raman spectroscopy (RS) combined with machine learning in
guiding pedicular screw insertion in the spine.

Approach: A portable system equipped with a hand-held RS probe was used tomake
fingerprint measurements on freshly excised porcine vertebrae, identifying six tissue
types: bone, spinal cord, fat, cartilage, ligament, and muscle. Supervised machine
learning techniques were used to train—and test on independent hold-out data
subsets—a six-class model as well as two-class models engineered to distinguish
bone from soft tissue. The two-class models were further tested using in vivo spectral
fingerprint measurementsmade during intra-pedicular drilling in a porcine spine model.

Results: The five-class model achieved >96% accuracy in distinguish all six tissue
classes when applied onto a hold-out testing data subset. The binary classifier
detecting bone versus soft tissue (all soft tissue or spinal cord only) yielded 100%accu-
racy.When applied onto in vivomeasurements performed during interpedicular drilling,
the soft tissue detection models correctly detected all spinal canal breaches.

Conclusions: We provide a foundation for RS in the orthopedic surgical guidance
field. It shows that RS combined with machine learning is a rapid and accurate
modality capable of discriminating tissues that are typically encountered in ortho-
pedic procedures, including pedicle screw placement. Future development of inte-
grated RS probes and surgical instruments promises better guidance options for
the orthopedic surgeon and better patient outcomes.
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1 Introduction
Orthopedic surgery has become commonplace in most industrialized countries with an increasing
range of techniques and patients.1,2 Given growing life expectancy and concomitant need to
maintain an active lifestyle, more patients are electing to have orthopedic procedures, including,
for example, decompression with spinal fusion.3–5 In this procedure, precise placement of intra-
medullary screws represents the most critical aspect and requires many years of surgical expe-
rience due to the inherent complexity and variability of the tasks involved.6–8 Placement requires
that all screws be positioned into a narrow channel within the vertebral pedicle, with a tolerance
of only a few millimeters to prevent bone breach and to limit the risk of nerve or spinal cord
damages. As a result, clinicians must have a high level of confidence during screw placement
and, since spinal fusion often requires installation of dozens of screws, reducing the time needed
for each placement could have a major impact on the surgical workflow. Hence, new technol-
ogies that enable rapid and effective surgical guidance during screw placement are critical to
minimize complications and surgery time.9

In addition to preoperative radiological imaging, spine surgeons currently rely on guidance
using x-ray fluoroscopy and/or ultrasound imaging, both of which have significant limitations,
including two-dimensional (rather than three-dimensional) imaging, and ionizing radiation doses
to the patient and operating room personnel in the case of fluoroscopy.10–12 Moreover, clinical
ultrasound systems are plagued with poor spatial resolution and shadowing artifacts. Both fluo-
roscopy and ultrasound imaging also require co-registration with radiographic imaging, further
complicating the procedures.11 Intraoperative x-ray computerized tomography (CT) can offset
some of these deficiencies but is time consuming and adds to the radiation dose to the patient.13.
Emerging robotic-assisted surgery is promising but introduces procedural complexities, increases
cost, and requires advanced operating-room staff training.6,9 As a result of those limitations, there
is an unmet need for direct real-time spine surgery guidance technology capable of dynamically
informing the surgeon about tissue type in the local vicinity of the surgical instruments to limit
adverse effects during screw placement.

A minimum level of direct guidance could be provided by a system that differentiates ver-
tebral bone from soft tissues, especially the spinal cord as the most critical structure at risk.14,15 In
principle, successful placement of pedicle screws could be achieved by ensuring that the screws
always remain within bone structures during insertion, guaranteeing a strong bond and no breach
of the bone surface, thereby limiting fracture risk and damage to adjacent soft tissues. This
approach has been investigated using various optical techniques, including near-infrared (NIR)
spectroscopy, diffuse reflectance spectroscopy, and photoacoustic imaging.16–18 However, each
of these relies essentially on a single predictive parameter (e.g., absorbance or elastic scattering,
impedance) to differentiate bone from non-bone, which can limit the specificity of tissue
identification. Moreover, these techniques can be susceptible to failure in cases where nominal
specificity is degraded by, for example, intraoperative bleeding.19 Ideally, an orthopedic surgical
guidance system should allow highly accurate discrimination of multiple tissues in real time,
i.e., ∼100 ms.

