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ABSTRACT. Significance: Artificial intelligence (AI) has become a prominent technology in com-
putational imaging over the past decade. The expeditious and label-free character-
istics of quantitative phase imaging (QPI) render it a promising contender for AI
investigation. Though interferometric methodologies exhibit potential efficacy, their
implementation involves complex experimental platforms and computationally inten-
sive reconstruction procedures. Hence, non-interferometric methods, such as trans-
port of intensity equation (TIE), are preferred over interferometric methods.

Aim: TIEmethod, despite its effectiveness, is tedious as it requires the acquisition of
many images at varying defocus planes. The proposed methodology holds the abil-
ity to generate a phase image utilizing a single intensity image using generative
adversarial networks (GANs). We present a method called TIE-GANs to overcome
the multi-shot scheme of conventional TIE.

Approach: The present investigation employs the TIE as a QPI methodology, which
necessitates reduced experimental and computational efforts. TIE is being used for
the dataset preparation as well. The proposed method captures images from differ-
ent defocus planes for training. Our approach uses an image-to-image translation
technique to produce phase maps and is based on GANs. The main contribution of
this work is the introduction of GANs with TIE (TIE:GANs) that can give better phase
reconstruction results with shorter computation times. This is the first time the GANs
is proposed for TIE phase retrieval.

Results: The characterization of the system was carried out with microbeads of
4 μm size and structural similarity index (SSIM) for microbeads was found to be
0.98. We demonstrated the application of the proposed method with oral cells, which
yielded a maximum SSIM value of 0.95. The key characteristics include mean
squared error and peak-signal-to-noise ratio values of 140 and 26.42 dB for oral
cells and 100 and 28.10 dB for microbeads.

Conclusions: The proposed methodology holds the ability to generate a phase
image utilizing a single intensity image. Our method is feasible for digital cytology
because of its reported high value of SSIM. Our approach can handle defocused
images in such a way that it can take intensity image from any defocus plane within
the provided range and able to generate phase map.
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1 Introduction
Cellular analysis of biological cells is one of the most popular tools for early diagnosis of human
diseases. Cytological investigations unveil the latent topographical characteristics of cells,
thereby aiding clinicians in making crucial diagnostic decisions concerning diseases.1

Cytology became more informative and useful as biology and microscopic methods advanced
in conjunction. The invention of the microscope2 in 1600 had a profound impact on the scientific
community. Conventional brightfield microscopy techniques have the capability to visualize
amplitude objects, as they solely exhibit intensity. Transparent objects, such as biological cells
and microorganisms, present a challenge for visualization under a brightfield microscope due to
their transparent nature.

Staining the cells is considered one of the potential solutions to address this issue. But stain-
ing is not a recommended option because it can cause morphological or chemical alterations in
the cells. The examination of cells utilizing qualitative feature maps3 does not disclose the mor-
phological characteristics of the specimen. Consequently, the utilization of solely intensity-based
information does not allow for accurate characterization based on morphology. The label-free
high contrast optical imaging of living cells was made possible by Zernike’s invention of the
phase contrast microscope (PCM) in 1930.4 The Normarski differential interference contrast
(DIC) microscope produces phase maps in a similar manner.5,6 Phase contrast techniques, such
as PCM and DIC, produce good contrast images but do not reveal thickness information.
Quantitative phase imaging (QPI) is a label-free methodology that measures the phase delay
caused by the sample,7–9 thereby enhancing the precision of disease diagnosis. The utilization
of QPI live cell imaging has allowed researchers to prevent the expenses associated with labo-
rious staining procedures. With subwavelength accuracies, it provides the optical thickness pro-
file of a transparent object, which is vital information for cell biology and meteorology. Although
there are several benefits associated with QPI, it continues to be a laborious commitment.

The integration of QPI and deep learning (DL) has demonstrated significant potential in
providing diverse applications in recent times. While QPI has the potential to address issues
pertaining to precise thickness mapping of biological samples DL is better suited for managing
extensive datasets and automating processes.10,11 DL techniques aim to replicate the functionality
of biological neurons in the human brain.12

Fast phase retrieval using only a single intensity image was initially reported by Rivenson
et al.,13 demonstrating the power of DL. This method not only solved the problem of reconstruc-
tion, but it can generate phase and amplitude images, using only single hologram intensity.
However, one needs to be specifically trained to reconstruct the phase and amplitude to eliminate
subjective. Uncertainty maps describe shortcomings, such as noise, model error, missing training
data, and out-of-sample testing data, that are common in practice but rarely accounted for. DL
predictions are not checked for reliability and hence mistakes are often identified only after the
results are achieved. Xue et al.14 overcome this problem. Lensless imaging is novel in terms of its
low cost, portability, and fast retrieval times. A lensless imaging system to recover phase from a
single intensity diffraction pattern was proposed by Sinha et al.15 as a solution to the inverse
computational imaging issue known as “phase retrieval.”16,17 Some of the techniques employ
holography with convolutional neural network (CNN) and generative adversarial networks
(GANs) to quickly retrieve the phase and amplitude from a single hologram image.18–21

Ptychography22–24 is one of the popular reconstruction techniques for phase recovery.
Kaiqiang et al. discussed the TIE with deep learning (termed as dTIE).25 The method shows
DL ability to produce phase map from single intensity image. The reported average structural
similarity index (SSIM) for the proposed method is 0.95. Wu et al. discussed the fundamental
principles of phase imaging with the DL-based technique to create a model-based phase retrieval
framework.26 The low-rank total variation based regularization approach reports a peak-signal-
to-noise ratio (PSNR) of 11.63 and an SSIM of 0.92, whereas the model-based network regu-
larization method reports PSNRs of 23.70 and SSIMs of 0.90. Xiaofeng et al. created a cascaded
deep neural network using the forward and inverse physics models to create a physics-informed
neural network (PINN).27 PINN method reports the SSIM value of 0.91 for human buccal epi-
thelial cells 25.23 dB in PSNR value. The extended use of CNN and U-Net to achieve large space
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bandwidth and high-resolution imaging is possible with ptychography method. The integration
of CNN with lensless imaging shows promising results and has clinical applications in real
world.28,29 One of the modalities for phase imaging is tomography, which shows high resolution
and better performance for voxel reconstruction30,31 using deep convolutional neural network.
Transport of intensity equation (TIE) is a non-interferometric QPI technique that enables the
reconstruction of phase information from defocused intensity measurements in a regular
microscope.32 Though the TIE is elegant and simple, the need for multiple defocus measurements
and a precise phase characterization prior to use made it unpopular in practical real time use.

In this work, we introduce an efficient method known as TIE-GANs to overcome multi-shot
scheme of conventional TIE. The proposed approach is advantageous as it can be implemented in
real time as a single shot technique. Our approach is based on the mapping relationship between
intensity and phase image. The use of GANs33 in the field of computer vision is a groundbreaking
work with applications in various operations, such as image-to-image translation,34 text-to-image
translation,35 and semantic image to photo translation.36 Image-to-image translation application
is exploited in demonstrating virtual phase staining of the images.37 This approach makes use of
image-to-image translation using GANs modality.38 The image-to-image translation method
finds the relationship between input and output images. It is unique in terms of loss learning
because this approach not just learns image translation from input to output map but also learns
a loss function simultaneously. Due to the time and effort required for execution, the network no
longer needs to rely on hand-engineered loss functions. For dataset preparation, TIE is being used
for creating phase and intensity image pair.39 In optical and electron microscopy, the TIE is a
computational method for reconstructing the phase of a complex wave.40 One of the main bottle-
necks for DL algorithms is that it requires a large dataset, i.e., images for proper training. Hence,
during the experiments our focus was to generate an appropriate number of images for training
the neural network. In this study, we used oral buccal cells for training the GANs-based model.
There are two sets of image pairs generated using TIE microscope: the first set consists of 600
and the second one consists of 700 images consecutively. Out of these image stacks, 100 images
are reserved for testing from each set while the remaining images are used for training the net-
work. We use SSIM, mean squared error (MSE), PSNR, and universal image quality index
(UIQI) as the main image quality assessment parameters to evaluate the translated and recon-
structed images.41

2 Principle

2.1 Transport of Intensity Equation
In the recent past, several QPI imaging techniques have been developed for biomedical
applications.42 In QPI techniques based on interferometric principles, one of the main challenges
is to address the coherence induces disturbances43 that can hinder the quality and accuracy of
phase reconstructions. Traditional intensity-based imaging methods in QPI capture only the
object’s intensity information, whereas the phase information, which is related to the object’s
refractive index variations, is lost.44 The TIE method, which is a non-interferometric QPI tech-
nique, enables the phase information to be recovered from intensity measurements.45–47

TIE is based on Poisson equation, which takes into consideration the Laplacian, of the phase
of wave and its variation along the optical axis.48 The TIE makes use of a well-focused image and
two defocused images to extract the complex wave information of the object. A plane wave in
terms of amplitude and phase term can be represented as