A candidate technique is NIR Raman spectroscopy (RS) where the inelastic scattering of
light from biological tissue reveals the vibrational modes of all molecules in the sample.
Specifically, the so-called fingerprint region of RS (wavenumber shifts: ∼400 to 1800 cm−1)
provides information relating to the primary and secondary structure of proteins (e.g., amide
I and III bands, also potentially including differentiation of α-helix and β-helix conformation)
as well as on vibrational bonds predominantly present in the three aromatic amino acids
(phenylalanine, tryptophan, and tyrosine). The technique also sheds light on other biomolecules,
leading to detectable bands associated with nucleic acids (DNA, RNA), glucose (e.g., glycogen),
and different types of lipids. When implemented via fiberoptic probes, RS has a proven track
record for real-time intraoperative tissue classification in other settings, both for diagnostics such
as tumor detection and for surgical guidance such as in the brain and prostate.20–24

Several research groups have investigated RS in orthopedics. For example, Shaikh et al.25

showed that RS could specify cartilage injury type and so aid in clinical treatment planning,while
Pavlou et al.26 demonstrated RS sensitivity to changes associated with onset of osteoarthritis.
Moreover, Buckley et al.27 detected RS signatures of bone mineralization, indicating statistically
significant predictors of fragility fractures in cadaveric specimens: while the corresponding first
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attempts in vivo were statistically underpowered, planned system improvements looked prom-
ising. Fraulob et al.28 targeted orthopedic implant surgery, using intraoperative RS to assess the
bone-implant interface. For a wider perspective, Fosca et al.29 have published a comprehensive
review of RS applied to skeletal disorders.

Practical implementation of RS guidance for placing pedicle screws could take the form of
fiberoptic sensors mounted at the tip of a Kirshner wire, trocar, drill bit, screws, or other intra-
medullary rods.16,30 Such technology integration is in progress by us and other groups develop-
ing, for example, low-noise rotary fiber optic joints.31 To maximize the potential utility of RS in
spinal surgery, the present study focuses on measuring the Raman spectral fingerprints of all
tissue types in and around the vertebrae, using a hand-held fiber optic probe system from the
company reveal surgical that is based on a laboratory prototype developed by our group.24,32

The study was designed to evaluate the potential of intraoperative RS for guiding spinal fusion
surgeries and pedicle screw placement. All experimental protocols were performed in a normal
swine model that has similar size, composition, and morphology to humans.33

2 Materials and Methods

2.1 Study Design
The overall study comprised, first, measurements of the Raman spectra of bone and soft tissues in
freshly excised swine vertebra ex vivo. Those measurements were used as input data to a super-
vised machine learning support vector machine (SVM) analysis that associated each tissue type
with the corresponding Raman spectral fingerprint. This resulted in a trained and validated multi-
class predictive model designed to discriminate between six tissue types: bone, cartilage, fat,
ligament, muscle, and spinal cord (model I). The ex vivomeasurements were also used to produce
two-class models trained and validated to discriminate between bone and spinal cord (model II)
and between bone and all soft tissue types (Model III). The predictive accuracy (sensitivity and
specificity) of all tissue classifiers was tested using an independent hold-out dataset that was not
used during the model training/validation phase.

To emulate real-world conditions met during orthopedic procedures, the two-class models
were independently tested on two other Raman spectral fingerprint datasets. One set was
acquired in situ from freshly excised vertebra, while the other was acquired in vivo under con-
ditions closer to the real-world surgical scenario. In both cases, the spectroscopic data were
acquired during bone drilling using the RS probe.

2.2 Raman Spectroscopy System and Measurement Protocol
The system used to obtain tissue spectral fingerprints (Sentry 1000-R, Reveal Surgical Inc.,
Montreal, Canada) is an NIR RS instrument that has been approved for investigational clinical
testing in neurosurgery by Health Canada. Mounted on a portable cart, it consists of illumination
and detection modules, a hand-held probe, and a laptop computer (Fig. 1).