EQ-TARGET;temp:intralink-;e001;117;184uðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðx; yÞ

p
expðiφðx; yÞÞ; (1)

where I is the captured intensity and φðx; yÞ is the spatial distribution of the phase. Paraxial
approximation of the propagation gives the TIE,49 as

EQ-TARGET;temp:intralink-;e002;117;135

∂Iðx; yÞ
∂z

¼ −
λ

2π
∇:ðI∇φðx; yÞÞ; (2)

where λ represents the spectrally weighted mean wavelength. By slightly defocusing the image in
both the positive and negative z-direction z derivative can be obtained. Phase retrieval can be
calculated,50 using Eq. (2) to compute the inverse Laplacian.
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The φðx; yÞ can be obtained as

EQ-TARGET;temp:intralink-;e003;114;724φðx; yÞ ¼ ∇−2
�
∇ ·

�
1

Iðx; yÞ∇
�
∇−2

�
−
2π

λ

∂Iðx; yÞ
∂z

����
; (3)

where Iðx; yÞ represents the infocus image intensity and the ∇−2 is the inverse Laplacian
operator.

Finally, to obtain the quantitative measurement of the phase in terms of the thickness of the
object hðx; yÞ can be obtained as

EQ-TARGET;temp:intralink-;e004;114;639hðx; yÞ ¼ λ

2πΔn
Δφ; (4)

where Δn represents the refractive index difference.
Our approach utilizes the non-interferometric property of TIE to record multiple image stack

for training our model.51 TIE methodology is based on multiple recordings at different defocus
planes, hence while reconstructing the phase image one must consider one infocus and two defo-
cus images.52 Finding infocus image plane could be another difficult task if one must decide
manually from a stack of images. We considered Tamura coefficient to calculate the best infocus
image so that the reconstructed image has the highest possible SNR.53 Training with the wide
spectrum of defocus images leads to a robust network and therefore, this modality could recon-
struct the object information at larger defocus planes. Our method incorporates about �60 μm
defocus distance hence, a well defocused image can also produce a reliable reconstructed
phase image.

2.2 Generative Adversarial Networks
DL can extract features from multimodal dataset and recognizes the patterns.54 This property
makes it suitable for various tasks, such as classification,55 cancer detection,56 and
segmentation.57 A DL model is composed of multiple hidden layers, at every layer input is the
linear combination of previous layer output, which then passes through a nonlinear function on
weighted sums.58

Output of k’th node in layer nþ 1 is denoted as

EQ-TARGET;temp:intralink-;e005;114;377Zðnþ1Þ
k ¼ hðaðnþ1Þ

k Þ ¼ h

�XNn

i¼0

wðnÞ
ki x

ðnÞ
i

�
k ¼ 0; : : : ; K; n ¼ 1; : : : ; Nnþ1; (5)

which is derived from the input xn1; x
n
2; x

n
3 ; : : : :; x

n
N .

aðnþ1Þ
k is the linear combination of inputs, and wðnÞ

ki are weights associated with these inputs
these are also known as convolutional maps.59 Number of nodes in the layer l to L represents the
number of hidden layers; usually a single hidden layer represents a shallow and more than three
layers is known as the deep neural network.60 The nonlinear activation function choices are sig-
moid function hðaÞ ¼ 1

ð1þexpð−aÞÞ, RELU hðaÞ ¼ maxð0; aÞ, and hyperbolic tangent tan hðaÞ
function.61

GANs work on a principle where a model can generate data in an adversarial training
setup.62 GANs are different from conventional discriminative model where an image is given
as X and model try to predict the label Y → PðYjXÞ. The main disadvantage associated with
the discriminative model is that they cannot model PðXÞ, i.e., they are not capable of modeling
input images. Hence, these models cannot decide the probability map of input images therefore
unable to generate new images. GANs are unique in terms of learning loss, which classify the
output images as real or fake and simultaneously train a generative model to minimize this loss.
Our approach is focused on a modality know as conditional generative adversarial networks
(cGANs). This method is capable of converting an image from one domain to another using
conventional GANs in a conditional setting. The main advantage of this technique is that it
is best suited for image-to-image translation task in which an input image is conditioned and
generates corresponding output image.63,64 The training procedure associated with the GANs
is shown in Fig. 1.
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Mainly a GAN consists of a generator G and a discriminator D, GAN works as a minmax
game theory where discriminator tries to maximize its reward and generator tries to maximize
discriminator loss.

GANs learn to convert a random noise vector z to output image map y,G : z → y. In the case
of cGANs, it learns mapping from observed images x and random noise vector z,
z → y, G∶fx; zg → y.

The objective function of conditional GANs is given as

EQ-TARGET;temp:intralink-;e006;117;514LcGANðG;DÞ ¼ Ex;y½log Dðx; yÞ� þ Ex;z½logð1 −Dðx; Gðx; zÞÞÞ�; (6)

Gminimizes the objective function against an adversarialD, which is trying to maximize the cost
function.

It can be represented as

EQ-TARGET;temp:intralink-;e007;117;453G� ¼ arg minG maxD LcGANðG;DÞ: (7)

The detailed description of this network and method is shown in Figs. 5(a) and 5(b).

3 Materials and Methods

3.1 Experimental Set-Up
Oral smears were produced from the buccal mucosa of six healthy 25- to 30-year-old volunteers
using a sterile wooden spatula on a clean sterile glass slide. Before taking samples, all of the
respondents were asked to gargle with standard saline. After fixing the cell with alcohol, samples
were put right on a microscope slide so that images can be recorded. No staining procedures were
followed in this process. The oral cells were illuminated using a partially coherent LED light
source having wavelength of 627 nm. The camera used for the experiment is (Basler acA2440-
75um USB 3.0) with (Sony IMX250 CMOS) sensor of 5 MP resolution operating at a frame rate
of 75 fps, with 3.45 μm × 3.45 μm pixel size. A microscope objective with 40× magnification
and a numerical aperture (NA) of 0.65 is used in the microscope. An automated translation stage
(Thorlabs MTS50-Z8) having a travel range of 50 mm with 0.05 μm minimum achievable incre-
mental movement or step size is used for scanning the focus in z direction. The schematic of the
experimental set-up for TIE is shown in Fig. 2(a), and the optical setup for the experiment is
shown in Fig. 2(b).

The stack of images was recorded with a defocus distance up to �60 μm and a step size of
15 μm along the Z axis, for creating the training dataset images. This image stack data are further
used to train GANs. The captured intensity image is of size 1388 × 1040 pixels from which a
region of interest (ROI) containing each individual cell size of 256 × 256 pixels was extracted
out. Reconstructions were performed on a computer with an Intel Core i9 9820X (10Cores
20Threads up to 4.2 GHz) CPU, 64 GB of RAM, and an NVIDIA RTX 2080Ti Dual GPU setup.
The training took between 1 and 1.5 h, based on how many sets of images were used.

3.2 Reconstruction Algorithm of TIE
First the imaging stack was created using the TIE microscope as TIE establishes the connection
between intensity variation and the phase gradient.65 We use the TIE for extraction of the phase
from the intensity variation.66 Figure 3(a) shows the TIE phase retrieval block diagram.

Fig. 1 GANs training map.
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After phase extraction, the dataset is created using pairs of intensity and phase images, which
is given for the training. The methodology diagram for the dataset generation is presented
in Fig. 3(b).

3.3 TIE-GANs
Following dataset development, GANs are used to train image pairs consisting of an intensity and
phase map. The network’s output is a phase map that corresponds to the input image’s intensity
after proper training. Our approach incorporates data from a variety of focal lengths and positions
along the optical axis in z direction to strengthen the resulting model. The training and testing
procedure for the neural network is shown in Figs. 4(a) and 4(b).

In our approach, the TIE-GANs are based on cGANs architecture consisting of two net-
works: generator and discriminator. The generator is inspired from U-Net architecture, which

Fig. 2 (a) Schematic block diagram of TIE experiment. (b) The optical setup for the experiment.

Fig. 3 (a) Block diagram of phase extraction using TIE. (b) Dataset generation of phase map using
TIE data.
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is widely accepted in biomedical image segmentation.67 The network proposed here uses the
encoder–decoder scheme at the generator side with skip connections.64 The input image is down-
sampled using eight convolutional layers in the encoder part followed by eight upsampling layers
in the decoder part.68 The activation function used after every encoder node is Leaky ReLu.69 In
order to avoid the overfitting during training of the neural network, we have implemented the
dropout at the decoder part. Batch normalization has been used after each layer in order to make
the input to each network standardized. The schematic of the network architecture used for gen-
erator is shown in Fig. 5(a). Discriminator network follows the PatchGAN structure where the
input to the network is a pair of real set and generated set of images. The primary goal of this
network is to determine whether or not the produced image is genuine. The discriminator takes

Fig. 5 (a) Generator network to generate images from random noise vectors. (b) Discriminator
network.