The illumination module houses a 785 nm diode laser (class IIIB) with a maximum output of
100 mW (Innovative Photonic Solutions, Plainsboro, New Jersey). The detection module com-
prises an NIR spectrometer and associated optical and electronic components. The spectrometer
consists of a charge-coupled device sensor (Newton model, Andor Technology, Belfast, United
Kingdom) cooled to −40°C, a 100 μm spectrometer slit, and a diffraction transmission holo-
graphic grating. The probe has a central light-excitation fiber surrounded by nine collection fibers
(100 μm core diameter) potted within a stainless-steel ferule and terminated with a tapered tip
and interface window. The probe is connected to the laser and the spectrometer through a 3 m
long fiberoptic cable. It is sterilizable, reusable, and has the shape of a 12 cm long stylet. Where
the probe contacts tissue, there is a conical tip of outer diameter 2.1 mm. Optical filters are
mounted within the probe tip to minimize signals from the fiber materials and the tissue auto-
fluorescence. The spectrometer has high sensitivity across the range 400 to 2000 cm−1, with an
average resolution of 1.8 cm−1. A converging lens at the tip of the probe ensures contact mea-
surements interrogated a 0.5 mm diameter spot. The system is controlled by proprietary software
(Reveal Surgical Inc., Montreal, Canada) that allows acquisition parameters to be set by the user,
including laser power, exposure time per spectrum, and number of repeated measurements (i.e.,
accumulations) at each point. A laboratory version of the system has been used in several clinical
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studies for intraoperative tumor resection guidance in various organs including breast,34

brain,24,35,36 ovaries,37 and prostate.23,38–40

System calibration comprised acquisition on an NIST Raman standard (SRM 2214) to cor-
rect for the instrument response.41 The probe tip was cleaned with isopropyl alcohol before and
after calibration, as well as throughout the study to minimize cross-contamination of signals from
previously measured tissues. For each spectral measurement, a suitable illumination exposure
time was selected based on the optical properties of the tissue under investigation to ensure maxi-
mum photon counts without saturating the detection electronics. Once a measurement site was
selected, the tip of the probe was held in contact with the tissue at a right angle to maximize
optical coupling [Fig. 1(c)]. Two individuals participated in the measurements, one preparing the
animal model and tissues and the other operating the system, thereby minimizing potential
motion artifacts during each measurement. All measurements were carried out under low ambient
lighting to minimize background noise. At least three spectral fingerprints were collected at each
measurement location (i.e., accumulations), using total integration times ranging from 0.4 to 20 s
per spectrum, depending on the tissue type. For example, typical integration times per accumu-
lation for bone and spinal cord were 1.0 and 0.8 s, respectively.

2.3 Animal Protocol
All animal studies were carried out under institutional review and approval (AUP #6578:
University Health Network, Toronto, Canada). To minimize the number of swine needed to meet
the study objectives, animals that were already enrolled in other approved terminal studies were
used for the ex vivo and in situ measurements. The in vivo study was performed only after these
prior data demonstrated high and consistent results. The animals were free from genetic manipu-
lation, tracer probes or any other exogenous substances except anesthesia. The 33 kg male
Yorkshire swine was fasted 8 h prior to surgery and received meloxican IM (0.4 mg∕kg) pre-
operatively. General anesthesia was induced and maintained with inhaled isoflurane, 4% and
2.5%, respectively. During the entire procedure, the animal had all vital signs monitored closely
and received buprenorphine IM (0.4 mg∕kg) and fluids i.v. After the procedure, the animal was
euthanized by intravenous injection of KCl (150 mg∕kg).

2.4 Ex Vivo Spectroscopic Measurements
The spinal columns of three swine were cut with a surgical bone saw to remove one thoracic
vertebra, along with intact soft tissues that interface with the bone. Figure 2 is an example, show-
ing the cortical and trabecular bone (henceforth lumped together into the “bone” category) and
soft tissues (cartilage, fat, ligament, muscle, and spinal cord). Prior to collection of the Raman

(a) (b) (c)

Fig. 1 RS system. (a) Photograph of the reveal system with major components annotated: (I) lap-
top with graphical user interface, (II) illumination and detection module housing, (III) hospital-grade
isolation transformer, (IV) laser and spectrometer fiberoptic connection panel, and (V) fiberoptic
bundle with optical connectors and hand-held probe. (b) Close up of the probe in contact with
a vertebral tissue sample. (c) Example Raman spectrum.
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spectra, the sample was lightly rinsed with saline to help identify the structures visually and
minimize spectral crosstalk from blood and cerebrospinal fluids. On average, eight different
measurement sites were selected per tissue type on each vertebra, contingent on availability
of suitable exposed tissue surfaces. The tissue class was identified based on visual inspection,
with knowledge of spinal anatomy.

2.5 In Situ and In Vivo Spectroscopic Tissue Measurements
In situ spectra were acquired for each tissue category (bone, cartilage, fat, ligament, muscle, and
spinal cord) in two freshly sacrificed animals. Spinal surfaces were reached using a convention-
ally open long-segment incision technique for pedicle access prior to drilling in the vertebra. The
bone surface was exposed so that tissues could be visually identified. In total, 14 holes were
drilled from four different vertebrae in each animal [Figs. 3(a)–3(c)]: eight lumbar, five thoracic,
and two cervical. The last was the most difficult to access due to a thick overlaying muscle mass.
Overall, this resulted in 50 spectral measurements in one animal and 38 spectra in the other.

Following in situ testing, in vivo measurements were performed in one anesthetized animal
to confirm the system and machine-learning model performance under more clinically realistic
conditions [Fig. 3(d)]. Four vertebrae in total were examined from thoracic, lumbar, and cervical
sections of the spine. Since a critical requirement during spinal fusion surgery is to ensure proper
placement of pedicle screws, detection of misdirected screw trajectories resulting in spinal canal
breaches was a primary focus during trajectory planning. The in vivo measurements resulted in
44 spectral fingerprints acquired along four different trajectories, one trajectory per vertebra:
three vertebrae had 12 spectral measurements, and one had eight measurements.

All in situ and in vivo measurements were performed by intra-pedicular drilling in 1 mm
steps using a cordless drill equipped with a shaft-collar drill-stop mounted on a 6 mm titanium
drill bit with a 135 deg drill point angle. Cooling and lubrication were provided by saline rinsing
of the drilling cavity at each step prior to measurement of the spectral fingerprint. The drill stop
provided mm-level depth control, permitting precision measurement of spectra from tissue layers
and layer interfaces. In situ guidance during drilling was carried out as shown in Fig. 3(c) under
x-ray fluoroscopy (OEC 9800, GE Healthcare). The in vivo drilling was guided using 3D CT
(Cios Spin C-arm, Siemens Healthcare Ltd.), as shown in Fig. 3(d), where a (deliberate) spinal
canal breach was indicated using contrast medium-soaked gauze pressed into the drilling cavity.

2.6 Data Pre-Processing and Raman Spectral Fingerprint Interpretation
The following data pre-processing steps were applied to each spectroscopic measurement:41

(1) subtraction of a dark count background measurement acquired with the laser turned off prior
to each repeat acquisition (e.g., to remove residual contamination from ambient light sources),
(2) x-axis (wavenumber) normalization and instrument response correction from spectral mea-
surements acquired in calibration materials (acetaminophen powder and NIST 785 nm Raman

Fig. 2 Example of freshly excised vertebra in (a) axial and (b) lateral views, with the major
components and Raman spectral fingerprints labeled.
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standard, respectively), (3) curve smoothing using a Savitzky-Golay filter of order 3 with
a window size of 11 (unit-less optimization parameter), (4) averaging of successive measure-
ments acquired at the same location, (5) baseline subtraction using a custom algorithm,
BubbleFill.41 Finally, the resulting Raman spectral fingerprints were normalized based on stan-
dard-normal-variate (SNV). This normalization technique implies that the “intensity” associated
with each spectral bin or band must be interpreted as a variation relative to the average of
all detected inelastic scattering contributions across the spectral domain.

Recent RS studies have contributed reliable and well-characterized spectra associated with
specific tissues. Raman peaks are narrow (typically <50 cm−1) and in many cases can be asso-
ciated with a specific chemical bond or functional group. For example, Movasaghi et al.22 have
compiled the most frequent reported Raman bands in tissues. For each tissue type considered
here (bone, cartilage, fat, ligament, muscle, and spinal cord), the main visually distinguishable
Raman bands were identified on the ex vivo Raman spectral fingerprints, mostly based on
the Movasaghi et al. paper. The resulting band assignments are listed in Table 1 and were also
cross-checked against other publications.

2.7 Machine Learning Tissue Classification Models
Three different machine learning models were produced from the ex vivomeasurements. Model I
consisted of a six-class predictive model (bone versus cartilage versus fat versus ligament versus
muscle versus spinal cord), while models II and III were two-class models. Model II differen-
tiated bone from spinal cord tissue and model III discriminated bone from all types of soft tissues.
All models were tested on a hold-out data subset: 60% for model training and validation and 40%
for testing. Further, models II and III were independently tested using the datasets acquired under
conditions closer to real-world, i.e., the in situ and in vivo datasets.