Fig. 4 (a) Training methodology of TIE-GANs, (b) the testing methodology and network output as
phase image.
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on a new function by instructing the generating network on how similar the data should be to
real-world images. The picture pair is encoded into a feature vector by the discriminator’s five
convolutional layers. After sigmoid activation functions are applied to the last layer of the net-
work, a binary output of 0 or 1 is produced, representing an actual picture pair. The schematic of
the discriminator network is shown in Fig. 5(b).

3.4 Accuracy Assessment of TIE versus TIE-GANs
The SSIM, MSE, PSNR, and the UIQI are used to measure the quality of an image with respect to
ground truth images.

The MSE is the first parameter to be considered because it is widely used and its calculation
is easy and inexpensive. One of the primary characteristics of the MSE is its independence, which
makes it memoryless and therefore capable of being evaluated on each sample. The MSE’s
physical significance is that it is a measure of signal fidelity in terms of the error signal’s energy.

The MSE was calculated between translated, i.e., GANs output image and ground truth TIE
image, if x ¼ fxij1;2; : : : ; Ng and y ¼ fyij1;2; : : : ; Ng two signals i.e., images the MSE can be
calculated as70

EQ-TARGET;temp:intralink-;e008;114;544MSEðx; yÞ ¼ 1

N

XN
i¼1

ðxi − yiÞ2; (8)

where N represents the number of image samples.
The PSNR is one of the most used objective methods for quality assessment metric for

translated and ground truth image.71 High PSNR value implies a high-quality translated image
as the MSE between translated and ground truth image becomes minimum.

The further extension to the MSE leads to the PSNR calculation, which can be represented as

EQ-TARGET;temp:intralink-;e009;114;442PSNR ¼ 10 log10
L2

MSE
; (9)

where L2 is the dynamic range of the image.
The UIQI is applied since the performance of MSE and PSNR does not incorporate lumi-

nance as well as contrast factor of the images. UIQI is a unique parameter that gives the image
distortion in terms of three factors: loss of correlation, luminance distortion, and contrast
distortion.72

The UIQI is the measure of three parameters so it can be expressed as

EQ-TARGET;temp:intralink-;e010;114;334UIQI ¼ σxy
σxσy

·
2μxμy

ðμxÞ2 þ ðμyÞ2
·
2σxσy
σ2x þ σ2y

: (10)

The first term represents the correlation coefficient between image X and Y, the dynamic
range of this factor is ½−1;1�.

The second term represents how close the luminance is in between both the images, the value
of this factor ranges between [0,1]. The third term represents the contrast and gives the similarity
factor between both input and translated images, the value of this factor ranges between [0,1].
Hence by combining all these parameters, the UIQI can be expressed as

EQ-TARGET;temp:intralink-;e011;114;224UIQI ¼ 4σxyμxμy
ðσ2x þ σ2yÞ½ðμxÞ2 þ ðμyÞ2�

: (11)

Above all the quality assessment metrics performs well but do not consider the human visual
system (HVS). The HVS perception is based on the structural information of the scene, and
evaluation based on structural loss is vital in terms of quality assessment. The SSIM index
is a well-known parameter to compare the structural similarity between two reconstructed and
ground truth images. It gives the quality measurement in terms of luminance, contrast, and struc-
ture, SSIM is a widely used and accepted parameter for quality assessment.73,74
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The SSIM between two images X; Y can be calculated as

EQ-TARGET;temp:intralink-;e012;117;724SSIMðX; YÞ ¼ ð2μxμy þ C1Þð2σxy þ C2Þ
ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þ

: (12)

For UIQI and SSIM, μx and μy the average image intensity of images X and Y, respectively,
σ2x and σ2y are the variance of both the images. σxy is the cross-covariance of images,
c1 ¼ ðK1LÞ2, c2 ¼ ðK2LÞ2 are the stabilization constant, where K1 and K2 is smaller than 1
and L is the dynamic range of the image.