Each processed spectrum led to a Raman spectral fingerprint comprising more than 900
spectral bins. Prior to machine-learning model development, the spectra were reduced to
N < 20 spectral features using a linear SVM approach with L1-regularization (Lasso regression)
optimization.42 The resulting dimensionally reduced features set—in the form of N pre-selected

(a) (b)

(c) (d)

Fig. 3 (a)–(c) In situ and (d) in vivo drilling and RS procedures. (a) Photographs at each stage of
drilling demonstrating mm-level depth control and showing the bone surface and the drilling cavity
at the cortical/trabecular interface (2 mm), trabecular bone (3 mm), trabecular/cortical interface
(6 mm), epidural space (8 mm), and spinal cord breach (9 mm). (b) In situ drilling under fluoroscopy
imaging guidance with a labeled radiograph shown in (c). (d) 3D CT image guidance in the axial
view showing labeled vertebra with mis-directed drill direction toward spinal canal (red arrow),
indicated by insertion of contrast-infused gauze. The green arrow indicates the correct drill trajec-
tory through the pedicle.
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spectral intensities associated with specific wavenumber values—was used to train and validate
the machine-learning models using a linear SVM approach with L2-regularization (Ridge regres-
sion). Both phases—feature selection and machine learning modeling—were associated with one
SVM hyperparameter that is conventionally labeled C. The values of both hyperparameters
(C1 for feature selection, C2 for machine learning model production) were optimized through
a grid search running over a large range of combinations. The C-parameter associated with the
feature selection phase, C1, was varied between 0.005 and 0.05. This ensured that the number of
retained features was always <20 to minimize the risk of over-fitting the data during the model
development phase, during which C2 was varied from 0.1 to 5.

Each combination of hyperparameters ðC1; C2Þ led to a different machine-learning model.
A training/validation process was utilized to find the parameters leading to optimal predictive
performances, i.e., to select those parameters that led to the smallest number of false positive and
false negative predictions. Importantly, this needed to be done ensuring the final models gen-
eralized well to new data, namely, to ensure an optimal balance was reached between under-
fitting and over-fitting the spectral data. This was achieved during a training/validation phase
using a fivefold cross-validation technique applied on 60% of the ex vivo dataset, retaining the
remaining 40% to evaluate model performances on an independent holdout data subset.

For models II and III, the performance during the training/validation phase (using 60% of
the data) was assessed through a receiver-operating-characteristic (ROC) analysis. An ROC
curve (x-axis, specificity; y-axis, 1 - sensitivity) was generated and the selected final model had
the largest sensitivity and specificity values. Here, this corresponded to the point on the ROC
curve that had the shortest distance to the upper-left corner. The 2 × 2 confusion matrix asso-
ciated with the ROC analysis was also produced to showcase the number of false positive/
negative and true positive/negative instances. The optimal machine-learning model was then
applied directly onto the holdout dataset (40% of the ex vivo dataset) and the resulting predictive
performances were reported using another confusion matrix.

All data acquired during the in situ and in vivo experiments were then used as another way to
test the models using independent data to assess their generalizability. All data from those experi-
ments were applied to models II and III, leading to tissue classes prediction, along with a quan-
titative measure of the probability of association (an output from the SVM analysis) with each
class ranging from 0 to 1.37 For example, in the case of model II, a probability of association close
to 1 indicates that the model predicted, with high confidence, that the Raman spectral fingerprint
was associated with spinal cord tissue, while a value closer to 0 indicated that the model con-
fidently associated the measurement to bone.

ROC analyses do not lend themselves to performance analyses in the case of multi-class (i.e.,
more than two classes) models. Hence, the performance for Model I was assessed using a con-
fusion matrixMij, where i and j each run from 1 to 6. The diagonal elements of the matrix report
the number of correct predictions for each class, while the off-diagonal elements tabulate the
number of incorrect model predictions. Specifically, off-diagonal elements ði; jÞ with i ≠ j cor-
respond to the number of predictions associating a Raman spectral fingerprint to tissue category i
that should have been associated with tissue category j, and vice-versa. As in the performance
assessment of Models II and III, two confusion matrices were produced, one for the training/
validation phase and one from the testing phase. For the latter, the six-class tissue discrimination
model was applied directly to the hold-out set comprising 40% of the ex vivo dataset. The analy-
sis associated with applying model I to the in situ and in vivo datasets is not presented here for
conciseness.

3 Results

3.1 Band Assignment and Raman Spectral Fingerprint Interpretation
Figure 4(a) shows the complete ex vivo dataset as a spectrogram, individual SNV-normalized
Raman spectra, vertically stacked and grouped by tissue type. The intensity at each wavenumber
is represented by a false-color scale, ranging from dark blue (minimum) to light green (maxi-
mum). Figure 4(b) shows the average spectrum for each tissue category, together with the vari-
ance across all measurements, computed for each spectral bin. Table 1 summarizes the visually
detectable Raman bands for all tissue types that are associated with known molecular vibrational

Kosik et al.: Preclinical evaluation of Raman spectroscopy for pedicular screw. . .

Journal of Biomedical Optics 057003-8 May 2023 • Vol. 28(5)



modes. A tentative association is made to families of biomolecules, and the relative intensity for
each peak center is shown. The relative intensity (across all tissue types) for each peak is indi-
cated using a scale from 1 to 4 (represented by asterisks: *, **, *** or ****) based on the results
of univariate statistical analysis (student t-test) applied to the average peak intensities. Since each
of the tissues of interest has distinct molecular composition, the distinguishing Raman signatures
can be clearly seen.

Looking at the muscle column in Table 1, most bands were directly linked to proteins and
amino acids and were in good agreement since proteins are the most important component of
striated skeletal muscle.43 The peaks at 1131 and 1448 to 1451 cm−1 encompass fatty acids and
lipids; the presence of which is expected since intramuscular fat accumulates both within
(intramyocellular) and surrounding (extramyocellular) muscle fibers. For the spinal cord the
largest peak is at 1439 to 1441 cm−1 corresponding to DNA/RNA, protein (amide I), and lipids.
The aggregation of these different molecular species represents the distribution of proteins and
genetic information in nerve fiber bundles within the spinal cord. Lipids also often accompany
proteins, since the spinal cord comprises both white and gray matter. The myelin sheath
surrounding the nerve fibers that compose the spinal cord also has high lipid content

(a) (b)

(c) (d)

Fig. 4 Multi-class ex vivo tissue classification. (a) Spectrogram showing the entire ex vivo dataset,
demonstrating qualitatively the consistency of specific tissue spectra across all measurements.
(b) Average spectra per tissue type, with the corresponding variance computed for each spectral
bin across all measurements. Vertical gray bands represent the features selected for machine-
learning classification. The confusion matrices are shown in (c) and (d) for the training and testing
sets, respectively.
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(70% to 80%).44 Interestingly, in the fat tissues, the highest peak is at 1305 cm−1, assignment to
collagen. Adipocytes (fat cells) produce mainly collagen that aids cell adhesion, differentiation,
and wound healing.45 Most of the other peaks relate to lipids, which confirms the fat tissues
composition.

Connective tissue in the table groups cartilage and ligament together, based on the main
collagen constituent with the highest peak at 817 cm−1, as well as peaks at 857, 1067 to
1069, 1303, and 1448 to 1451 cm−1. The material strength and biological properties of articular
cartilage depend heavily on its unique and extensively cross-linked extracellular collagen net-
work and characteristic fibrillar organization that varies with tissue depth and cellular proximity.
Ligaments are generally composed of ground substance, collagen (mainly types I and III) with
minimal elastin fibers, i.e., the building blocks are collagen fibers. Another high peak at
1641 cm−1 is assigned to water,46 which is an important component of articular cartilage, con-
tributing up to 80% of wet weight. Part of this water is linked to the intrafibrillar space within the
collagen.47 Cartilage also has a high peak at 959 to 965 cm−1 for calcium hydroxyapatite cor-
responding to mineral calcium, deposits of which can be found in articular cartilage. Overall,
connective tissue includes all the peaks selected, since the properties of connective tissue reside
in the amount, type, and arrangement of abundant extracellular matrix. By contrast, the biological
properties of tissues such as spinal cord, fat, or muscle depend mostly on their cellular
elements.48

Finally, bone has its highest peak at 959 to 965 cm−1, assigned to calcium hydroxyapatite.
Bone comprises both a mineral (inorganic) and an organic phase. Calcium hydroxyapatite is
the main component of the former, which makes up ∼60% of the tissue.49

3.2 Ex Vivo Multi-Class Tissue Classification Model
Visual inspection of the individual Raman spectra [Fig. 4(a)] and their average for each tissue
type [Fig. 4(b)] shows that the spectral fingerprints acquired on freshly excised specimens (i.e.,
the ex vivo spectral dataset) have clearly distinguishable features enabling tissue discrimination.
As the mineral peak at 961 cm−1 is unique to trabecular and cortical bone, it can be easily dis-
tinguished from soft tissues. Although fat and spinal cord show similarities, they can be separated
according to the phenylalanine peak at 1004 cm−1. Muscle, cartilage, and ligament tissues are
also distinguishable, given that the peak around 1451 cm−1 is weak in cartilage, while the
phenylalanine peak at 1004 cm−1 helps to further differentiate between muscle and ligament.