4 Results and Discussions
One of the findings during our testing is that if we increase the ROI bounding box having multi-
ple cells for training in the region, it increases the time of training, but the SSIM and other
parameter do not show any significant improvements. The captured image and extracted ROI
images are shown in Fig. 6. Hence, the experiment was conducted on images having single oral
cell, with a size of 256 × 256 pixels. The dataset contains 700 images for training and 100 for
testing and 100 images for validation. Similarly for the characterization, the microbeads are used
with known refractive index and thickness. The proposed TIE-GANs were used to reconstruct the
phase image of microbeads measuring 4 μm in size (Sigma-Aldrich) with a known refractive
index of 1.68 for characterization. The specimens were immersed in distilled water with a refrac-
tive index of 1.33, which has a linear attenuation coefficient of 0.843 μm−1. The results in
Fig. 7(a) show input intensity image, Fig. 7(b) depicts the phase reconstruction using TIE,
Fig. 7(c) represents the proposed TIE-GANs reconstruction, and Fig. 7(d) shows phase profile
for both methods. The characterization data showed 0.98 SSIM value, which clearly verifies the
validity of our proposed method with microbeads.

The initial learning rate and batch size were set to be at 0.0001 and 4, respectively, and the
optimizer used was Adam, which is based on the stochastic gradient descent.75 Our method per-
formed two sets of iterations, one with 600 images and 200 epochs and the second with 700
images and 300 epochs. After 300 epochs, the network seems to be saturated and does not show
any significant increase in accuracy to produce high SSIM reports. Figure 10(a) shows the results
with 600 images and 200 epochs where we observed the higher number of SSIM were reported to
that of the ground truth images. While in Fig. 10(b), the SSIM shows the data lying toward the
0.75 range, which also depicts after certain epochs despite the increase in the number of images
the network becomes saturated, i.e., similarity to the ground truth data becomes less. The results
from both the experiments are shown in Fig. 8. The maximum SSIM observed during our experi-
ment was found to be 0.95 with 600 images and 200 epochs.

The detailed results of SSIM index are presented in Table 1 for both the experiments. We
observed that after 200 epochs the network started losing its capability to generate new samples
near to actual ground truth images gradually. The experimental parameters of both the experi-
ments have been shown in Table 1.

×

× 

 

Fig. 6 Captured intensity image and extracted ROI for training.
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Fig. 8 Conventional TIE and TIE:GANs reconstruction with SSIM values.

Fig. 7 (a) Input intensity image, (b) TIE phase reconstruction, (c) proposed TIE-GANs reconstruc-
tion, (d) phase profile for TIE and proposed TIE-GANs methods.
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We calculated the various parameters based on these observations and found that the experi-
ment works best with 200 epochs and around 600 images. Figure 9(a) shows the intensity image,
which is the input to the TIE: GAN’s network, Fig. 9(b) shows the ground truth image. We can
observe TIE-GANs output in Fig. 9(c), which clearly depicts the quantitative phase map and
Fig. 9(d) shows the error map between TIE-GANs and ground truth image.

One more factor that is visible during training process is that along with the high number of
images we need to introduce robustness to the network as well to avoid overfitting.76 To do that, a
skip connection was introduced in the network. However, it is observed that it is highly uncertain
to determine the optimized parameter to get the desired results. The parameter needs to be tested
through several iterations until the likely output is achieved. Overfitting of the network is one of
the problems that arise during training. Our method utilizes skip connection and dropout in the
deconvolution part of the network to avoid overfitting. TIE-GANs are found to be effective, and
their execution time after training is as low as ∼0.010 s for generating phase map image. We do
expect that the training cycles, the volume of training data (number of phase images) that is
needed for practically reconstructing objects with different phases and thicknesses will be much
high compared to what is demonstrated as a proof of concept in this paper. We have used beads of
thicknesses ∼4 μm with a microscope objective magnification of (63×, 1.4 NA) in one set of
images. We found that a defocus distance of 1 μm was optimal for this NA and magnification. A

Fig. 9 Reconstruction results of TIE-GANs. (a) Input defocused intensity image, (b) ground Truth
data conventional TIE, (c) TIE-GANs output network generated output, and (d) error map between
ground truth and TIE-GANs.

Table 1 Experimental parameters.

Parameter Experiment 1 Experiment 2

Number of images 600 700

Epochs 200 350

Max SSIM 0.95 0.94

Min SSIM 0.78 0.76

Max MSE 1364.98 1856.61

Min MSE 150.14 148.20

Max PSNR 26.36 dB 26.42 dB

Min PSNR 16.78 dB 15.45 dB

Max UIQI 0.89 0.90

Min UIQI 0.33 0.42

Time taken 1 h 1.5 h
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microscope objective (40×, NA: 0.65) was used for imaging the exfoliate buccal cells. Light
source exposure of the camera settings has been adjusted according to the sample for good qual-
ity images.