The vertical gray regions in Fig. 4(b) represent the spectral bands that were picked up by the
feature-selection algorithm in building the six-class machine-learning model (Model I). A total of
13 spectral bands were required to achieve an accuracy >96% in both the training/validation and
the testing. This is shown in the confusion matrices for the training/validation phase [Fig. 4(c)]
and the testing phase [Fig. 4(d)], where only 3 of 98 and 2 of 64 spectra were misclassified,
respectively.

3.3 In Vivo and In Situ Testing of the Two-class Soft Tissue Detection Models
The confusion matrices from the training/validation and testing phases associated with model II
(bone versus spinal cord) are shown in Fig. 5(a). The corresponding confusion matrices asso-
ciated with Model III (bone versus soft tissues) are shown in Fig. 5(b).

(a) (b)

Fig. 5 Two-class ex vivo tissue classification models. Confusion matrices quantifying model per-
formance on training and testing sets: (a) model II – bone versus spinal cord and (b) model III –
bone versus soft tissues.
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The models performed with 100% sensitivity during both the training and testing phases.
These two-class models were then applied to the in situ dataset (Fig. 6) and the in vivo dataset
(Fig. 7) to evaluate how well they generalized to situations closer to real-world surgical ortho-
pedic procedures. Both models II and III used only two features, namely the mineral peak at
961 cm−1 and the amide I peak at 1441 cm−1.

Figure 6 shows the Raman spectrograms associated with all vertebrae for which in situmea-
surements were made. The y-axis in these plots represents the drilling direction, i.e., the axis
along which the Raman measurements were made, starting from a bone region to anatomical
areas associated with soft tissue, i.e., spinal cord. The transition from bone to spinal cord can

Fig. 7 Two-class soft tissue detection models applied to the in vivo data: model II (bone versus
spinal cord) and model III (bone versus soft tissues). Raman fingerprint spectrograms are shown
for the entire dataset for each of the four vertebrae, qualitatively demonstrating the transition from
bone to spinal cord through the disappearance of the mineral peak at 961 cm−1 as the RS probe
approaches soft tissue. The classification probabilities for each model and for each individual
spectrum are shown in gray for model II and in red for model III.

Fig. 6 Two-class soft tissue detection models applied to in situ data: model II (bone versus spinal
cord), model III (bone versus soft tissues). Raman fingerprint spectrograms are shown for the
entire in situ dataset, for each of the nine vertebrae, qualitatively demonstrating the transition from
bone to spinal cord through the disappearance of the mineral peak at 961 cm−1 as the probe
approaches soft tissue. The classification probability for each model and for each individual spec-
trum is shown in gray for model II and in red for model III. A value closer to 1 associates the meas-
urement to bone, while a value closer to 0 associates it to soft tissue.
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be appreciated through visual inspection, namely the disappearance of the mineral peak at
961 cm−1 and the concomitant gradual appearance of the amide bands.

The spectrograms also consistently demonstrate a pattern of initial bone followed by a well-
differentiated soft tissue signature, mostly resembling that of spinal cord. This is confirmed by
the numerical values associated with the confidence-of-association to a tissue class when using
model III (bone versus soft tissue). All measurements with a strong mineral peak and low inten-
sity amide bands are associated with probabilities of associated to bone close to 1 (red bars in
Fig. 6). Similar trends are observed when applying model II (bone versus spinal cord) to the same
dataset (gray bars in Fig. 6). However, the numerical values associated with the probability of
association to bone, although consistently larger than 0.5, are smaller than those obtained in
model III. The higher confidence using model III may be due to the fact it was trained using
a more heterogeneous dataset that better reflects the anatomical environment moving from bone
to spinal cord.

Figure 7 shows that similar conclusions are reached when applying Models II and III to the
in vivo measurements. However, these data have higher inter-measurement variances compared
with the ex vivo and in situ measurements, likely due to interference from bleeding that both
introduced additional materials and may have increased light attenuation even with the use
of a saline flush during drilling. Despite this, the distinctive features of bone and spinal cord
tissues still allow unambiguous identification of the bone–spinal cord interface.

4 Discussion and Future Directions
Demands of the orthopedic surgical environment often require fast, reliable, and actionable guid-
ance with consistent performance in every case. Here, tissue measurements took up to several
seconds to complete in some cases. Differentiation of bone and spinal cord was typically
achieved in ∼1 s, with larger measurement times required in, e.g., muscle identification.
Detection times of this order may be detrimental to real-world clinical integration. In fact, the
requirement for surgical deployment would require spectral fingerprints consistently acquired in
near real-time, for example, < ∼ 100 ms. Modifications to the current fiberoptic system are fea-
sible that could increase the amount of collected light to reduce interrogation times while main-
taining good signal-to-noise in the spectra. This could be achieved multiple ways, including, for
example, using a spectrophotometer with increased light sensitivity (e.g., HT rather than EH
spectrometer from EmVision LLC) and a more powerful laser, within the maximum permissible
exposure limits to ensure minimal tissue damage from increased temperature (e.g., <43°C).50

Other more stringent safety standards as set by ANSI Z136.3 Laser Safety in Healthcare for
skin and ocular exposition could be addressed through user guidelines and using safety goggles.

Another factor that may allow significant reduction of the tissue interrogation time is deter-
mination of the minimal SNR thresholds required for each tissue type to achieve real-time tissue
classification. This was not a consideration in the above proof-of-principle studies in which the
integration time and number of accumulations were optimized to ensure that the spectra were
shot-noise limited with minimal contribution from stochastic photonic noise. This led to spectral
fingerprints for all tissue types with almost no stochastic noise. However, the spectral quality
achieved likely surpassed that required to distinguish bone from soft tissue in the real-world,
where only the most active Raman bands need to be detected, including the mineral peak and
amide bands.

As a result, if proper mechanical integration of the optical fibers with current trocar devices
is achieved, then minimal alterations to the fiberoptic technology and the data acquisition and
laser safety protocols could be made to that the RS guidance is acquired seamlessly with mini-
mum impact on the surgical workflow. If so, then a significant decrease in safe pedicle screw
placement could be achieved, reducing the current dependence on slow, cumbersome, and ion-
izing intraoperative imaging. A further aspect not considered in this study was the impact of
depth sampling on the potential depth accuracy of RS in orthopedic surgery. The diffuse nature
of tissue light transport in the NIR means that the effective sampling depth beyond the probe tip
depends on the albedo, which varies between tissue types in the range ∼100 to 600 μm.51 The
impact of this tissue-dependent sensing depth needs to be investigated further.
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The machine-learning approach used here detected the bone/spinal canal interface success-
fully in all cases. However, increased variance was observed during the drilling measurements
in situ and in vivo. While it is likely that some of this variance can be attributed to physical
mixing of tissue types in the drilling, it may explain the increased uncertainty in the model
predictions near the cord/bone interface. Furthermore, nerve roots, which were not included
in the analysis since their location was unknown, may also have contributed to this uncertainty,
even when drilling far from the spinal cord. This may be a challenge in clinical translation.

Another important aspect of the current study was the demonstration that the spectral finger-
print of multiple tissue types could be detected around the spine, not only under ideal ex vivo
conditions but also under realistic surgical conditions, i.e., in vivo. This paves the way to other
potential applications such as detection of bone abnormalities associated with osteoporosis, as
well as guidance during osteoblastoma and osteosarcoma surgeries to reduce risk of recurrence
due to incomplete resection. 52–55

5 Conclusions
We have shown that RS holds potential for guiding orthopedic surgical procedures where knowl-
edge of the tissue type is critical. Using supervised machine learning binary classification on RS
spectra during bone drilling identified critical structures such as the bone/spinal canal interface
rapidly and with high accuracy. Even when stressed to differentiate six types of tissue found in
the vertebra, the model performed at higher than 96% accuracy. The development of an “intel-
ligent” drill bit based on RS could then reduce the currently high inter-surgeon variability during
intra-pedicular drilling and reduce or replace expensive, time-consuming, and indirect radiologi-
cal image-guidance procedures.
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