To introduce randomness to the network during training process, some of the images given
to the network is unpaired, so the network does not get saturated over time. Although, unpaired
image dataset is a well-known method that is known as cycle GANs.77 During our training proc-
ess, we observed that introducing false image pair increases the accurate image pair generated.

Our method is quite simple, and it works on the defocused images and the defocus distance
that is trained during training of the samples. During testing, a single intensity defocused image is
input to the algorithm and without any decision on the best focus plane or numerical iterative
wave propagations, we retrieve the best phase image. This saves time and computational labor.
The one to one mapping of pixels from the input defocused object to the output phase object can
be elegantly achieved through training using GANs for a larger defocused distance, which is an
advantage of TIE:GANs. Another important advantage of our technique is that the proposed
algorithm works on DL derived GANs networks. Hence unlike other iterative phase retrieval
algorithms, we retrieve the phase image instantly from the trained network. This gives us a
remarkable edge in terms of real time operations compared to most other iterative and numerical
propagation techniques.

Figure 10(a) shows the SSIM histogram for both experiments, which reveals that the first
iteration with 200 epochs has a greater percentage of SSIM values in the range of 0.92 to 0.94.
Figure 10(b) for iteration 2 with 300 epochs also displays values near the 0.90 range, but it is
evident that it has a low SSIM index compared to iteration 1. Maximum SSIM reported with 200
epochs and 600 image sample size was 0.95. Therefore, TIE-GANs-based reconstruction can
reconstruct images with 95% similarity to the conventional TIE scheme, i.e., ground truth
images.

The second parameter for quality assessment for reconstruction is MSE, which is calculated
using Eq. (8) the histogram and the MSE distribution is shown in Figs. 11(a) and 11(b).

MSE computes the average squared error between each pixel in the two images being com-
pared. From Fig. 11(a) with 200 epochs, we can observe that the maximum MSE is coming
around the 1400 range. While in the second experiment it is exceeding the 2000 range means
that the value of MSE is quite high as compared to the first iteration. Since we are looking for
lower number of MSE hence first experiment makes the optimum sense regarding this experi-
ment. Because the maximum number of values lies between 200 and 400 range, the result shows
that the error is low as expected and it shows closeness to the ground truth images.

The PSNR value calculated using Eq. (9) and the maximum value for 200 epochs was found
to be 26.36 dB and for 300 epochs with 700 training image pair the maximum value found to be
26.42 dB. The experimental parameter for PSNR is shown in Table 1.

There was no such significant increase observed from 200 to 300 epochs hence it verified
our observation with SSIM that after 200 epochs network start saturating. The histogram and the
distribution of the PSNR value on test images are shown in Figs. 12(a) and 12(b).
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Fig. 10 (a) Figure with 200 epoch and 600 image sample size. (b) SSIM histogram with 300 epoch
and 700 image sample size.
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The final parameter for consideration is UIQI, which is calculated using Eq. (11). The UIQI
is the combined measure of correlation, luminance, and contrast, and the histogram for epochs
200 and 300 and distribution of values is shown in Figs. 13(a) and 13(b). The UIQI ranges
between 0 and 1, 0 shows no similarity between two images and 1 shows identical images
to the ground truth images. The maximum UIQI observed is 0.90 for experiment 2, although
the experiment 1 also gave significant results and reached about 0.89 UIQI value. From these
four parameters, we came to the conclusion that despite of increment in the number of images in
the second experiment the first one with 600 images worked well for optimum results.
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Fig. 12 (a) PSNR value for 200 epochs and 600 image sample. (b) PSNR for 300 epochs and 700
image sample.
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Fig. 11 (a) MSE value for 200 epochs and 600 sample. (b) MSE for 300 epochs and 700 image
sample.
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Since the conventional TIE is not a single shot scheme, it requires multiple images to be
recorded at different defocus planes provided that the sample is non-homogeneous. Since we
cannot have a single shot scheme for non-homogeneous samples, one of the advantages of our
method is that it can work on any sample despite its nature. For non-homogeneous samples, the
conventional TIE works in such a way we must find the best infocus image from intensity image
stack using tamura coefficient as mentioned in the methodology section. Afterward it demands to
compute SNR value by putting two defocus images one from overfocus and one from underfocus
plane for phase reconstruction. This process always takes tedious parameter calibration.
However, in the TIE-GANs dataset has been prepared using the different defocus plane images
with oral cells so that it learns the features from different defocus distances during training itself.
Figures 14(a) and 14(b) show the SSIM reconstructed at different defocus planes, which shows
the SSIM reconstructed using conventional TIE and TIE-GANs. It is observed that if we propa-
gate through the different defocus planes the TIE-GANs are able to produce phase maps closer to
ground truth. As we shift away from the infocus plane and reconstruct phase map using three
defocused images, the SSIM decreases gradually in case of conventional TIE shown in
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Fig. 14(a). In the case of conventional TIE, it ranges from [0.35, 1] while in case of TIE-GANs it
never reaches the value of 1 but it never drops below 0.80 range. It shows the consistency of the
TIE-GANs to reconstruct phase map over long defocus distances as shown in Figs. 14(a)
and 14(b).

Similar results can be observed for the MSE and PSNR values as well. In Figs. 14(c) and
14(d), it is clearly observed that the conventional TIE MSE can be ranged between [0,800],
whereas TIE-GANs range between [150,450]. So, we can conclude that the TIE-GANs results
have consistency over reconstruction in terms of accuracy. It produces minimal noise as low as
possible even if we propagate along the optical axis in the Z direction. The final parameter for
consideration is the PSNR value we can observe that in Figs. 14(e) and 14(f) the maximum PSNR
value in terms of the TIE-GANs reaches up to 26.42 dB while in case of conventional TIE it
reaches the value of the 24.5 dB, the values here even exceed the conventional TIE value. The
minimum value that we observed during our experiment was 19 dB in the conventional TIE while
in the case of the TIE-GANs it never drops below 19.5 dB. From comparative analysis of all
these parameters, we can conclude that although conventional TIE performs well for non-
homogeneous samples, TIE-GANs can perform well as a single-shot scheme. The TIE-
GANs can reconstruct phase for long defocus distance in optical axis. Hence, TIE-GANs and
other related schemes for the phase reconstruction based on DL hold the future for phase contrast
microscopy. The challenge that one has to face during implementation is that we need to train the
network with the same sample then only we are able to get the desirable results. In the case of
conventional TIE, one does not have to hold the knowledge of the sample beforehand the math-
ematical implementation of the algorithm does the job for phase reconstruction. In case of TIE-
GANs, the network must learn the feature map of the sample through training. After training,
only TIE-GANs can predict feature map for the phase image and works as a single shot tech-
nique. Although unpaired image translation techniques have potential for phase reconstruction,
we have not seen better statistical improvements as of now hence did not consider them for
reconstruction in this study.

5 Conclusion
The incorporation of QPI with DL methodologies is a noteworthy achievement within the
domain of microscopy and data processing. The convergence of these two innovative disciplines
has the potential to fundamentally transform our understanding of biological systems, materials,
and beyond. The label-free feature of QPI and DL algorithms enables automatic extraction of
complicated information, enabling more accurate and efficient analysis. This study has empha-
sized the novelty and benefits of using DL algorithms, such as TIE-GANs for quantitative phase
microscopy. The qualities of TIE such as label-free nature and less complex experimental set-up
works as an add-on to QPI analysis with DL. This study is able to employ a method based on
GANs to reduce the necessity of manual labor. Our method solved complexity in capturing a
large number of images at different defocus planes by enabling single shot technique. The uti-
lization of GANs as a methodology has been found to be proficient in generating phase images,
provided that the dataset has been suitably prepared. TIE-GANs are able to convert single-
intensity images to phase maps in rapid manner, and the results are encouraging for oral cells.
The characterization is done with microbeads, which produces 98% SSIM and improved PSNR
value. When trained on a structured dataset, as demonstrated by the microbead validation results,
the proposed method can be used to characterize nanometric samples as well. The SSIM for oral
cell was reported to be 95% and there is room for further improvement when the network is fine-
tuned. There are some demerits of DL in terms of computation as it requires a heavy hardware
setup. High configuration requirements make these algorithms and experiments data-, and com-
putation-hungry. However, the future of artificial intelligence holds great potential along with
QPI and other sectors of biomedical imaging. One of the key findings during our experiment was
that it works for images on any defocus distance up to �60 μm in z direction along the optical
axis. The novelty of our approach showed that even if we provide intensity image at any distance
in optical axis, and it is able to reconstruct the phase map of these intensity images under pro-
vided range. Future work for this research includes the accuracy assessment as well as tuning of
hyperparameters that will improve our current parameters. Another dimension of this research is
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to extend this similar capability for lenless holographic system as well for the virtual staining of
the samples based on thickness or other properties. The future work for this research consists of
the unpaired image translation for phase reconstruction. The future work of our method includes
the nanometric resolution characterization for RBC and sperm cells.
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